示例#1
0
void ConSoln_Unst(const mesh& Mesh, 
        const dTensor3& aux,
        const dTensor3& q, 
        double t, 
        string outputdir)
{

    const int NumElems = q.getsize(1);
    const int     meqn = q.getsize(2);
    const int     kmax = q.getsize(3);
    const int     maux = aux.getsize(2);
    const string fname1 = outputdir+"/conservation.dat";
    ofstream write_file1,write_file2;
    dTensor1 qsum(meqn);
    dTensor1 res_sum(meqn);
    const int NumPhysElems = Mesh.get_NumPhysElems();

    if (t==0) 
    {
        write_file1.open(fname1.c_str(), ofstream::out);
    }
    else
    {
        write_file1.open(fname1.c_str(), ofstream::app);
    }

    // -----------------
    // CONSERVATION
    // -----------------
    if (dogParams.get_mcapa()<1) // without capacity function
    {
        for (int m=1; m<=meqn; m++)
        {
            qsum.set(m,0.0);

            for (int i=1; i<=NumPhysElems; i++)
            {             
                double dtmp = Mesh.get_area_prim(i);
                double qtmp = q.get(i,m,1);

                qsum.set(m, (qsum.get(m) + dtmp*qtmp) );
            }
        }
    }

    write_file1 << setprecision(16);
    write_file1 << setw(24) << scientific << t << " ";
    for (int m=1; m<=meqn; m++)
    {
        if (fabs(qsum.get(m)) < 1.0e-99) {qsum.set(m, 0.0);}
        write_file1 << setw(24) << scientific << qsum.get(m) << " ";
    }
    write_file1 << endl;

    write_file1.close();

}
示例#2
0
double GetCFL_Unst(double dt, const mesh& Mesh,
                   const dTensor3& aux, const dTensor1& smax)
{
    double cfl=-100.0;
    int NumPhysElems = Mesh.get_NumPhysElems();
    int NumEdges = Mesh.get_NumEdges();

    for (int i=1; i<=NumPhysElems; i++)
    {
        double Area  = Mesh.get_area_prim(i);
        int edge1 = Mesh.get_tedge(i,1);
        int edge2 = Mesh.get_tedge(i,2);
        int edge3 = Mesh.get_tedge(i,3);

        double tmp = Max(Max(smax.get(edge1),smax.get(edge2)),
                         smax.get(edge3));

        cfl = Max(0.5*dt*tmp/Area, cfl);
    }

    return cfl;
}
//
// Output basic mesh information to screen
//
void ScreenOutput(const mesh& Mesh)
{
  // Compute mesh quality parameters
  double totalarea = Mesh.get_area_prim(1);
  double maxarea = Mesh.get_area_prim(1);
  double minarea = Mesh.get_area_prim(1);
  for (int i=2; i<=Mesh.get_NumPhysElems(); i++)
    {
      double tmp = Mesh.get_area_prim(i);
      totalarea = totalarea + tmp;
      if (tmp < minarea)
	{ minarea = tmp; }
      if (tmp > maxarea)
	{ maxarea = tmp; }
    }

  double minAngle = 180.0;

  for (int i=1; i<=Mesh.get_NumPhysElems(); i++)
    {
      const int i1 = Mesh.get_tnode(i,1);
      const int i2 = Mesh.get_tnode(i,2);
      const int i3 = Mesh.get_tnode(i,3);

      point v12, v23, v31;
      v12.x = Mesh.get_node(i2,1) - Mesh.get_node(i1,1);
      v12.y = Mesh.get_node(i2,2) - Mesh.get_node(i1,2);
      v23.x = Mesh.get_node(i3,1) - Mesh.get_node(i2,1);
      v23.y = Mesh.get_node(i3,2) - Mesh.get_node(i2,2);
      v31.x = Mesh.get_node(i1,1) - Mesh.get_node(i3,1);
      v31.y = Mesh.get_node(i1,2) - Mesh.get_node(i3,2);
      
      double angle1 = acos((v12.x*-v31.x+v12.y*-v31.y)
			   /(sqrt(v12.x*v12.x+v12.y*v12.y)*sqrt(v31.x*v31.x+v31.y*v31.y)));
      double angle2 = acos((v23.x*-v12.x+v23.y*-v12.y)
			   /(sqrt(v23.x*v23.x+v23.y*v23.y)*sqrt(v12.x*v12.x+v12.y*v12.y)));
      double angle3 = acos((v31.x*-v23.x+v31.y*-v23.y)
			   /(sqrt(v31.x*v31.x+v31.y*v31.y)*sqrt(v23.x*v23.x+v23.y*v23.y)));
      if ((angle1*180/pi) < minAngle)
        {  minAngle = angle1*180/pi;  }
      if ((angle2*180/pi) < minAngle)
        {  minAngle = angle2*180/pi;  }
      if ((angle3*180/pi) < minAngle)
        {  minAngle = angle3*180/pi;  }
    }

