bool brightRGB::getMax(const image& img,dvector& dest) const{

    // image empty?
    if (img.empty()) {
      setStatusString("image empty");
      dest.resize(0);
      return false;
    }

    const rgbPixel transColor = getParameters().transColor;
    ivector maxV(3,-1);
    image::const_iterator it = img.begin();
    if(getParameters().transparent) {
      while(it != img.end()) {
	if(*it != transColor) {
	  if((*it).getRed() > maxV.at(0))
	    maxV.at(0) = (*it).getRed();
	  if((*it).getGreen() > maxV.at(1))
	    maxV.at(1) = (*it).getGreen();
	  if((*it).getBlue() > maxV.at(2))
	    maxV.at(2) = (*it).getBlue();
	}
	it++;
      }
      // only transparent pixels?
      if (maxV.at(0)==-1) {
        setStatusString("only transparent pixels");
        dest.resize(0);
        return false;
      }
    } else { // no transparent color
      while(it != img.end()) {
	if((*it).getRed() > maxV.at(0))
	  maxV.at(0) = (*it).getRed();
	if((*it).getGreen() > maxV.at(1))
	  maxV.at(1) = (*it).getGreen();
	if((*it).getBlue() > maxV.at(2))
	  maxV.at(2) = (*it).getBlue();
	it++;
      }
    }
    if(maxV.at(0) == -1)
      return false;
    dest.castFrom(maxV);
    // normalize to 0..1
    dest.divide(255);
    return true;
  };
  bool brightRGB::getAverage(const image& img,dvector& dest) const{

    const rgbPixel transColor = getParameters().transColor;
    dvector avg(3,0.0);
    image::const_iterator it = img.begin();
    // check for empty image
    if (img.columns()==0 || img.rows()==0) {
      setStatusString("image empty");
      dest.resize(0);
      return false;
    }
    if(getParameters().transparent) {
      int counter = 0;
      while(it != img.end()) {
	if(*it != transColor) {
	  avg.at(0) += (*it).getRed();
	  avg.at(1) += (*it).getGreen();
	  avg.at(2) += (*it).getBlue();
	  ++counter;
	}
	it++;
      }
      // check for completely transparent image
      if (counter==0) {
        setStatusString("only transparent pixels");
        dest.resize(0);
        return false;
      }
      avg.divide(counter);
    } else { // no transparent color
      while(it != img.end()) {
	avg.at(0) += (*it).getRed();
	avg.at(1) += (*it).getGreen();
	avg.at(2) += (*it).getBlue();
	it++;
      }
      avg.divide(img.columns()*img.rows());
    }
    // values between 0 and 1
    dest.divide(avg, 255.);
    return true;
  };
示例#3
0
  /*
   * compute mat*vct' where vct' is a vector with one additional element
   * (1.0) at the beginning of vct.
   */
  bool MLP::biasMultiply(const dmatrix& mat,
                         const dvector& vct,
                         dvector& res) const {
    int j;
    dmatrix::const_iterator it,eit;
    dvector::iterator rit;
    dvector::const_iterator vit,evit;

    res.resize(mat.rows(),0.0,false,false);
    it = mat.begin();
    eit = mat.end();
    rit = res.begin();
    evit = vct.end();

    for (j=0;j<mat.rows();++j,++rit) {
      *rit = *it;
      ++it;
      for (vit=vct.begin();vit!=evit;++it,++vit) {
        *rit += (*vit)*(*it);
      }
    }

    return true;
  }
		/**
		   solve linear equation using LU decomposition
		   by lapack library DGESVX (_a must be square matrix)
		*/
		int solveLinearEquationLU(const dmatrix &_a, const dvector &_b, dvector &_x)
		{
				assert(_a.cols() == _a.rows() && _a.cols() == _b.size() );

				int n = (int)_a.cols();
				int nrhs = 1;

				int lda = n;

				std::vector<int> ipiv(n);

				int ldb = n;

				int info;

