/** * Compute the primitive part and the content of a modular multivariate * polynomial e \in Z_p[x_n][x_0, \ldots, x_{n-1}], i.e. e is considered * a polynomial in variables x_0, \ldots, x_{n-1} with coefficients being * modular polynomials Z_p[x_n] * @param e polynomial to operate on * @param pp primitive part of @a e, will be computed by this function * @param c content (in the sense described above) of @a e, will be * computed by this function * @param vars variables x_0, \ldots, x_{n-1}, x_n * @param p modulus */ void primpart_content(ex& pp, ex& c, ex e, const exvector& vars, const long p) { static const ex ex1(1); static const ex ex0(0); e = e.expand(); if (e.is_zero()) { pp = ex0; c = ex1; return; } exvector rest_vars = vars; rest_vars.pop_back(); ex_collect_t ec; collect_vargs(ec, e, rest_vars); if (ec.size() == 1) { // the input polynomial factorizes into // p_1(x_n) p_2(x_0, \ldots, x_{n-1}) c = ec.rbegin()->second; ec.rbegin()->second = ex1; pp = ex_collect_to_ex(ec, rest_vars).expand().smod(numeric(p)); return; } // Start from the leading coefficient (which is stored as a last // element of the terms array) auto i = ec.rbegin(); ex g = i->second; // there are at least two terms, so it's safe to... ++i; while (i != ec.rend() && !g.is_equal(ex1)) { g = euclid_gcd(i->second, g, vars.back(), p); ++i; } if (g.is_equal(ex1)) { pp = e; c = ex1; return; } exvector mainvar; mainvar.push_back(vars.back()); for (i = ec.rbegin(); i != ec.rend(); ++i) { ex tmp(0); if (!divide_in_z_p(i->second, g, tmp, mainvar, p)) throw std::logic_error(std::string(__func__) + ": bogus division failure"); i->second = tmp; } pp = ex_collect_to_ex(ec, rest_vars).expand().smod(numeric(p)); c = g; }
/** * Exact polynomial division of a, b \in Z_p[x_0, \ldots, x_n] * It doesn't check whether the inputs are proper polynomials, so be careful * of what you pass in. * * @param a first multivariate polynomial (dividend) * @param b second multivariate polynomial (divisor) * @param q quotient (returned) * @param var variables X iterator to first element of vector of symbols * * @return "true" when exact division succeeds (the quotient is returned in * q), "false" otherwise. * @note @a p = 0 means the base ring is Z */ bool divide_in_z_p(const ex &a, const ex &b, ex &q, const exvector& vars, const long p) { static const ex _ex1(1); if (b.is_zero()) throw(std::overflow_error("divide_in_z: division by zero")); if (b.is_equal(_ex1)) { q = a; return true; } if (is_exactly_a<numeric>(a)) { if (is_exactly_a<numeric>(b)) { // p == 0 means division in Z if (p == 0) { const numeric tmp = ex_to<numeric>(a/b); if (tmp.is_integer()) { q = tmp; return true; } else return false; } else { q = (a*recip(ex_to<numeric>(b), p)).smod(numeric(p)); return true; } } else return false; } if (a.is_equal(b)) { q = _ex1; return true; } // Main symbol const ex &x = vars.back(); // Compare degrees int adeg = a.degree(x), bdeg = b.degree(x); if (bdeg > adeg) return false; // Polynomial long division (recursive) ex r = a.expand(); if (r.is_zero()) return true; int rdeg = adeg; ex eb = b.expand(); ex blcoeff = eb.coeff(x, bdeg); exvector v; v.reserve(std::max(rdeg - bdeg + 1, 0)); exvector rest_vars(vars); rest_vars.pop_back(); while (rdeg >= bdeg) { ex term, rcoeff = r.coeff(x, rdeg); if (!divide_in_z_p(rcoeff, blcoeff, term, rest_vars, p)) break; term = (term*power(x, rdeg - bdeg)).expand(); v.push_back(term); r = (r - term*eb).expand(); if (p != 0) r = r.smod(numeric(p)); if (r.is_zero()) { q = (new add(v))->setflag(status_flags::dynallocated); return true; } rdeg = r.degree(x); } return false; }