inline Real OneDFSIPhysics::dAdP( const Real& P, const Real& timeStep, const UInt& iNode, const bool& elasticExternalNodes ) const { if ( !M_dataPtr->viscoelasticWall() || ( ( iNode == 0 || iNode == M_dataPtr->numberOfNodes() - 1 ) && elasticExternalNodes ) ) { return M_dataPtr->area0( iNode ) / ( M_dataPtr->beta0( iNode ) * M_dataPtr->beta1( iNode ) ) * OneDFSI::pow10( 1 + ( P - externalPressure() ) / M_dataPtr->beta0( iNode ), 1 / M_dataPtr->beta1( iNode ) - 1 ); } else { // Finite difference approach return ( fromPToA( P + M_dataPtr->jacobianPerturbationStress(), timeStep, iNode, elasticExternalNodes ) - fromPToA( P, timeStep, iNode, elasticExternalNodes ) ) / M_dataPtr->jacobianPerturbationStress(); } }
inline Real OneDFSIPhysics::elasticPressure( const Real& A, const UInt& iNode ) const { return ( M_dataPtr->beta0( iNode ) * ( OneDFSI::pow05( A/M_dataPtr->area0( iNode ), M_dataPtr->beta1( iNode ) ) - 1 ) ); }
// =================================================== // Inline methods // =================================================== inline Real OneDFSIPhysics::celerity0( const UInt& iNode ) const { return std::sqrt( M_dataPtr->beta0( iNode ) * M_dataPtr->beta1( iNode ) / M_dataPtr->densityRho() ); }
inline Real OneDFSIPhysics::dPdAelastic( const Real& A, const UInt& iNode ) const { return M_dataPtr->beta0( iNode ) * M_dataPtr->beta1( iNode ) * OneDFSI::pow05( A / M_dataPtr->area0( iNode ), M_dataPtr->beta1( iNode ) ) / A; }
// =================================================== // Inline conversion methods // =================================================== inline Real OneDFSIPhysics::fromPToA( const Real& P, const Real& timeStep, const UInt& iNode, const bool& elasticExternalNodes ) const { if ( !M_dataPtr->viscoelasticWall() || ( ( iNode == 0 || iNode == M_dataPtr->numberOfNodes() - 1 ) && elasticExternalNodes ) ) return ( M_dataPtr->area0( iNode ) * OneDFSI::pow20( ( P - externalPressure() ) / M_dataPtr->beta0( iNode ) + 1, 1 / M_dataPtr->beta1( iNode ) ) ); else { // Newton method to solve the non linear equation Real tolerance(1e-6); Real maxIT(100); UInt i(0); Real A( M_dataPtr->area0( iNode ) ); Real newtonUpdate(0); for ( ; i < maxIT ; ++i ) { if ( std::abs( pressure( A, timeStep, iNode, elasticExternalNodes ) - P ) < tolerance ) break; newtonUpdate = ( pressure( A, timeStep, iNode, elasticExternalNodes ) - P ) / dPdA( A, timeStep, iNode, elasticExternalNodes ); if ( A - newtonUpdate <= 0 ) A /= 2.0; // Bisection else A -= newtonUpdate; // Newton } if ( i == maxIT ) { std::cout << "!!! Warning: conversion fromPToA below tolerance !!! " << std::endl; std::cout << "Tolerance: " << tolerance << "; Residual: " << std::abs( pressure( A, timeStep, iNode, elasticExternalNodes ) - P ) << std::endl; } return A; } }