				// compute the solution
#ifndef USE_CLAPACK_INTERFACE
  				char fact      = 'N';
				char transpose = 'N';

				double *af = new double[n*n];

				int ldaf = n;

				char equed = 'N';

				double *r = new double[n];
				double *c = new double[n];

				int ldx = n;

				double rcond;

				double *ferr = new double[nrhs];
				double *berr = new double[nrhs];
				double *work = new double[4*n];

				int *iwork = new int[n];

			    _x.resize(n);			// memory allocation for the return vector
				dgesvx_(&fact, &transpose, &n, &nrhs, const_cast<double *>(&(_a(0,0))), &lda, af, &ldaf, &(ipiv[0]),
						&equed, r, c, const_cast<double *>(&(_b(0))), &ldb, &(_x(0)), &ldx, &rcond,
						ferr, berr, work, iwork, &info);

				delete [] iwork;
				delete [] work;
				delete [] berr;
				delete [] ferr;
				delete [] c;
				delete [] r;

				delete [] af;
#else
				_x = _b;
				info = clapack_dgesv(CblasColMajor,
									 n, nrhs, const_cast<double *>(&(a(0,0))), lda, &(ipiv[0]),
									 &(_x(0)), ldb);
#endif

				return info;
		}
		/**
		   solve linear equation using SVD(Singular Value Decomposition)
		   by lapack library DGESVD (_a can be non-square matrix)
		*/
		int solveLinearEquationSVD(const dmatrix &_a, const dvector &_b, dvector &_x, double _sv_ratio)
		{
				const int m = _a.rows();
				const int n = _a.cols();
				assert( m == static_cast<int>(_b.size()) );
				_x.resize(n);

				int i, j;
				char jobu  = 'A';
				char jobvt = 'A';
        
				int max_mn = max(m,n);
				int min_mn = min(m,n);

				dmatrix a(m,n);
				a = _a;

				int lda = m;
				double *s = new double[max_mn];		// singular values
				int ldu = m;
				double *u = new double[ldu*m];
				int ldvt = n;
				double *vt = new double[ldvt*n];

				int lwork = max(3*min_mn+max_mn, 5*min_mn);     // for CLAPACK ver.2 & ver.3
				double *work = new double[lwork];
				int info;

				for(i = 0; i < max_mn; i++) s[i] = 0.0;

				dgesvd_(&jobu, &jobvt, &m, &n, &(a(0,0)), &lda, s, u, &ldu, vt, &ldvt, work,
						&lwork, &info);

				double tmp;

				double smin, smax=0.0;
				for (j = 0; j < min_mn; j++) if (s[j] > smax) smax = s[j];
				smin = smax*_sv_ratio; // 1.0e-3;
				for (j = 0; j < min_mn; j++) if (s[j] < smin) s[j] = 0.0;
	
				double *utb = new double[m];		// U^T*b

				for (j = 0; j < m; j++){
						tmp = 0;
						if (s[j]){
								for (i = 0; i < m; i++) tmp += u[j*m+i] * _b(i);
								tmp /= s[j];
						}
						utb[j] = tmp;
				}

				// v*utb
				for (j = 0; j < n; j++){
						tmp = 0;
						for (i = 0; i < n; i++){
								if(s[i]) tmp += utb[i] * vt[j*n+i];
						}
						_x(j) = tmp;
				}

				delete [] utb;
				delete [] work;
				delete [] vt;
				delete [] s;
				delete [] u;
	
				return info;
		}
示例#6
0
 void copy_from_host(dvector<T> &out, const std::vector<T> &in)
 {
     out.resize(in.size());
     out.copy_from_host(&in[0], in.size());
 }
示例#7
0
  /*
   * calculate gradient of error surface using back-propagation algorithm
   *
   * @param input input vector
   * @param outputId desired output.  This value must be between 0 and
   *                 the number of output elements-1.
   * @param grad computed gradient of the error surface
   * @return true if successful, or false otherwise.
   */
  bool MLP::calcGradient(const dvector& input,
                         const int outputId,
                         dvector& grad) {

    const parameters& param = getParameters();
    const int layers = param.hiddenUnits.size()+1;

    propagate(input);
    grad.resize(weights.size());

    int i,j,jj,k,idx,lastIdx;
    int layer = layerIndex.size()-1;

    double delta;

