示例#1
0
/**
 * River generation.
 *
 * Rivers have a source, and then keep on flowing until they meet another body
 * of water, which they flow into, or until they reach the edge of the map.
 * Rivers will always flow downhill, except that they can flow a maximum of
 * 'river_uphill' uphill.  This is to represent the water eroding the higher
 * ground lower.
 *
 * Every possible path for a river will be attempted, in random order, and the
 * first river path that can be found that makes the river flow into another
 * body of water or off the map will be used.
 *
 * If no path can be found, then the river's generation will be aborted, and
 * false will be returned.  true is returned if the river is generated
 * successfully.
 */
static bool generate_river_internal(const height_map& heights,
	terrain_map& terrain, int x, int y, std::vector<location>& river,
	std::set<location>& seen_locations, int river_uphill)
{
	const bool on_map = x >= 0 && y >= 0 &&
		x < static_cast<long>(heights.size()) &&
		y < static_cast<long>(heights.back().size());

	if(on_map && !river.empty() && heights[x][y] >
			heights[river.back().x][river.back().y] + river_uphill) {

		return false;
	}

	// If we're at the end of the river
	if(!on_map || terrain[x][y] == t_translation::SHALLOW_WATER ||
			terrain[x][y] == t_translation::DEEP_WATER) {

		LOG_NG << "generating river...\n";

		// Generate the river
		for(std::vector<location>::const_iterator i = river.begin();
		    i != river.end(); ++i) {
			terrain[i->x][i->y] = t_translation::SHALLOW_WATER;
		}

		LOG_NG << "done generating river\n";

		return true;
	}

	location current_loc(x,y);
	location adj[6];
	get_adjacent_tiles(current_loc,adj);
	static int items[6] = {0,1,2,3,4,5};
	std::random_shuffle(items,items+4);

	// Mark that we have attempted from this location
	seen_locations.insert(current_loc);
	river.push_back(current_loc);
	for(int a = 0; a != 6; ++a) {
		const location& loc = adj[items[a]];
		if(seen_locations.count(loc) == 0) {
			const bool res = generate_river_internal(heights,terrain,loc.x,loc.y,river,seen_locations,river_uphill);
			if(res) {
				return true;
			}

		}
	}

	river.pop_back();

	return false;
}
bool default_map_generator_job::generate_river_internal(const height_map& heights,
	terrain_map& terrain, int x, int y, std::vector<map_location>& river,
	std::set<map_location>& seen_locations, int river_uphill)
{
	const bool on_map = x >= 0 && y >= 0 &&
		x < static_cast<long>(heights.size()) &&
		y < static_cast<long>(heights.back().size());

	if(on_map && !river.empty() && heights[x][y] >
			heights[river.back().x][river.back().y] + river_uphill) {

		return false;
	}

	// If we're at the end of the river
	if(!on_map || terrain[x][y] == t_translation::SHALLOW_WATER ||
			terrain[x][y] == t_translation::DEEP_WATER) {

		LOG_NG << "generating river...\n";

		// Generate the river
		for(auto i : river) {
			terrain[i.x][i.y] = t_translation::SHALLOW_WATER;
		}

		LOG_NG << "done generating river\n";

		return true;
	}

	map_location current_loc(x,y);
	map_location adj[6];
	get_adjacent_tiles(current_loc,adj);
	std::shuffle(std::begin(adj), std::end(adj), rng_);

	// Mark that we have attempted from this map_location
	seen_locations.insert(current_loc);
	river.push_back(current_loc);
	for(const map_location& loc : adj) {
		if(seen_locations.count(loc) == 0) {
			const bool res = generate_river_internal(heights,terrain,loc.x,loc.y,river,seen_locations,river_uphill);
			if(res) {
				return true;
			}

		}
	}

	river.pop_back();

	return false;
}
示例#3
0
std::string default_generate_map(size_t width, size_t height, size_t island_size, size_t island_off_center,
                                 size_t iterations, size_t hill_size,
						         size_t max_lakes, size_t nvillages, size_t castle_size, size_t nplayers, bool roads_between_castles,
								 std::map<map_location,std::string>* labels, const config& cfg)
{
	log_scope("map generation");

	// Odd widths are nasty
	VALIDATE(is_even(width), _("Random maps with an odd width aren't supported."));

	int ticks = SDL_GetTicks();

	// Find out what the 'flatland' on this map is, i.e. grassland.
	std::string flatland = cfg["default_flatland"];
	if(flatland == "") {
		flatland = t_translation::write_terrain_code(t_translation::GRASS_LAND);
	}

	const t_translation::t_terrain grassland = t_translation::read_terrain_code(flatland);

	// We want to generate a map that is 9 times bigger
	// than the actual size desired.
	// Only the middle part of the map will be used,
	// but the rest is so that the map we end up using
	// can have a context (e.g. rivers flowing from
	// out of the map into the map, same for roads, etc.)
	width *= 3;
	height *= 3;

	LOG_NG << "generating height map...\n";
	// Generate the height of everything.
	const height_map heights = generate_height_map(width,height,iterations,hill_size,island_size,island_off_center);
	LOG_NG << "done generating height map...\n";
	LOG_NG << (SDL_GetTicks() - ticks) << "\n"; ticks = SDL_GetTicks();

	config naming = cfg.child_or_empty("naming");
	// HACK: dummy names to satisfy unit_race requirements
	naming["id"] = "village_naming";
	naming["plural_name"] = "villages";

	// Make a dummy race for generating names
	const unit_race name_generator(naming);

	std::vector<terrain_height_mapper> height_conversion;

	BOOST_FOREACH(const config &h, cfg.child_range("height")) {
		height_conversion.push_back(terrain_height_mapper(h));
	}

	terrain_map terrain(width, t_translation::t_list(height, grassland));
	size_t x, y;
	for(x = 0; x != heights.size(); ++x) {
		for(y = 0; y != heights[x].size(); ++y) {
			for(std::vector<terrain_height_mapper>::const_iterator i = height_conversion.begin();
			    i != height_conversion.end(); ++i) {
				if(i->convert_terrain(heights[x][y])) {
					terrain[x][y] = i->convert_to();
					break;
				}
			}
		}
	}

	std::map<int, t_translation::coordinate> starting_positions;
	LOG_NG << output_map(terrain, starting_positions);
	LOG_NG << "placed land forms\n";
	LOG_NG << (SDL_GetTicks() - ticks) << "\n"; ticks = SDL_GetTicks();

