示例#1
0
//!  apply k-means classify to histogram
void apply_k_means_classify(const histogram<double>& input,
                    const std::vector<double>&  mu,
                    std::vector<int>& cls )
{
  int number_of_classes=mu.size();
  int i,j,k;
  
  //calculate all the classes
  for(j=0;j<input.size();j++)
  {
    int best_k=0;
    double best_dist=0;
    
    for(k=0;k<number_of_classes;k++)
    {
      double dist=fabs(input.value(j)-mu[k]);
      if(dist<best_dist|| best_k==0)
      {
        best_dist=dist;
        best_k=k+1;
      }
    }
    cls[j]=best_k;
  }
}
示例#2
0
// Run skin-detection algorithm
frame detect_skin(const frame& in) {
    dtn_frame = in;

    const rgb_byte ZERO = { };
    for(int y = HEIGHT - 1; y; --y) {
        for(int x = WIDTH - 1; x; --x) {
            auto orig = dtn_frame.get_pixel(x, y);
            rgb hist_in = { orig[2], orig[1], orig[0] };
            if(hist.value(hist_in) < tld) {
                orig[0] = orig[1] = orig[2] = 0;
            }
        }
    }

    return dtn_frame;
}
示例#3
0
//! estimate sample mu using discrete classes
void estimate_mu(const histogram<double>& input,
                 const std::vector<int>& cls,
                 std::vector<double>&  mu )
{
  int number_of_classes=mu.size();
  int i,j,k;
  std::vector<double>    _counts(number_of_classes,0);
  
  for(k=0;k<number_of_classes;k++)
    mu[k]=0;
    
  double _count=0;
  
  //1 calculate means
  for(j=0;j<cls.size();j++)
  {
    _count+=input[j];
    
    int _c=cls[j];
    if(!_c || _c>number_of_classes) continue; //only use classified voxel
    _c--;
    
    _counts[_c]+=input[j];
    mu[_c]+=input[j]*input.value(j);
  }
  
  if(!_count)
    REPORT_ERROR("No voxels defined in ROI!");
  
  for(k=0;k<number_of_classes;k++)
  {
    for(k=0;k<number_of_classes;k++)
    {
      if(_counts[k]>0)
        mu[k]/=_counts[k];
    }
  }
}