    // compute f'(net) at unitsNet
    for (i=0;i<layers;++i) {
      param.activationFunctions[i]->deriv(unitsNet[i]);
    }

    // ---------------------------------------------
    // gradient for the elements of the output layer
    // ---------------------------------------------

    const dmatrix& outMat = matWeights[layer];

    const dvector* theInput = 0;
    if (layer>0) {
      theInput = &unitsOut[layer-1];
    } else {
      theInput = &input;
    }

    idx = layerIndex.at(layer);

    dvector lastDeltas,newDeltas;

    lastDeltas.resize(outMat.rows(),0,false,false);

    for (j=0;j<outMat.rows();++j) {
      delta = ((((j==outputId)?on:off) - unitsOut[layer].at(j)) *
               unitsNet[layer].at(j));

      lastDeltas.at(j)=delta;

      grad.at(idx)=delta; // bias = 1.0
      ++idx;
      for (i=0;i<theInput->size();++i,++idx) {
        // idx means layerIndex.at(layer)+i+j*ROWS
        grad.at(idx) = delta*theInput->at(i);
      }
    }

    // ----------------------------------------------
    // gradient for the elements of the hidden layers
    // ----------------------------------------------
    --layer;
    while (layer>=0) {

      const dmatrix& outMat = matWeights[layer];
      const dmatrix& lastMat = matWeights[layer+1];
      const dvector* theInput = 0;

      if (layer>0) {
        theInput = &unitsOut[layer-1];
      } else {
        theInput = &input;
      }

      idx = layerIndex.at(layer);
      lastIdx = theInput->size();

      newDeltas.resize(outMat.rows(),0.0,false,false);
      for (j=0,jj=1;j<outMat.rows();++j,++jj) {
        delta = 0;
        for (k=0;k<lastMat.rows();++k) {
          delta+=(lastDeltas.at(k)*lastMat.at(k,jj));
        }
        delta*=unitsNet[layer].at(j);
        newDeltas.at(j)=delta;

        grad.at(idx)=delta; // bias = 1.0
        ++idx;
        for (i=0;i<lastIdx;++i,++idx) {
          // idx means layerIndex.at(layer)+i+j*ROWS
          grad.at(idx) = delta*theInput->at(i);
        }
      }

      newDeltas.detach(lastDeltas);

      // continue with next layer
      --layer;
    };

    return true;
  }
  bool brightRGB::getMedian(const image& img,dvector& dest) const{


    // image empty?
    if (img.empty()) {
      setStatusString("image empty");
      dest.resize(0);
      return false;
    }

    const rgbPixel transColor = getParameters().transColor;
    dest.resize(3);
    ivector hist0(256,0);
    ivector hist1(256,0);
    ivector hist2(256,0);
    image::const_iterator it = img.begin();
    if(getParameters().transparent) {
      while(it != img.end()) {
  	if(*it != transColor) {
	  ++hist0.at((*it).getRed());
	  ++hist1.at((*it).getGreen());
	  ++hist2.at((*it).getBlue());
	}
	it++;
      }
      const int counterHalf = hist0.sumOfElements()/2;
      // check for complete image transparent
      if (counterHalf==0) {
        setStatusString("only transparent pixels");
        dest.resize(0);
        return false;
      }

      int i,s;
      i=-1,s=0;
      while(++i<256 && s<counterHalf) {
	s += hist0.at(i);
      }
      dest.at(0) = i-1;
      i=-1,s=0;
      while(++i<256 && s<counterHalf) {
	s += hist1.at(i);
      }
      dest.at(1) = i-1;
      i=-1,s=0;
      while(++i<256 && s<counterHalf) {
	s += hist2.at(i);
      }
      dest.at(2) = i-1;
    } else { // no transparent color
      while(it != img.end()) {
	  ++hist0.at((*it).getRed());
	  ++hist1.at((*it).getGreen());
	  ++hist2.at((*it).getBlue());
	it++;
      }
      const int counterHalf = img.columns()*img.rows()/2;
      int i,s;
      i=-1,s=0;
      while(++i<256 && s<counterHalf) {
	s += hist0.at(i);
      }
      dest.at(0) = i-1;
      i=-1,s=0;
      while(++i<256 && s<counterHalf) {
	s += hist1.at(i);
      }
      dest.at(1) = i-1;
      i=-1,s=0;
      while(++i<256 && s<counterHalf) {
	s += hist2.at(i);
      }
      dest.at(2) = i-1;
    }