	// Now that we have our basic set of flatland/hills/mountains/water,
	// we can place lakes and rivers on the map.
	// All rivers are sourced at a lake.
	// Lakes must be in high land - at least 'min_lake_height'.
	// (Note that terrain below a certain altitude may be made
	// into bodies of water in the code above - i.e. 'sea',
	// but these are not considered 'lakes', because
	// they are not sources of rivers).
	//
	// We attempt to place 'max_lakes' lakes.
	// Each lake will be placed at a random location,
	// if that random location meets the minimum terrain requirements for a lake.
	// We will also attempt to source a river from each lake.
	std::set<location> lake_locs;

	std::map<location, std::string> river_names, lake_names, road_names, bridge_names, mountain_names, forest_names, swamp_names;

	const size_t nlakes = max_lakes > 0 ? (rand()%max_lakes) : 0;
	for(size_t lake = 0; lake != nlakes; ++lake) {
		for(int tries = 0; tries != 100; ++tries) {
			const int x = rand()%width;
			const int y = rand()%height;
			if (heights[x][y] > cfg["min_lake_height"].to_int()) {
				std::vector<location> river = generate_river(heights,
					terrain, x, y, cfg["river_frequency"]);

				if(river.empty() == false && labels != NULL) {
					std::string base_name;
					LOG_NG << "generating name for river...\n";
					const std::string& name = generate_name(name_generator,"river_name",&base_name);
					LOG_NG << "named river '" << name << "'\n";
					size_t name_frequency = 20;
					for(std::vector<location>::const_iterator r = river.begin(); r != river.end(); ++r) {

						const map_location loc(r->x-width/3,r->y-height/3);

						if(((r - river.begin())%name_frequency) == name_frequency/2) {
							labels->insert(std::pair<map_location,std::string>(loc,name));
						}

						river_names.insert(std::pair<location,std::string>(loc,base_name));
					}

					LOG_NG << "put down river name...\n";
				}

				LOG_NG << "generating lake...\n";
				std::set<location> locs;
				bool res = generate_lake(terrain, x, y, cfg["lake_size"], locs);
				if(res && labels != NULL) {
					bool touches_other_lake = false;

					std::string base_name;
					const std::string& name = generate_name(name_generator,"lake_name",&base_name);

					std::set<location>::const_iterator i;

					// Only generate a name if the lake hasn't touched any other lakes,
					// so that we don't end up with one big lake with multiple names.
					for(i = locs.begin(); i != locs.end(); ++i) {
						if(lake_locs.count(*i) != 0) {
							touches_other_lake = true;

							// Reassign the name of this lake to be the same as the other lake
							const location loc(i->x-width/3,i->y-height/3);
							const std::map<location,std::string>::const_iterator other_name = lake_names.find(loc);
							if(other_name != lake_names.end()) {
								base_name = other_name->second;
							}
						}

						lake_locs.insert(*i);
					}

					if(!touches_other_lake) {
						const map_location loc(x-width/3,y-height/3);
						labels->erase(loc);
						labels->insert(std::pair<map_location,std::string>(loc,name));
					}

					for(i = locs.begin(); i != locs.end(); ++i) {
						const location loc(i->x-width/3,i->y-height/3);
						lake_names.insert(std::pair<location, std::string>(loc, base_name));
					}
				}

				break;
			}
		}
	}

	LOG_NG << "done generating rivers...\n";
	LOG_NG << (SDL_GetTicks() - ticks) << "\n"; ticks = SDL_GetTicks();

	const size_t default_dimensions = 40*40*9;

	/*
	 * Convert grassland terrain to other types of flat terrain.
	 *
	 * We generate a 'temperature map' which uses the height generation
	 * algorithm to generate the temperature levels all over the map.  Then we
	 * can use a combination of height and terrain to divide terrain up into
	 * more interesting types than the default.
	 */
	const height_map temperature_map = generate_height_map(width,height,
		cfg["temperature_iterations"].to_int() * width * height / default_dimensions,
		cfg["temperature_size"], 0, 0);

	LOG_NG << "generated temperature map...\n";
	LOG_NG << (SDL_GetTicks() - ticks) << "\n"; ticks = SDL_GetTicks();

	std::vector<terrain_converter> converters;
	BOOST_FOREACH(const config &cv, cfg.child_range("convert")) {
		converters.push_back(terrain_converter(cv));
	}

	LOG_NG << "created terrain converters\n";
	LOG_NG << (SDL_GetTicks() - ticks) << "\n"; ticks = SDL_GetTicks();


	// Iterate over every flatland tile, and determine
	// what type of flatland it is, based on our [convert] tags.
	for(x = 0; x != width; ++x) {
		for(y = 0; y != height; ++y) {
			for(std::vector<terrain_converter>::const_iterator i = converters.begin(); i != converters.end(); ++i) {
				if(i->convert_terrain(terrain[x][y],heights[x][y],temperature_map[x][y])) {
					terrain[x][y] = i->convert_to();
					break;
				}
			}
		}
	}

	LOG_NG << "placing villages...\n";
	LOG_NG << (SDL_GetTicks() - ticks) << "\n"; ticks = SDL_GetTicks();

	/*
	 * Place villages in a 'grid', to make placing fair, but with villages
	 * displaced from their position according to terrain and randomness, to
	 * add some variety.
	 */
	std::set<location> villages;

	LOG_NG << "placing castles...\n";

	/** Try to find configuration for castles. */
	const config &castle_config = cfg.child("castle");
	if (!castle_config) {
		LOG_NG << "Could not find castle configuration\n";
		return std::string();
	}

	/*
	 * Castle configuration tag contains a 'valid_terrain' attribute which is a
	 * list of terrains that the castle may appear on.
	 */
	const t_translation::t_list list =
		t_translation::read_list(castle_config["valid_terrain"]);

	const is_valid_terrain terrain_tester(terrain, list);

	/*
	 * Attempt to place castles at random.
	 *
	 * Once we have placed castles, we run a sanity check to make sure that the
	 * castles are well-placed.  If the castles are not well-placed, we try
	 * again.  Definition of 'well-placed' is if no two castles are closer than
	 * 'min_distance' hexes from each other, and the castles appear on a
	 * terrain listed in 'valid_terrain'.
	 */
	std::vector<location> castles;
	std::set<location> failed_locs;

	for(size_t player = 0; player != nplayers; ++player) {
		LOG_NG << "placing castle for " << player << "\n";
		log_scope("placing castle");
		const int min_x = width/3 + 3;
		const int min_y = height/3 + 3;
		const int max_x = (width/3)*2 - 4;
		const int max_y = (height/3)*2 - 4;
		int min_distance = castle_config["min_distance"];

		location best_loc;
		int best_ranking = 0;
		for(int x = min_x; x != max_x; ++x) {
			for(int y = min_y; y != max_y; ++y) {
				const location loc(x,y);
				if(failed_locs.count(loc)) {
					continue;
				}

				const int ranking = rank_castle_location(x,y,terrain_tester,min_x,max_x,min_y,max_y,min_distance,castles,best_ranking);
				if(ranking <= 0) {
					failed_locs.insert(loc);
				}

				if(ranking > best_ranking) {
					best_ranking = ranking;
					best_loc = loc;
				}
			}
		}
		if(best_ranking == 0) {
			ERR_NG << "No castle location found, aborting.\n";
			std::string error = _("No valid castle location found. Too many or too few mountain hexes? (please check the 'max hill size' parameter)");
			throw mapgen_exception(error);
		}
		assert(std::find(castles.begin(), castles.end(), best_loc) == castles.end());
		castles.push_back(best_loc);
		// Make sure the location can't get a second castle.
		failed_locs.insert(best_loc);
	}