  // Output summary of results to screen
  printf("\n");
  printf("  SUMMARY OF RESULTS:\n");
  printf("  -------------------\n");
  printf("          Number of Elements:  %8i\n",Mesh.get_NumElems());
  printf(" Number of Physical Elements:  %8i\n",Mesh.get_NumPhysElems());
  printf("    Number of Ghost Elements:  %8i\n",Mesh.get_NumGhostElems());
  printf("             Number of Nodes:  %8i\n",Mesh.get_NumNodes());
  printf("    Number of Physical Nodes:  %8i\n",Mesh.get_NumPhysNodes());
  printf("    Number of Boundary Nodes:  %8i\n",Mesh.get_NumBndNodes());
  printf("             Number of Edges:  %8i\n",Mesh.get_NumEdges());
  printf("    Number of Boundary Edges:  %8i\n",Mesh.get_NumBndEdges());
  printf("\n");
  printf("          Total Area Covered:  %24.16e\n",totalarea);
  printf("     Area Ratio: small/large:  %24.16e\n",minarea/maxarea);
  printf("    Angle Ratio: minAngle/60:  %24.16e\n",minAngle/60.0);
  printf("\n");
}
示例#4
0
void ComputeError(const int space_order,
		  const mesh& Mesh,
		  const dTensor1& phi,
		  const dTensor2& E1,
		  const dTensor2& E2,
		  void (*PhiFunc)(const dTensor2& xpts,dTensor2& phi_ex),
		  void (*EfieldFunc)(const dTensor2& xpts,dTensor2& Efield_ex))
{
  
  // Potential
  const int NumPhysNodes = phi.getsize();//Mesh.get_NumPhysNodes();
  dTensor2 xpts(NumPhysNodes,2);
  dTensor2 phi_ex(NumPhysNodes,1);
  double phi_err;
  double phi_rel;
  
  switch(space_order)
    {
    case 2:
      for (int i=1; i<=NumPhysNodes; i++)
	{  
	  xpts.set(i,1, Mesh.get_node(i,1) );
	  xpts.set(i,2, Mesh.get_node(i,2) );
	}
      PhiFunc(xpts,phi_ex);
      
      phi_err = 0.0;
      phi_rel = 0.0;
      for (int i=1; i<=NumPhysNodes; i++)
	{ 
	  phi_rel = phi_rel + pow(phi_ex.get(i,1),2);
	  phi_err = phi_err + pow(phi_ex.get(i,1)-phi.get(i),2);
	}
      phi_err = sqrt(phi_err/phi_rel);
      break;

    case 3:
      for (int i=1; i<=NumPhysNodes; i++)
	{  
	  xpts.set(i,1, Mesh.get_sub_node(i,1) );
	  xpts.set(i,2, Mesh.get_sub_node(i,2) );
	}
      PhiFunc(xpts,phi_ex);
      
      phi_err = 0.0;
      phi_rel = 0.0;
      for (int i=1; i<=NumPhysNodes; i++)
	{ 
	  phi_rel = phi_rel + pow(phi_ex.get(i,1),2);
	  phi_err = phi_err + pow(phi_ex.get(i,1)-phi.get(i),2);
	}
      phi_err = sqrt(phi_err/phi_rel);
      break;
    }
  
  // Electric field components
  void L2Project_Unst(const int istart, 
		      const int iend, 
		      const int QuadOrder,		    
		      const int BasisOrder_fout,
		      const mesh& Mesh, 
		      dTensor3* fout, 
		      void (*Func)(const dTensor2&,dTensor2&));
  
  const int NumElems     = Mesh.get_NumElems();
  const int NumPhysElems = Mesh.get_NumPhysElems();
  const int kmax = E1.getsize(2);

  dTensor3 Efield_ex(NumElems,2,kmax);
  L2Project_Unst(1,NumElems,space_order,space_order,
		 Mesh,&Efield_ex,EfieldFunc);
  
  double E1_err = 0.0;
  double E1_rel = 0.0;
  double E2_err = 0.0;
  double E2_rel = 0.0;

  for (int i=1; i<=NumPhysElems; i++)
    {
      double Area = Mesh.get_area_prim(i);
      double tmp1 = 0.0;
      double tmp2 = 0.0;
      double tmp1_rel = 0.0;
      double tmp2_rel = 0.0;
      for (int k=1; k<=kmax; k++)
	{
	  tmp1 = tmp1 + pow((E1.get(i,k)-Efield_ex.get(i,1,k)),2);
	  tmp2 = tmp2 + pow((E2.get(i,k)-Efield_ex.get(i,2,k)),2);
	  tmp1_rel = tmp1_rel + pow((Efield_ex.get(i,1,k)),2);
	  tmp2_rel = tmp2_rel + pow((Efield_ex.get(i,2,k)),2);
	}
      E1_err = E1_err + Area*tmp1;
      E2_err = E2_err + Area*tmp2;
      E1_rel = E1_rel + Area*tmp1_rel;
      E2_rel = E2_rel + Area*tmp2_rel;
    }
  E1_err = sqrt(E1_err/E1_rel);
  E2_err = sqrt(E2_err/E2_rel);