    // normalize to 0..1
    dest.divide(255);

    return true;
  };
  // On copy apply for type image!
  bool histogramRGBL::apply(const image& src,dvector& dest) const {

    if (src.empty()) {
      dest.clear();
      setStatusString("input channel empty");
      return false;
    }

    const parameters& param = getParameters();

    int theMin(0),theMax(255);

    const int lastIdx = param.cells-1;

    const float m = float(lastIdx)/(theMax-theMin);
    int y,r,g,b,l;
    int idx;
    int entries;

    vector<rgbPixel>::const_iterator it,eit;

    dest.resize(4*param.cells,0.0,false,true); // initialize with 0
    dvector theR(param.cells,0.0);
    dvector theG(param.cells,0.0);
    dvector theB(param.cells,0.0);
    dvector theL(param.cells,0.0);

    entries = 0;

    // if b too small, it's possible to calculate everything faster...

    // check if the ignore value
    if (param.considerAllData) {
      for (y=0;y<src.rows();++y) {
        const vector<rgbPixel>& vct = src.getRow(y);
        for (it=vct.begin(),eit=vct.end();it!=eit;++it) {
          r = (*it).getRed();
          g = (*it).getGreen();
          b = (*it).getBlue();
          l = (min(r,g,b)+max(r,g,b))/2;

          idx = static_cast<int>(r*m);
          theR.at(idx)++;
          idx = static_cast<int>(g*m);
          theG.at(idx)++;
          idx = static_cast<int>(b*m);
          theB.at(idx)++;
          idx = static_cast<int>(l*m);
          theL.at(idx)++;

          entries++;
        }
      }
    } else {
      for (y=0;y<src.rows();++y) {
        const vector<rgbPixel>& vct = src.getRow(y);
        for (it=vct.begin(),eit=vct.end();it!=eit;++it) {
          if ((*it) != param.ignoreValue) {
            r = (*it).getRed();
            g = (*it).getGreen();
            b = (*it).getBlue();
            l = (min(r,g,b)+max(r,g,b))/2;

            idx = static_cast<int>(r*m);
            theR.at(idx)++;
            idx = static_cast<int>(g*m);
            theG.at(idx)++;
            idx = static_cast<int>(b*m);
            theB.at(idx)++;
            idx = static_cast<int>(l*m);
            theL.at(idx)++;

            entries++;
          }
        }
      }
    }

    if (param.smooth) {
      convolution convolver;
      convolution::parameters cpar;
      cpar.boundaryType = lti::Mirror;
      cpar.setKernel(param.kernel);
      convolver.setParameters(cpar);

      matrix<double> tmp;
      tmp.useExternData(4,param.cells,&dest.at(0));

      convolver.apply(theR,tmp.getRow(0));
      convolver.apply(theG,tmp.getRow(1));
      convolver.apply(theB,tmp.getRow(2));
      convolver.apply(theL,tmp.getRow(3));

    } else {
      dest.fill(theR,0);
      dest.fill(theG,param.cells);
      dest.fill(theB,2*param.cells);
      dest.fill(theL,3*param.cells);
    }

    if (param.normalize) {
      if (entries > 0) {
        dest.divide(entries);
      }
    }

    return true;

