示例#1
0
static
void assert_ivec(const ivec &expected, const ivec &actual)
{
  ASSERT_EQ(expected.length(), actual.length());
  for (int n = 0; n < expected.length(); ++n)
  {
    ASSERT_EQ(expected[n], actual[n]);
  }
}
示例#2
0
void cofdm_map::set_data(ivec x)
{
cvec qv;
bvec ce;
int K = x.length();
int i;

	ce.set_length(K); ce.ones();
	#if (DEBUG_LEVEL == 3)
	cout << "***** cofdm_map::set_data *****" << endl;	
	cout << "K=" << K << endl;
	cout << "ce=" << ce << endl;
	cout << "x=" << x << endl;
	cout << "data_carriers=" << data_carriers << endl;
	#endif

	if( K == data_carriers.length() ) {
		qv = qammod.process(ce,x);
		#if (DEBUG_LEVEL == 3)
		cout << "qv=" << qv << endl;
		#endif
		for (i=0; i<K; i++) {
			y0(data_carriers(i))=qv(i);
		}
	}
	else {
		throw sci_exception("cofdm_map::set_data - x.size() <> data_carriers.size()=", data_carriers.length());
	}

	#if (DEBUG_LEVEL == 3)
	cout << "y0(piltos)  y0(zeros) migh have rubbish" << endl;
	cout << "y0=" << y0 << endl;
	cout << "+++++ cofdm_map::set_data +++++" << endl;	
	#endif
}
示例#3
0
void gfx::set(int qvalue, const ivec &invalues)
{
  //    it_assert0(qvalue>0, "gfx::set, out of range");
  degree=invalues.length()-1;
  coeffs.set_size(degree+1);
  for (int i=0;i<degree+1;i++)
	coeffs[i].set(qvalue,invalues[i]);
  q=qvalue;
}
示例#4
0
cvec qam_mod::process(bvec ce, ivec x)
{
 cvec y;	
 int N;
 ivec iv;
 cvec cv;

	#if (DEBUG_LEVEL==3)
	cout << "***** qam_mod::process *****" << endl;	
	cout << "ce=" << ce << endl;
	cout << "x=" << x << endl;
	sleep(1000);
	#endif

	iv.set_length(1);
	cv.set_length(1);
	N=ce.length();
	y.set_length(N);
	if (x.length()!=N) {
		throw sci_exception("qam_mod::process - ce.size <> x.size", x.length() );
	}	
	for (int i=0; i<N; i++) {
		if ( bool(ce[i])) {
			iv[0]  = x[i];
			cv = modulate(iv);
			y0 = scale * cv[0];
		}
		y[i]=y0;
	}

	#if (DEBUG_LEVEL==3)
	cout << "y=" << y << endl;
	cout << "+++++ qam_mod::process +++++" << endl;	
	sleep(1000);
	#endif

	return (y);
}
示例#5
0
bmat int2bin::process(bvec ce, ivec x)
{
 bmat y;	
 int N;

	#if (DEBUG_LEVEL==3)
	cout << "***** int2bin::process *****" << endl;	
	cout << "ce=" << ce << endl;
	cout << "x=" << x << endl;
	sleep(1000);
	#endif

	N=ce.length();
	if (x.length()!=N) { 
		throw sci_exception("int2bin::process - ce.size <> x.rows()", x.length() );
	}

	y.set_size(N,symbol_size);
	for (int i=0; i<N; i++) {
		if ( bool(ce[i])) {
			y0 = dec2bin(symbol_size, x[i]);
			if (! msb_first) {
				y0 = reverse(y0);
			}
		}
		y.set_row(i,y0);
	}

	#if (DEBUG_LEVEL==3)
	cout << "y=" << y << endl;
	cout << "+++++ int2bin::process +++++" << endl;	
	sleep(1000);
	#endif