	LOG_NG << "placing roads...\n";
	LOG_NG << (SDL_GetTicks() - ticks) << "\n"; ticks = SDL_GetTicks();

	// Place roads.
	// We select two tiles at random locations on the borders
	// of the map, and try to build roads between them.
	int nroads = cfg["roads"];
	if(roads_between_castles) {
		nroads += castles.size()*castles.size();
	}

	std::set<location> bridges;

	road_path_calculator calc(terrain,cfg);
	for (int road = 0; road != nroads; ++road) {
		log_scope("creating road");

		/*
		 * We want the locations to be on the portion of the map we're actually
		 * going to use, since roads on other parts of the map won't have any
		 * influence, and doing it like this will be quicker.
		 */
		location src = random_point_at_side(width/3 + 2,height/3 + 2);
		location dst = random_point_at_side(width/3 + 2,height/3 + 2);

		src.x += width/3 - 1;
		src.y += height/3 - 1;
		dst.x += width/3 - 1;
		dst.y += height/3 - 1;

		if (roads_between_castles && road < int(castles.size() * castles.size())) {
			const size_t src_castle = road/castles.size();
			const size_t dst_castle = road%castles.size();
			if(src_castle >= dst_castle) {
				continue;
			}

			src = castles[src_castle];
			dst = castles[dst_castle];
		}

		// If the road isn't very interesting (on the same border), don't draw it.
		else if(src.x == dst.x || src.y == dst.y) {
			continue;
		}

		if (calc.cost(src, 0.0) >= 1000.0 || calc.cost(dst, 0.0) >= 1000.0) {
			continue;
		}

		// Search a path out for the road
		pathfind::plain_route rt = pathfind::a_star_search(src, dst, 10000.0, &calc, width, height);

		std::string road_base_name;
		const std::string& name = generate_name(name_generator, "road_name", &road_base_name);
		const int name_frequency = 20;
		int name_count = 0;

		bool on_bridge = false;

		// Draw the road.
		// If the search failed, rt.steps will simply be empty.
		for(std::vector<location>::const_iterator step = rt.steps.begin();
				step != rt.steps.end(); ++step) {

			const int x = step->x;
			const int y = step->y;

			if(x < 0 || y < 0 || x >= static_cast<long>(width) ||
					y >= static_cast<long>(height)) {

				continue;
			}

			// Find the configuration which tells us
			// what to convert this tile to, to make it into a road.
			if (const config &child = cfg.find_child("road_cost", "terrain",
					t_translation::write_terrain_code(terrain[x][y])))
			{
				// Convert to bridge means that we want to convert
				// depending upon the direction the road is going.
				// Typically it will be in a format like,
				// convert_to_bridge=\,|,/
				// '|' will be used if the road is going north-south
				// '/' will be used if the road is going south west-north east
				// '\' will be used if the road is going south east-north west
				// The terrain will be left unchanged otherwise
				// (if there is no clear direction).
				const std::string &convert_to_bridge = child["convert_to_bridge"];
				if(convert_to_bridge.empty() == false) {
					if(step == rt.steps.begin() || step+1 == rt.steps.end())
						continue;

					const location& last = *(step-1);
					const location& next = *(step+1);

					location adj[6];
					get_adjacent_tiles(*step,adj);

					int direction = -1;

					// If we are going north-south
					if((last == adj[0] && next == adj[3]) || (last == adj[3] && next == adj[0])) {
						direction = 0;
					}

					// If we are going south west-north east
					else if((last == adj[1] && next == adj[4]) || (last == adj[4] && next == adj[1])) {
						direction = 1;
					}

					// If we are going south east-north west
					else if((last == adj[2] && next == adj[5]) || (last == adj[5] && next == adj[2])) {
						direction = 2;
					}

					if(labels != NULL && on_bridge == false) {
						on_bridge = true;
						std::string bridge_base_name;
						const std::string& name = generate_name(name_generator, "bridge_name", &bridge_base_name);
						const location loc(x - width / 3, y-height/3);
						labels->insert(std::pair<map_location,std::string>(loc,name));
						bridge_names.insert(std::pair<location,std::string>(loc, bridge_base_name)); //add to use for village naming
						bridges.insert(loc);
					}

					if(direction != -1) {
						const std::vector<std::string> items = utils::split(convert_to_bridge);
						if(size_t(direction) < items.size() && items[direction].empty() == false) {
							terrain[x][y] = t_translation::read_terrain_code(items[direction]);
						}

						continue;
					}
				} else {
					on_bridge = false;
				}

				// Just a plain terrain substitution for a road
				const std::string &convert_to = child["convert_to"];
				if(convert_to.empty() == false) {
					const t_translation::t_terrain letter =
						t_translation::read_terrain_code(convert_to);
					if(labels != NULL && terrain[x][y] != letter && name_count++ == name_frequency && on_bridge == false) {
						labels->insert(std::pair<map_location,std::string>(map_location(x-width/3,y-height/3),name));
						name_count = 0;
					}

					terrain[x][y] = letter;
					const location loc(x - width / 3, y - height / 3); //add to use for village naming
					road_names.insert(std::pair<location,std::string>(loc, road_base_name));
				}
			}
		}

		LOG_NG << "looked at " << calc.calls << " locations\n";
	}


	// Now that road drawing is done, we can plonk down the castles.
	for(std::vector<location>::const_iterator c = castles.begin(); c != castles.end(); ++c) {
		if(c->valid() == false) {
			continue;
		}

		const int x = c->x;
		const int y = c->y;
		const int player = c - castles.begin() + 1;
		const struct t_translation::coordinate coord(x, y);
		starting_positions.insert(std::pair<int, t_translation::coordinate>(player, coord));
		terrain[x][y] = t_translation::HUMAN_KEEP;

		const int castles[13][2] = {
		  {-1, 0}, {-1, -1}, {0, -1}, {1, -1}, {1, 0}, {0, 1}, {-1, 1},
		  {-2, 1}, {-2, 0}, {-2, -1}, {-1, -2}, {0, -2}, {1, -2}
		};

		for (size_t i = 0; i < castle_size - 1; i++) {
		  terrain[x+castles[i][0]][y+castles[i][1]] = t_translation::HUMAN_CASTLE;
		}

		// Remove all labels under the castle tiles
		if(labels != NULL) {
		  labels->erase(location(x-width/3,y-height/3));
		  for (size_t i = 0; i < castle_size - 1; i++) {
		    labels->erase(location(x+castles[i][0]-width/3,
					   y+castles[i][1]-height/3));
		  }