  // Summary
  printf("  |----------------------------\n");
  printf("  | Errors:\n");
  printf("  |----------------------------\n");
  printf("  |  phi_err = %e\n",phi_err);
  printf("  |   E1_err = %e\n",E1_err);
  printf("  |   E2_err = %e\n",E2_err);
  printf("  |----------------------------\n");
  printf("\n");
}
// Save the time, and print the L2-norm of the electric field
//
// TODO - is this the spot where we'd like to print moments?  Do we need
// moments after each time step or for each frame?
//
void PrintElectricField( const double t, const mesh& Mesh, const dTensorBC5& q,
                         const dTensor2& E1, const dTensor2& E2 )
{

    const int mx        = q.getsize(1);
    const int my        = q.getsize(2);
    const int NumElems  = q.getsize(3);
    const int meqn      = q.getsize(4);
    const int kmax      = q.getsize(5);
    const int mbc       = q.getmbc();

    const int NumPhysElems = Mesh.get_NumPhysElems();

    string fname1 = string(dogParams.get_outputdir())+"/conservation.dat";
    string fname2 = string(dogParams.get_outputdir())+"/Efield.dat";

    ofstream write_file1,write_file2;

    if( fabs(t) < EPSILON )
    {
        write_file1.open(fname1.c_str(), ofstream::out);
        write_file2.open(fname2.c_str(), ofstream::out);
    }
    else
    {
        write_file1.open(fname1.c_str(), ofstream::app);
        write_file2.open(fname2.c_str(), ofstream::app);
    }

    // -----------------
    // CONSERVATION
    // -----------------
    dTensor1 qsum(meqn);
    if (dogParams.get_mcapa()<1) // without capacity function
    {
        for (int m=1; m<=meqn; m++)
        {
            qsum.set(m,0.0);

            for (int i=1; i<=mx; i++)
                for (int j=1; j<=my; j++)
                    for (int n=1; n<=NumPhysElems; n++)
                    {
                        qsum.set(m, qsum.get(m) + Mesh.get_area_prim(n)*dogParamsCart2.get_prim_vol()*q.get(i,j,n,m,1) );
                    }

        }
    }

    write_file1 << setprecision(16);
    write_file1 << setw(24) << scientific << t << " ";
    for (int m=1; m<=meqn; m++)
    {
        if (fabs(qsum.get(m)) < 1.0e-99) {
            qsum.set(m, 0.0);
        }
        write_file1 << setw(24) << scientific << qsum.get(m) << " ";
    }
    write_file1 << endl;
    write_file1.close();

    ///////////////////////////////////////////////////////////////////////////
    // Conserved Vlasov-Poisson Quantities                                   //
    //        ||f||_1, ||f||_2, Energy, Entropy                              //
    ///////////////////////////////////////////////////////////////////////////

    //////////////////////////////////////////////////////////////////////////
    // Electric Field
    const int mcons = 4;

// TODO - do we want to compute the extra moments here or later?
////dTensorBC4 ConsData2d(mx, my, mcons, kmax,mbc);
////const int space_order = dogParams.get_space_order();
////L2Project(1, mx, 1, my, space_order, space_order, space_order,
////      space_order, &q, &aux, &ConsData2d, &ConservedFunc );

    // electric field, entropy and energy
    dTensor1 ConsData(mcons);
    ConsData.setall(0.);

    // Compute the integral of all the 2d quantities:
//  for (int m=1; m<=mcons; m++)
//  {
//      for (int i=1; i<=mx; i++)
//      for (int j=1; j<=my; j++)
//      {
//          ConsData.set(m, ConsData.get(m) + dx*dy*ConsData2d.get(i,j,m,1) );
//      }
//  }

    // Compute the integral of all the 1d quanties:
    //        \int E^2 \ dx
    double Esqd = 0.0;
    for(int n=1; n <= NumElems; n++ )
        for(int k=1; k <= E1.getsize(2); k++ )
        {
            Esqd += Mesh.get_area_prim(n) * (
                        pow( E1.get(n,k), 2 ) + pow(E2.get(n,k), 2 )
                    );
        }