	return (y);
}
示例#6
0
void cofdm_sel::set_sel_carriers(ivec cindx)
{
	if( cindx.length() < NFFT ) {
		if (itpp::min(cindx) >= 0) {
			if (itpp::max(cindx) < NFFT) {
				sel_carriers = cindx;
			}
			else {
				throw sci_exception("cofdm_sel::set_sel_carriers - max(cindx) > NFFT=", NFFT);
			}
		}
		else {
			throw sci_exception("cofdm_sel::set_sel_carriers - min(cindx) <  0 ");
		}
	}
	else {
		throw sci_exception("cofdm_sel::set_sel_carriers - bad cindx.size() > NFFT=", NFFT);
	}
}
示例#7
0
void cofdm_map::set_pilots_carriers(ivec pcindx)
{
	if( pcindx.length() < NFFT ) {
		if (itpp::min(pcindx) >= 0) {
			if (itpp::max(pcindx) < NFFT) {
				pilots_carriers = pcindx;
			}
			else {
				throw sci_exception("cofdm_map::set_pilots_carriers - max(pcindx) > NFFT=", NFFT);
			}
		}
		else {
			throw sci_exception("cofdm_map::set_pilots_carriers - min(dcindx) <  0 ");
		}
	}
	else {
		throw sci_exception("cofdm_map::set_pilots_carriers - bad pcindx.size() > NFFT=", NFFT);
	}	
}
示例#8
0
void cofdm_map::set_zero_carriers(ivec zcindx)
{
	if( zcindx.length() < NFFT ) {
		if (itpp::min(zcindx) >= 0) {
			if (itpp::max(zcindx) < NFFT) {
				zero_carriers = zcindx;
			}
			else {
				throw sci_exception("cofdm_map::set_zero_carriers - max(zcindx) > NFFT=", NFFT);
			}
		}
		else {
			throw sci_exception("cofdm_map::set_zero_carriers - min(zcindx) <  0 ");
		}
	}
	else {
		throw sci_exception("cofdm_map::set_zero_carriers - bad zcindx.size() > NFFT=", NFFT);
	}
	
}
示例#9
0
void cofdm_map::set_data_carriers(ivec dcindx)
{
	if( dcindx.length() < NFFT ) {
		if (itpp::min(dcindx) >= 0) {
			if (itpp::max(dcindx) < NFFT) {
				data_carriers = dcindx;
			}
			else {
				throw sci_exception("cofdm_map::set_data_carriers - max(dcindx) > NFFT=", NFFT);
			}
		}
		else {
			throw sci_exception("cofdm_map::set_data_carriers - min(dcindx) <  0 ");
		}
	
	}
	else {
		throw sci_exception("cofdm_map::set_data_carriers - bad dcindx.size() > NFFT=", NFFT);
	}
}
示例#10
0
bool Reed_Solomon::decode(const bvec &coded_bits, const ivec &erasure_positions, bvec &decoded_message, bvec &cw_isvalid)
{
  bool decoderfailure, no_dec_failure;
  int j, i, kk, l, L, foundzeros, iterations = floor_i(static_cast<double>(coded_bits.length()) / (n * m));
  bvec mbit(m * k);
  decoded_message.set_size(iterations * k * m, false);
  cw_isvalid.set_length(iterations);

  GFX rx(q, n - 1), cx(q, n - 1), mx(q, k - 1), ex(q, n - 1), S(q, 2 * t), Xi(q, 2 * t), Gamma(q), Lambda(q),
      Psiprime(q), OldLambda(q), T(q), Omega(q);
  GFX dummy(q), One(q, (char*)"0"), Omegatemp(q);
  GF delta(q), tempsum(q), rtemp(q), temp(q), Xk(q), Xkinv(q);
  ivec errorpos;

  if ( erasure_positions.length() ) {
    it_assert(max(erasure_positions) < iterations*n, "Reed_Solomon::decode: erasure position is invalid.");
  }
  