		}

	}

	LOG_NG << "placed castles\n";
	LOG_NG << (SDL_GetTicks() - ticks) << "\n"; ticks = SDL_GetTicks();

	/*Random naming for landforms: mountains, forests, swamps, hills
	 *we name these now that everything else is placed (as e.g., placing
	 * roads could split a forest)
	 */
	for (x = width / 3; x < (width / 3)*2; x++) {
		for (y = height / 3; y < (height / 3) * 2;y++) {
		//check the terrain of the tile
		const location loc(x - width / 3, y - height / 3);
		const t_translation::t_terrain terr = terrain[x][y];
		std::string name, base_name;
		std::set<std::string> used_names;
		if (t_translation::terrain_matches(terr, t_translation::ALL_MOUNTAINS)) {
			//name every 15th mountain
			if ((rand()%15) == 0) {
				for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
					name = generate_name(name_generator, "mountain_name", &base_name);
				}
				labels->insert(std::pair<map_location, std::string>(loc, name));
				mountain_names.insert(std::pair<location, std::string>(loc, base_name));
			}
		}
		else if (t_translation::terrain_matches(terr, t_translation::ALL_FORESTS)) {
			//if the forest tile is not named yet, name it
			const std::map<location, std::string>::const_iterator forest_name = forest_names.find(loc);
			if(forest_name == forest_names.end()) {
				for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
					name = generate_name(name_generator, "forest_name", &base_name);
				}
				forest_names.insert(std::pair<location, std::string>(loc, base_name));
				// name all connected forest tiles accordingly
				flood_name(loc, base_name, forest_names, t_translation::ALL_FORESTS, terrain, width, height, 0, labels, name);
			}
		}
		else if (t_translation::terrain_matches(terr, t_translation::ALL_SWAMPS)) {
			//if the swamp tile is not named yet, name it
			const std::map<location, std::string>::const_iterator swamp_name = swamp_names.find(loc);
			if(swamp_name == swamp_names.end()) {
				for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
					name = generate_name(name_generator, "swamp_name", &base_name);
				}
				swamp_names.insert(std::pair<location, std::string>(loc, base_name));
				// name all connected swamp tiles accordingly
				flood_name(loc, base_name, swamp_names, t_translation::ALL_SWAMPS, terrain, width, height, 0, labels, name);
			}
		}

		}
	}

	if (nvillages > 0)
	{
		config naming_cfg = cfg.child_or_empty("village_naming");
		// HACK: dummy names to satisfy unit_race requirements
		naming_cfg["id"] = "village_naming";
		naming_cfg["plural_name"] = "villages";

		const unit_race village_names_generator(naming_cfg);

		// First we work out the size of the x and y distance between villages
		const size_t tiles_per_village = ((width*height)/9)/nvillages;
		size_t village_x = 1, village_y = 1;

		// Alternate between incrementing the x and y value.
		// When they are high enough to equal or exceed the tiles_per_village,
		// then we have them to the value we want them at.
		while(village_x*village_y < tiles_per_village) {
			if(village_x < village_y) {
				++village_x;
			} else {
				++village_y;
			}
		}

		std::set<std::string> used_names;
		tcode_list_cache adj_liked_cache;

		for(size_t vx = 0; vx < width; vx += village_x) {
			LOG_NG << "village at " << vx << "\n";
			for(size_t vy = rand()%village_y; vy < height; vy += village_y) {

				const size_t add_x = rand()%3;
				const size_t add_y = rand()%3;
				const size_t x = (vx + add_x) - 1;
				const size_t y = (vy + add_y) - 1;

				const map_location res = place_village(terrain,x,y,2,cfg,adj_liked_cache);

				if(res.x >= static_cast<long>(width) / 3 &&
						res.x  < static_cast<long>(width * 2) / 3 &&
						res.y >= static_cast<long>(height) / 3 &&
						res.y  < static_cast<long>(height * 2) / 3) {

					const std::string str =
						t_translation::write_terrain_code(terrain[res.x][res.y]);
					if (const config &child = cfg.find_child("village", "terrain", str))
					{
						const std::string &convert_to = child["convert_to"];
						if(convert_to != "") {
							terrain[res.x][res.y] =
								t_translation::read_terrain_code(convert_to);

							villages.insert(res);

							if(labels != NULL && naming_cfg.empty() == false) {
								const map_location loc(res.x-width/3,res.y-height/3);

								map_location adj[6];
								get_adjacent_tiles(loc,adj);

								std::string name_type = "village_name";
								const t_translation::t_list
									field    = t_translation::t_list(1, t_translation::GRASS_LAND),
									forest   = t_translation::t_list(1, t_translation::FOREST),
									mountain = t_translation::t_list(1, t_translation::MOUNTAIN),
									hill     = t_translation::t_list(1, t_translation::HILL);

								size_t field_count = 0, forest_count = 0, mountain_count = 0, hill_count = 0;

								utils::string_map symbols;

								size_t n;
								for(n = 0; n != 6; ++n) {
									const std::map<location,std::string>::const_iterator road_name = road_names.find(adj[n]);
									if(road_name != road_names.end()) {
										symbols["road"] = road_name->second;
										name_type = "village_name_road";
										break;
									}

									const std::map<location,std::string>::const_iterator river_name = river_names.find(adj[n]);
									if(river_name != river_names.end()) {
										symbols["river"] = river_name->second;
										name_type = "village_name_river";

										const std::map<location,std::string>::const_iterator bridge_name = bridge_names.find(adj[n]);
										if(bridge_name != bridge_names.end()) {
										//we should always end up here, since if there is an adjacent bridge, there has to be an adjacent river too
										symbols["bridge"] = bridge_name->second;
										name_type = "village_name_river_bridge";
										}

										break;
									}

									const std::map<location,std::string>::const_iterator forest_name = forest_names.find(adj[n]);
									if(forest_name != forest_names.end()) {
										symbols["forest"] = forest_name->second;
										name_type = "village_name_forest";
										break;
									}

									const std::map<location,std::string>::const_iterator lake_name = lake_names.find(adj[n]);
									if(lake_name != lake_names.end()) {
										symbols["lake"] = lake_name->second;
										name_type = "village_name_lake";
										break;
									}

									const std::map<location,std::string>::const_iterator mountain_name = mountain_names.find(adj[n]);
									if(mountain_name != mountain_names.end()) {
										symbols["mountain"] = mountain_name->second;
										name_type = "village_name_mountain";
										break;
									}

									const std::map<location,std::string>::const_iterator swamp_name = swamp_names.find(adj[n]);
									if(swamp_name != swamp_names.end()) {
										symbols["swamp"] = swamp_name->second;
										name_type = "village_name_swamp";
										break;
									}

									const t_translation::t_terrain terr =
										terrain[adj[n].x+width/3][adj[n].y+height/3];

									if(std::count(field.begin(),field.end(),terr) > 0) {
										++field_count;
									} else if(std::count(forest.begin(),forest.end(),terr) > 0) {
										++forest_count;
									} else if(std::count(hill.begin(),hill.end(),terr) > 0) {
										++hill_count;
									} else if(std::count(mountain.begin(),mountain.end(),terr) > 0) {
										++mountain_count;
									}
								}

								if(n == 6) {
									if(field_count == 6) {
										name_type = "village_name_grassland";
									} else if(forest_count >= 2) {
										name_type = "village_name_forest";
									} else if(mountain_count >= 1) {
										name_type = "village_name_mountain_anonymous";
									} else if(hill_count >= 2) {
										name_type = "village_name_hill";
									}
								}

								std::string name;
								for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
									name = generate_name(village_names_generator,name_type,NULL,&symbols);
								}

								used_names.insert(name);
								labels->insert(std::pair<map_location,std::string>(loc,name));
							}
						}
					}
				}
			}
		}
	}