  };
示例#10
0
  // On copy apply for type channel!
  bool huMoments::apply(const channel& src,dvector& dest, dvector& more) const {
    channel::value_type val;

    dest.resize(NUM_FEAT,0,false,true);
    more.resize(MORE_FEAT,0,false,true);

    double m00=0.0;
    double cm11,cm20,cm02,cm30,cm03,cm12,cm21;
    cm11=cm20=cm02=cm30=cm03=cm12=cm21=0.0;
    double xcog, ycog;
    xcog=ycog=0.0;

    int r, rows=src.rows();
    int c, cols=src.columns();

    // compute simple moments and cog
    for (r=0; r<rows; r++) {
      for (c=0; c<cols; c++) {
        val = src.at(r,c);
        m00+=val;
        xcog+=c*val;
        ycog+=r*val;
      }
    }

    // end here, if no content
    if (m00==0) {
      return false;
    }

    // compute cog's
    more[huMoments::xcog]=xcog=xcog/m00;  //xcog
    more[huMoments::ycog]=ycog=ycog/m00;  //ycog

    // compute central moments
    for (r=0; r<rows; r++) {
      for (c=0; c<cols; c++) {
        val = src.at(r,c);
        double x_xcog = c-xcog;
        double y_ycog = r-ycog;
        cm11+=(x_xcog)*(y_ycog)*val;
        cm20+=(x_xcog)*(x_xcog)*val;
        cm02+=(y_ycog)*(y_ycog)*val;
        cm30+=(x_xcog)*(x_xcog)*(x_xcog)*val;
        cm03+=(y_ycog)*(y_ycog)*(y_ycog)*val;
        cm12+=(x_xcog)*(y_ycog)*(y_ycog)*val;
        cm21+=(x_xcog)*(x_xcog)*(y_ycog)*val;
      }
    }

    double m00pow2,m00pow2_5;
    m00pow2 = m00*m00;
    m00pow2_5 = pow(m00,2.5);
    // normalized central moments
    cm02 = cm02/m00pow2;
    cm03 = cm03/m00pow2_5;
    cm11 = cm11/m00pow2;
    cm12 = cm12/m00pow2_5;
    cm20 = cm20/m00pow2;
    cm21 = cm21/m00pow2_5;
    cm30 = cm30/m00pow2_5;

    // calculate moment invariants
    dest[huMoments::hu1] = cm20 + cm02;
    dest[huMoments::hu2] = pow((cm20 - cm02),2) + 4*pow(cm11,2);
    dest[huMoments::hu3] = pow((cm30 - 3*cm12),2) + pow((3*cm21 - cm03),2);
    dest[huMoments::hu4] = pow((cm30 + cm12),2) + pow((cm21 + cm03),2);
    dest[huMoments::hu5] = (cm30-3*cm12)*(cm30+cm12)*(   pow((cm30+cm12),2) - 3*pow((cm21+cm03),2) )
                         + (3*cm21-cm03)*(cm21+cm03)*( 3*pow((cm30+cm12),2) -   pow((cm21+cm03),2) );
    dest[huMoments::hu6] = (cm20-cm02)*( pow((cm30+cm12),2) - pow((cm21+cm03),2) )
                         + 4*cm11*(cm30+cm12)*(cm21+cm03);
    dest[huMoments::hu7] = (3*cm21-cm03)*(cm30+cm12)*(   pow((cm30+cm12),2) - 3*pow((cm21+cm03),2) )
                         - (cm30-3*cm12)*(cm21+cm03)*( 3*pow((cm30+cm12),2) -   pow((cm21+cm03),2) );


    double temp = sqrt( (cm20 - cm02)*(cm20 - cm02) + 4*cm11*cm11 );
    more[huMoments::eigen1]=m00*0.5*((cm20+cm02) + temp); //eigen 1
    more[huMoments::eigen2]=m00*0.5*((cm20+cm02) - temp); //eigen 2
    more[huMoments::orientation]=0.5*atan2(2*cm11, cm20 - cm02); //orientation
    more[huMoments::m00]=m00; //m00

    const parameters& param = getParameters();

    if (param.scaling) {
      int i;
      for (i=0; i<dest.size();i++){
        dest[i]=-logn(dest[i]);
      }
    }

    return true;
  }