  no_dec_failure = true;
  for (i = 0; i < iterations; i++) {
    decoderfailure = false;
    //Fix the received polynomial r(x)
    for (j = 0; j < n; j++) {
      rtemp.set(q, coded_bits.mid(i * n * m + j * m, m));
      rx[j] = rtemp;
    }
    // Fix the Erasure polynomial Gamma(x)
    // and replace erased coordinates with zeros
    rtemp.set(q, -1);
    ivec alphapow = - ones_i(2);
    Gamma = One;
    for (j = 0; j < erasure_positions.length(); j++) {
      rx[erasure_positions(j)] = rtemp;
      alphapow(1) = erasure_positions(j);
      Gamma *= (One - GFX(q, alphapow));
    }
    //Fix the syndrome polynomial S(x).
    S.clear();
    for (j = 1; j <= 2 * t; j++) {
      S[j] = rx(GF(q, b + j - 1));
    }
    // calculate the modified syndrome polynomial Xi(x) = Gamma * (1+S) - 1
    Xi = Gamma * (One + S) - One;
    // Apply Berlekam-Massey algorithm
    if (Xi.get_true_degree() >= 1) { //Errors in the received word
      // Iterate to find Lambda(x), which hold all error locations
      kk = 0;
      Lambda = One;
      L = 0;
      T = GFX(q, (char*)"-1 0");
      while (kk < 2 * t) {
        kk = kk + 1;
        tempsum = GF(q, -1);
        for (l = 1; l <= L; l++) {
          tempsum += Lambda[l] * Xi[kk - l];
        }
        delta = Xi[kk] - tempsum;
        if (delta != GF(q, -1)) {
          OldLambda = Lambda;
          Lambda -= delta * T;
          if (2 * L < kk) {
            L = kk - L;
            T = OldLambda / delta;
          }
        }
        T = GFX(q, (char*)"-1 0") * T;
      }
      // Find the zeros to Lambda(x)
      errorpos.set_size(Lambda.get_true_degree());
      foundzeros = 0;
      for (j = q - 2; j >= 0; j--) {
        if (Lambda(GF(q, j)) == GF(q, -1)) {
          errorpos(foundzeros) = (n - j) % n;
          foundzeros += 1;
          if (foundzeros >= Lambda.get_true_degree()) {
            break;
          }
        }
      }
      if (foundzeros != Lambda.get_true_degree()) {
        decoderfailure = true;
      }
      else { // Forney algorithm...
        //Compute Omega(x) using the key equation for RS-decoding
        Omega.set_degree(2 * t);
        Omegatemp = Lambda * (One + Xi);
        for (j = 0; j <= 2 * t; j++) {
          Omega[j] = Omegatemp[j];
        }
        //Find the error/erasure magnitude polynomial by treating them the same
        Psiprime = formal_derivate(Lambda*Gamma);
        errorpos = concat(errorpos, erasure_positions);
        ex.clear();
        for (j = 0; j < errorpos.length(); j++) {
          Xk = GF(q, errorpos(j));
          Xkinv = GF(q, 0) / Xk;
          // we calculate ex = - error polynomial, in order to avoid the 
          // subtraction when recunstructing the corrected codeword
          ex[errorpos(j)] = (Xk * Omega(Xkinv)) / Psiprime(Xkinv);
          if (b != 1) { // non-narrow-sense code needs corrected error magnitudes
            int correction_exp = ( errorpos(j)*(1-b) ) % n;
            ex[errorpos(j)] *= GF(q, correction_exp + ( (correction_exp < 0) ? n : 0 ));
          }
        }
        //Reconstruct the corrected codeword.
        // instead of subtracting the error/erasures, we calculated 
        // the negative error with 'ex' above
        cx = rx + ex;
        //Code word validation
        S.clear();
        for (j = 1; j <= 2 * t; j++) {
          S[j] = cx(GF(q, b + j - 1));
        }
        if (S.get_true_degree() >= 1) {
          decoderfailure = true;
        }
      }
    }
    else {
      cx = rx;
      decoderfailure = false;
    }
    //Find the message polynomial
    mbit.clear();
    if (decoderfailure == false) {
      if (cx.get_true_degree() >= 1) { // A nonzero codeword was transmitted
        if (systematic) {
          for (j = 0; j < k; j++) {
            mx[j] = cx[j];
          }
        }
        else {
          mx = divgfx(cx, g);
        }
        for (j = 0; j <= mx.get_true_degree(); j++) {
          mbit.replace_mid(j * m, mx[j].get_vectorspace());
        }
      }
    }
    else { //Decoder failure.
      // for a systematic code it is better to extract the undecoded message
      // from the received code word, i.e. obtaining a bit error
      // prob. p_b << 1/2, than setting all-zero (p_b = 1/2)
      if (systematic) {
        mbit = coded_bits.mid(i * n * m, k * m);
      }
      else {
        mbit = zeros_b(k);
      }
      no_dec_failure = false;
    }
    decoded_message.replace_mid(i * m * k, mbit);
    cw_isvalid(i) = (!decoderfailure);
  }
  return no_dec_failure;
}
/*
  Return the mean value of the elements in the vector
*/
double mean(const ivec& v)
{
    return (double)sum(v)/v.length();
}