	LOG_NG << "placed villages\n";
	LOG_NG << (SDL_GetTicks() - ticks) << "\n"; ticks = SDL_GetTicks();

	return output_map(terrain, starting_positions);
}
std::string default_map_generator_job::default_generate_map(generator_data data, std::map<map_location,std::string>* labels, const config& cfg)
{
	log_scope("map generation");

	// Odd widths are nasty
	VALIDATE(is_even(data.width), _("Random maps with an odd width aren't supported."));

	// Try to find configuration for castles
	const config& castle_config = cfg.child("castle");

	int ticks = SDL_GetTicks();

	// We want to generate a map that is 9 times bigger than the actual size desired.
	// Only the middle part of the map will be used, but the rest is so that the map we
	// end up using can have a context (e.g. rivers flowing from out of the map into the map,
	// same for roads, etc.)
	data.width  *= 3;
	data.height *= 3;

	config naming;

	if(cfg.has_child("naming")) {
		naming = game_config_.child("naming");
		naming.append_attributes(cfg.child("naming"));
	}

	// If the [naming] child is empty, we cannot provide good names.
	std::map<map_location,std::string>* misc_labels = naming.empty() ? nullptr : labels;

	std::shared_ptr<name_generator>
		base_name_generator, river_name_generator, lake_name_generator,
		road_name_generator, bridge_name_generator, mountain_name_generator,
		forest_name_generator, swamp_name_generator;

	if(misc_labels != nullptr) {
		name_generator_factory base_generator_factory{ naming, {"male", "base", "bridge", "road", "river", "forest", "lake", "mountain", "swamp"} };

		naming.get_old_attribute("base_names", "male_names", "[naming]male_names= is deprecated, use base_names= instead");
		//Due to the attribute detection feature of the factory we also support male_name_generator= but keep it undocumented.

		base_name_generator = base_generator_factory.get_name_generator( (naming.has_attribute("base_names") || naming.has_attribute("base_name_generator")) ? "base" : "male" );
		river_name_generator    = base_generator_factory.get_name_generator("river");
		lake_name_generator     = base_generator_factory.get_name_generator("lake");
		road_name_generator     = base_generator_factory.get_name_generator("road");
		bridge_name_generator   = base_generator_factory.get_name_generator("bridge");
		mountain_name_generator = base_generator_factory.get_name_generator("mountain");
		forest_name_generator   = base_generator_factory.get_name_generator("forest");
		swamp_name_generator    = base_generator_factory.get_name_generator("swamp");
	}

	// Generate the height of everything.
	const height_map heights = generate_height_map(data.width, data.height, data.iterations, data.hill_size, data.island_size, data.island_off_center);

	LOG_NG << "Done generating height map. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
	ticks = SDL_GetTicks();

	// Find out what the 'flatland' on this map is, i.e. grassland.
	std::string flatland = cfg["default_flatland"];
	if(flatland.empty()) {
		flatland = t_translation::write_terrain_code(t_translation::GRASS_LAND);
	}

	const t_translation::terrain_code grassland = t_translation::read_terrain_code(flatland);

	std::vector<terrain_height_mapper> height_conversion;
	for(const config& h : cfg.child_range("height")) {
		height_conversion.emplace_back(h);
	}

	terrain_map terrain(data.width, data.height, grassland);
	for(size_t x = 0; x != heights.size(); ++x) {
		for(size_t y = 0; y != heights[x].size(); ++y) {
			for(auto i : height_conversion) {
				if(i.convert_terrain(heights[x][y])) {
					terrain[x][y] = i.convert_to();
					break;
				}
			}
		}
	}

	t_translation::starting_positions starting_positions;
	LOG_NG << output_map(terrain, starting_positions);
	LOG_NG << "Placed landforms. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
	ticks = SDL_GetTicks();

	/* Now that we have our basic set of flatland/hills/mountains/water,
	 * we can place lakes and rivers on the map.
	 * All rivers are sourced at a lake.
	 * Lakes must be in high land - at least 'min_lake_height'.
	 * (Note that terrain below a certain altitude may be made into bodies of water
	 *  in the code above - i.e. 'sea', but these are not considered 'lakes',
	 *  because they are not sources of rivers).
	 *
	 * We attempt to place 'max_lakes' lakes.
	 * Each lake will be placed at a random location, if that random location meets theminimum
	 * terrain requirements for a lake. We will also attempt to source a river from each lake.
	 */
	std::set<map_location> lake_locs;

	std::map<map_location, std::string> river_names, lake_names, road_names, bridge_names, mountain_names, forest_names, swamp_names;

	const size_t nlakes = data.max_lakes > 0 ? (rng_()%data.max_lakes) : 0;
	for(size_t lake = 0; lake != nlakes; ++lake) {
		for(int tries = 0; tries != 100; ++tries) {
			const int x = rng_()%data.width;
			const int y = rng_()%data.height;

			if(heights[x][y] <= cfg["min_lake_height"].to_int()) {
				continue;
			}

			std::vector<map_location> river = generate_river(heights, terrain, x, y, cfg["river_frequency"]);

			if(!river.empty() && misc_labels != nullptr) {
				const std::string base_name = base_name_generator->generate();
				const std::string& name = river_name_generator->generate({{"base",  base_name}});
				LOG_NG << "Named river '" << name << "'\n";

				size_t name_frequency = 20;
				for(std::vector<map_location>::const_iterator r = river.begin(); r != river.end(); ++r) {
					const map_location loc(r->x-data.width/3,r->y-data.height/3);

					if(((r - river.begin())%name_frequency) == name_frequency/2) {
						misc_labels->emplace(loc, name);
					}

					river_names.emplace(loc, base_name);
				}
			}

			LOG_NG << "Generating lake...\n";

			std::set<map_location> locs;
			if(generate_lake(terrain, x, y, cfg["lake_size"], locs) && misc_labels != nullptr) {
				bool touches_other_lake = false;

				std::string base_name = base_name_generator->generate();
				const std::string& name = lake_name_generator->generate({{"base",  base_name}});

				// Only generate a name if the lake hasn't touched any other lakes,
				// so that we don't end up with one big lake with multiple names.
				for(auto i : locs) {
					if(lake_locs.count(i) != 0) {
						touches_other_lake = true;

						// Reassign the name of this lake to be the same as the other lake
						const map_location loc(i.x-data.width/3,i.y-data.height/3);
						const std::map<map_location,std::string>::const_iterator other_name = lake_names.find(loc);
						if(other_name != lake_names.end()) {
							base_name = other_name->second;
						}
					}

					lake_locs.insert(i);
				}

				if(!touches_other_lake) {
					const map_location loc(x-data.width/3,y-data.height/3);
					misc_labels->erase(loc);
					misc_labels->emplace(loc, name);
				}

				for(auto i : locs) {
					const map_location loc(i.x-data.width/3,i.y-data.height/3);
					lake_names.emplace(loc, base_name);
				}
			}

			break;
		}
	}

	LOG_NG << "Generated rivers. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
	ticks = SDL_GetTicks();

	const size_t default_dimensions = 40*40*9;

	/*
	 * Convert grassland terrain to other types of flat terrain.
	 *
	 * We generate a 'temperature map' which uses the height generation
	 * algorithm to generate the temperature levels all over the map.  Then we
	 * can use a combination of height and terrain to divide terrain up into
	 * more interesting types than the default.
	 */
	const height_map temperature_map = generate_height_map(data.width,data.height,
		cfg["temperature_iterations"].to_int() * data.width * data.height / default_dimensions,
		cfg["temperature_size"], 0, 0);

	LOG_NG << "Generated temperature map. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
	ticks = SDL_GetTicks();

	std::vector<terrain_converter> converters;
	for(const config& cv : cfg.child_range("convert")) {
		converters.emplace_back(cv);
	}

	LOG_NG << "Created terrain converters. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
	ticks = SDL_GetTicks();

	// Iterate over every flatland tile, and determine what type of flatland it is, based on our [convert] tags.
	for(int x = 0; x != data.width; ++x) {
		for(int y = 0; y != data.height; ++y) {
			for(auto i : converters) {
				if(i.convert_terrain(terrain[x][y],heights[x][y],temperature_map[x][y])) {
					terrain[x][y] = i.convert_to();
					break;
				}
			}
		}
	}

	LOG_NG << "Placing castles...\n";

	/*
	 * Attempt to place castles at random.
	 *
	 * After they are placed, we run a sanity check to make sure no two castles
	 * are closer than 'min_distance' hexes apart, and that they appear on a
	 * terrain listed in 'valid_terrain'.
	 *
	 * If not, we attempt to place them again.
	 */
	std::vector<map_location> castles;
	std::set<map_location> failed_locs;

	if(castle_config) {
		/*
		 * Castle configuration tag contains a 'valid_terrain' attribute which is a
		 * list of terrains that the castle may appear on.
		 */
		const t_translation::ter_list list = t_translation::read_list(castle_config["valid_terrain"]);

		const is_valid_terrain terrain_tester(terrain, list);

		for(int player = 0; player != data.nplayers; ++player) {
			LOG_NG << "placing castle for " << player << "\n";
			lg::scope_logger inner_scope_logging_object__(lg::general(), "placing castle");
			const int min_x = data.width/3 + 3;
			const int min_y = data.height/3 + 3;
			const int max_x = (data.width/3)*2 - 4;
			const int max_y = (data.height/3)*2 - 4;
			int min_distance = castle_config["min_distance"];

			map_location best_loc;
			int best_ranking = 0;
			for(int x = min_x; x != max_x; ++x) {
				for(int y = min_y; y != max_y; ++y) {
					const map_location loc(x,y);
					if(failed_locs.count(loc)) {
						continue;
					}

					const int ranking = rank_castle_location(x, y, terrain_tester, min_x, max_x, min_y, max_y, min_distance, castles, best_ranking);
					if(ranking <= 0) {
						failed_locs.insert(loc);
					}

					if(ranking > best_ranking) {
						best_ranking = ranking;
						best_loc = loc;
					}
				}
			}

			if(best_ranking == 0) {
				ERR_NG << "No castle location found, aborting." << std::endl;
				const std::string error = _("No valid castle location found. Too many or too few mountain hexes? (please check the 'max hill size' parameter)");
				throw mapgen_exception(error);
			}

			assert(std::find(castles.begin(), castles.end(), best_loc) == castles.end());
			castles.push_back(best_loc);

			// Make sure the location can't get a second castle.
			failed_locs.insert(best_loc);
		}

		LOG_NG << "Placed castles. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
	}
	LOG_NG << "Placing roads...\n";
	ticks = SDL_GetTicks();

	// Place roads.
	// We select two tiles at random locations on the borders of the map
	// and try to build roads between them.
	int nroads = cfg["roads"];
	if(data.link_castles) {
		nroads += castles.size()*castles.size();
	}

	std::set<map_location> bridges;

	road_path_calculator calc(terrain, cfg, rng_());
	for(int road = 0; road != nroads; ++road) {
		lg::scope_logger another_inner_scope_logging_object__(lg::general(), "creating road");

		/*
		 * We want the locations to be on the portion of the map we're actually
		 * going to use, since roads on other parts of the map won't have any
		 * influence, and doing it like this will be quicker.
		 */
		map_location src = random_point_at_side(data.width/3 + 2,data.height/3 + 2);
		map_location dst = random_point_at_side(data.width/3 + 2,data.height/3 + 2);

		src.x += data.width/3 - 1;
		src.y += data.height/3 - 1;
		dst.x += data.width/3 - 1;
		dst.y += data.height/3 - 1;

		if(data.link_castles && road < int(castles.size() * castles.size())) {
			const size_t src_castle = road/castles.size();
			const size_t dst_castle = road%castles.size();
			if(src_castle >= dst_castle) {
				continue;
			}

			src = castles[src_castle];
			dst = castles[dst_castle];
		} else if(src.x == dst.x || src.y == dst.y) {
			// If the road isn't very interesting (on the same border), don't draw it.
			continue;
		}

		if(calc.cost(src, 0.0) >= 1000.0 || calc.cost(dst, 0.0) >= 1000.0) {
			continue;
		}

		// Search a path out for the road
		pathfind::plain_route rt = pathfind::a_star_search(src, dst, 10000.0, calc, data.width, data.height);

		const std::string& road_base_name = misc_labels != nullptr
			? base_name_generator->generate()
			: "";
		const std::string& road_name = misc_labels != nullptr
			? road_name_generator->generate({{"base", road_base_name}})
			: "";
		const int name_frequency = 20;
		int name_count = 0;

		bool on_bridge = false;

		// Draw the road.
		// If the search failed, rt.steps will simply be empty.
		for(std::vector<map_location>::const_iterator step = rt.steps.begin();
				step != rt.steps.end(); ++step) {

			const int x = step->x;
			const int y = step->y;

			if(x < 0 || y < 0 || x >= static_cast<long>(data.width) || y >= static_cast<long>(data.height)) {
				continue;
			}

			// Find the configuration which tells us what to convert this tile to, to make it into a road.
			const config& child = cfg.find_child("road_cost", "terrain", t_translation::write_terrain_code(terrain[x][y]));
			if(child.empty()){
				continue;
			}

			/* Convert to bridge means that we want to convert depending on the direction of the road.
			 * Typically it will be in a format like convert_to_bridge = \,|,/
			 * '|' will be used if the road is going north-south
			 * '/' will be used if the road is going south west-north east
			 * '\' will be used if the road is going south east-north west
			 * The terrain will be left unchanged otherwise (if there is no clear direction).
			 */
			const std::string& convert_to_bridge = child["convert_to_bridge"];
			if(!convert_to_bridge.empty()) {
				if(step == rt.steps.begin() || step+1 == rt.steps.end()) {
					continue;
				}

				const map_location& last = *(step-1);
				const map_location& next = *(step+1);

				map_location adj[6];
				get_adjacent_tiles(*step,adj);

				int direction = -1;

				// If we are going north-south
				if((last == adj[0] && next == adj[3]) || (last == adj[3] && next == adj[0])) {
					direction = 0;
				}

				// If we are going south west-north east
				else if((last == adj[1] && next == adj[4]) || (last == adj[4] && next == adj[1])) {
					direction = 1;
				}

				// If we are going south east-north west
				else if((last == adj[2] && next == adj[5]) || (last == adj[5] && next == adj[2])) {
					direction = 2;
				}

				if(misc_labels != nullptr && !on_bridge) {
					on_bridge = true;
					std::string bridge_base_name = base_name_generator->generate();
					const std::string& name = bridge_name_generator->generate({{"base",  bridge_base_name}});
					const map_location loc(x - data.width / 3, y-data.height/3);
					misc_labels->emplace(loc, name);
					bridge_names.emplace(loc, bridge_base_name); //add to use for village naming
					bridges.insert(loc);
				}

				if(direction != -1) {
					const std::vector<std::string> items = utils::split(convert_to_bridge);
					if(size_t(direction) < items.size() && !items[direction].empty()) {
						terrain[x][y] = t_translation::read_terrain_code(items[direction]);
					}

					continue;
				}
			} else {
				on_bridge = false;
			}

			// Just a plain terrain substitution for a road
			const std::string& convert_to = child["convert_to"];
			if(!convert_to.empty()) {
				const t_translation::terrain_code letter = t_translation::read_terrain_code(convert_to);
				if(misc_labels != nullptr && terrain[x][y] != letter && name_count++ == name_frequency && !on_bridge) {
					misc_labels->emplace(map_location(x - data.width / 3, y - data.height / 3), road_name);
					name_count = 0;
				}

				terrain[x][y] = letter;
				if(misc_labels != nullptr) {
					const map_location loc(x - data.width / 3, y - data.height / 3); //add to use for village naming
					if(!road_base_name.empty())
						road_names.emplace(loc, road_base_name);
				}
			}
		}
	}

	// Now that road drawing is done, we can plonk down the castles.
	for(std::vector<map_location>::const_iterator c = castles.begin(); c != castles.end(); ++c) {
		if(!c->valid()) {
			continue;
		}

		const int x = c->x;
		const int y = c->y;
		const int player = c - castles.begin() + 1;
		const t_translation::coordinate coord(x, y);
		starting_positions.insert(t_translation::starting_positions::value_type(std::to_string(player), coord));
		terrain[x][y] = t_translation::HUMAN_KEEP;

		const int castle_array[13][2] {
			{-1, 0}, {-1, -1}, {0, -1}, {1, -1}, {1, 0}, {0, 1}, {-1, 1},
			{-2, 1}, {-2, 0}, {-2, -1}, {-1, -2}, {0, -2}, {1, -2}
		};

		for(int i = 0; i < data.castle_size - 1; i++) {
			terrain[x+ castle_array[i][0]][y+ castle_array[i][1]] = t_translation::HUMAN_CASTLE;
		}

		// Remove all labels under the castle tiles
		if(labels != nullptr) {
			labels->erase(map_location(x-data.width/3,y-data.height/3));
			for(int i = 0; i < data.castle_size - 1; i++) {
				labels->erase(map_location(x+ castle_array[i][0]-data.width/3, y+ castle_array[i][1]-data.height/3));
			}
		}
	}

	LOG_NG << "Placed roads. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
	ticks = SDL_GetTicks();

	/* Random naming for landforms: mountains, forests, swamps, hills
	 * we name these now that everything else is placed (as e.g., placing
	 * roads could split a forest)
	 */
	if(misc_labels != nullptr) {
		for(int x = data.width / 3; x < (data.width / 3)*2; x++) {
			for(int y = data.height / 3; y < (data.height / 3) * 2;y++) {
				//check the terrain of the tile
				const map_location loc(x - data.width / 3, y - data.height / 3);
				const t_translation::terrain_code terr = terrain[x][y];
				std::string name, base_name;
				std::set<std::string> used_names;

				if(t_translation::terrain_matches(terr, t_translation::ALL_MOUNTAINS)) {
					//name every 15th mountain
					if((rng_() % 15) == 0) {
						for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
							base_name = base_name_generator->generate();
							name = mountain_name_generator->generate({{"base",  base_name}});
						}
						misc_labels->emplace(loc, name);
						mountain_names.emplace(loc, base_name);
					}
				} else if(t_translation::terrain_matches(terr, t_translation::ALL_FORESTS)) {
					// If the forest tile is not named yet, name it
					const std::map<map_location, std::string>::const_iterator forest_name = forest_names.find(loc);
					if(forest_name == forest_names.end()) {
						for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
							base_name = base_name_generator->generate();
							name = forest_name_generator->generate({{"base",  base_name}});
						}
						forest_names.emplace(loc, base_name);
						// name all connected forest tiles accordingly
						flood_name(loc, base_name, forest_names, t_translation::ALL_FORESTS, terrain, data.width, data.height, 0, misc_labels, name);
					}
				} else if(t_translation::terrain_matches(terr, t_translation::ALL_SWAMPS)) {
					// If the swamp tile is not named yet, name it
					const std::map<map_location, std::string>::const_iterator swamp_name = swamp_names.find(loc);
					if(swamp_name == swamp_names.end()) {
						for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
							base_name = base_name_generator->generate();
							name = swamp_name_generator->generate({{"base",  base_name}});
						}
						swamp_names.emplace(loc, base_name);
						// name all connected swamp tiles accordingly
						flood_name(loc, base_name, swamp_names, t_translation::ALL_SWAMPS, terrain, data.width, data.height, 0, misc_labels, name);
					}
				}
			}
		}
	}

	LOG_NG << "Named landforms. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";
	LOG_NG << "Placing villages...\n";
	ticks = SDL_GetTicks();

	/*
	 * Place villages in a 'grid', to make placing fair, but with villages
	 * displaced from their position according to terrain and randomness, to
	 * add some variety.
	 */
	std::set<map_location> villages;

	if(data.nvillages > 0) {

		// First we work out the size of the x and y distance between villages
		const size_t tiles_per_village = ((data.width*data.height)/9)/data.nvillages;
		size_t village_x = 1, village_y = 1;

		// Alternate between incrementing the x and y value.
		// When they are high enough to equal or exceed the tiles_per_village,
		// then we have them to the value we want them at.
		while(village_x*village_y < tiles_per_village) {
			if(village_x < village_y) {
				++village_x;
			} else {
				++village_y;
			}
		}

		std::set<std::string> used_names;
		tcode_list_cache adj_liked_cache;

		config village_naming = game_config_.child("village_naming");

		if(cfg.has_child("village_naming")) {
			village_naming.append_attributes(cfg.child("village_naming"));
		}

		// If the [village_naming] child is empty, we cannot provide good names.
		std::map<map_location,std::string>* village_labels = village_naming.empty() ? nullptr : labels;

		for(int vx = 0; vx < data.width; vx += village_x) {
			LOG_NG << "village at " << vx << "\n";

			for(int vy = rng_()%village_y; vy < data.height; vy += village_y) {
				const size_t add = rng_()%3;
				const size_t x = (vx + add) - 1;
				const size_t y = (vy + add) - 1;

				const map_location res = place_village(terrain, x, y, 2, cfg, adj_liked_cache);

				if(res.x  < static_cast<long>(data.width     ) / 3 ||
				   res.x >= static_cast<long>(data.width  * 2) / 3 ||
				   res.y  < static_cast<long>(data.height    ) / 3 ||
				   res.y >= static_cast<long>(data.height * 2) / 3) {
					continue;
				}

				const std::string str = t_translation::write_terrain_code(terrain[res.x][res.y]);

				const std::string& convert_to = cfg.find_child("village", "terrain", str)["convert_to"].str();
				if(convert_to.empty()) {
					continue;
				}

				terrain[res.x][res.y] = t_translation::read_terrain_code(convert_to);

				villages.insert(res);

				if(village_labels == nullptr) {
					continue;
				}

				name_generator_factory village_name_generator_factory{ village_naming,
					{"base", "male", "village", "lake", "river", "bridge", "grassland", "forest", "hill", "mountain", "mountain_anon", "road", "swamp"} };

				village_naming.get_old_attribute("base_names", "male_names", "[village_naming]male_names= is deprecated, use base_names= instead");
				//Due to the attribute detection feature of the factory we also support male_name_generator= but keep it undocumented.

				base_name_generator = village_name_generator_factory.get_name_generator(
					(village_naming.has_attribute("base_names") || village_naming.has_attribute("base_name_generator")) ? "base" : "male" );

				const map_location loc(res.x-data.width/3,res.y-data.height/3);

				map_location adj[6];
				get_adjacent_tiles(loc,adj);

				std::string name_type = "village";
				const t_translation::ter_list
					field	 = t_translation::ter_list(1, t_translation::GRASS_LAND),
					forest   = t_translation::ter_list(1, t_translation::FOREST),
					mountain = t_translation::ter_list(1, t_translation::MOUNTAIN),
					hill	 = t_translation::ter_list(1, t_translation::HILL);

				size_t field_count = 0, forest_count = 0, mountain_count = 0, hill_count = 0;

				std::map<std::string,std::string> symbols;

				size_t n;
				for(n = 0; n != 6; ++n) {
					const std::map<map_location,std::string>::const_iterator road_name = road_names.find(adj[n]);
					if(road_name != road_names.end()) {
						symbols["road"] = road_name->second;
						name_type = "road";
						break;
					}

					const std::map<map_location,std::string>::const_iterator river_name = river_names.find(adj[n]);
					if(river_name != river_names.end()) {
						symbols["river"] = river_name->second;
						name_type = "river";

						const std::map<map_location,std::string>::const_iterator bridge_name = bridge_names.find(adj[n]);
						if(bridge_name != bridge_names.end()) {
							//we should always end up here, since if there is an adjacent bridge, there has to be an adjacent river too
							symbols["bridge"] = bridge_name->second;
							name_type = "river_bridge";
						}

						break;
					}

					const std::map<map_location,std::string>::const_iterator forest_name = forest_names.find(adj[n]);
					if(forest_name != forest_names.end()) {
						symbols["forest"] = forest_name->second;
						name_type = "forest";
						break;
					}

					const std::map<map_location,std::string>::const_iterator lake_name = lake_names.find(adj[n]);
					if(lake_name != lake_names.end()) {
						symbols["lake"] = lake_name->second;
						name_type = "lake";
						break;
					}

					const std::map<map_location,std::string>::const_iterator mountain_name = mountain_names.find(adj[n]);
					if(mountain_name != mountain_names.end()) {
						symbols["mountain"] = mountain_name->second;
						name_type = "mountain";
						break;
					}

					const std::map<map_location,std::string>::const_iterator swamp_name = swamp_names.find(adj[n]);
					if(swamp_name != swamp_names.end()) {
						symbols["swamp"] = swamp_name->second;
						name_type = "swamp";
						break;
					}

					const t_translation::terrain_code terr = terrain[adj[n].x+data.width/3][adj[n].y+data.height/3];

					if(std::count(field.begin(),field.end(),terr) > 0) {
						++field_count;
					} else if(std::count(forest.begin(),forest.end(),terr) > 0) {
						++forest_count;
					} else if(std::count(hill.begin(),hill.end(),terr) > 0) {
						++hill_count;
					} else if(std::count(mountain.begin(),mountain.end(),terr) > 0) {
						++mountain_count;
					}
				}

				if(n == 6) {
					if(field_count == 6) {
						name_type = "grassland";
					} else if(forest_count >= 2) {
						name_type = "forest";
					} else if(mountain_count >= 1) {
						name_type = "mountain_anon";
					} else if(hill_count >= 2) {
						name_type = "hill";
					}
				}

				std::string name;

				symbols["base"] = base_name_generator->generate();
				std::shared_ptr<name_generator> village_name_generator = village_name_generator_factory.get_name_generator(name_type);

				for(size_t ntry = 0; ntry != 30 && (ntry == 0 || used_names.count(name) > 0); ++ntry) {
					name = village_name_generator->generate(symbols);
				}

				used_names.insert(name);
				village_labels->emplace(loc, name);
			}
		}
	}

	LOG_NG << "Placed villages. " << (SDL_GetTicks() - ticks) << " ticks elapsed" << "\n";

	return output_map(terrain, starting_positions);
}