//printf("Esqd = %f\n", Esqd );
//exit(1);

    // Add in E to the total Energy:
    // ConsData.set(3, ConsData.get(3) + 0.5 * E2 );
    ConsData.set(3, 0. );

    // print time:
    write_file2 << setprecision(16);
    write_file2 << setw(24) << scientific << t << " ";

    // print ||E||_2 first:
    write_file2 << setw(24) << scientific << sqrt( Esqd ) << " ";

    // print all the other conserved quantities:
    for (int m=1; m<=mcons; m++)
    {
        write_file2 << setw(24) << scientific << ConsData.get(m) << " ";
    }
    write_file2 << endl;

    write_file2.close();

}
// Right-hand side for hyperbolic PDE in divergence form
//
//       q_t = -( f(q,x,y,t)_x + g(q,x,y,t)_y ) + Psi(q,x,y,t)
//
void LaxWendroff_Unst(double dt,
    const mesh& Mesh, const edge_data_Unst& EdgeData,
    dTensor3& aux,                  // SetBndValues modifies ghost cells
    dTensor3& q,                    // SetBndValues modifies ghost cells
    dTensor3& Lstar, dTensor1& smax)
{

    const int NumElems      = Mesh.get_NumElems();
    const int NumPhysElems  = Mesh.get_NumPhysElems();
    const int NumEdges      = Mesh.get_NumEdges();
    const int meqn          = q.getsize(2);
    const int kmax          = q.getsize(3);
    const int maux          = aux.getsize(2);
    const int space_order   = dogParams.get_space_order();
    dTensor3 EdgeFluxIntegral(NumElems,meqn,kmax);
    dTensor3 ElemFluxIntegral(NumElems,meqn,kmax);
    dTensor3              Psi(NumElems,meqn,kmax);

    // ---------------------------------------------------------
    // Boundary Conditions
    SetBndValues_Unst(Mesh, &q, &aux);
    // ---------------------------------------------------------

    // --------------------------------------------------------------------- //
    // Part 0: Compute the Lax-Wendroff "flux" function:
    //
    // Here, we include the extra information about time derivatives.
    // --------------------------------------------------------------------- //
    dTensor3 F(NumElems, meqn, kmax );  F.setall(0.);
    dTensor3 G(NumElems, meqn, kmax );  G.setall(0.);
    L2ProjectLxW_Unst( dogParams.get_time_order(), 1.0, 0.5*dt, dt*dt/6.0, 1, NumElems,
        space_order, space_order, space_order, space_order, Mesh,
        &q, &aux, &F, &G, &FluxFunc, &DFluxFunc, &D2FluxFunc );

    // ---------------------------------------------------------
    // Part I: compute source term
    // --------------------------------------------------------- 
    if ( dogParams.get_source_term()>0 )
    {        
        // eprintf("error: have not implemented source term for LxW solver.");
        printf("Source term has not been implemented for LxW solver.  Terminating program.");
        exit(1);
    }
    Lstar.setall(0.);
    // ---------------------------------------------------------


    // ---------------------------------------------------------
    // Part II: compute flux integral on element edges
    // ---------------------------------------------------------

    // Loop over all interior edges
    EdgeFluxIntegral.setall(0.);
    ElemFluxIntegral.setall(0.);

#pragma omp parallel for
    // Loop over all interior edges
    for (int i=1; i<=NumEdges; i++)
    {
        // Edge coordinates
        double x1 = Mesh.get_edge(i,1);
        double y1 = Mesh.get_edge(i,2);
        double x2 = Mesh.get_edge(i,3);
        double y2 = Mesh.get_edge(i,4);

        // Elements on either side of edge
        int ileft  = Mesh.get_eelem(i,1);
        int iright = Mesh.get_eelem(i,2);  
        double Areal = Mesh.get_area_prim(ileft);
        double Arear = Mesh.get_area_prim(iright);

        // Scaled normal to edge
        dTensor1 nhat(2);      
        nhat.set(1, (y2-y1) );
        nhat.set(2, (x1-x2) );

        // Variables to store flux integrals along edge
        dTensor2 Fr_tmp(meqn,dogParams.get_space_order());
        dTensor2 Fl_tmp(meqn,dogParams.get_space_order());

        // Loop over number of quadrature points along each edge
        for (int ell=1; ell<=dogParams.get_space_order(); ell++)
        {
            dTensor1   Ql(meqn),   Qr(meqn);
            dTensor1  ffl(meqn),  ffr(meqn);  // << -- NEW PART -- >>
            dTensor1 Auxl(maux), Auxr(maux);

            // Riemann data - q
            for (int m=1; m<=meqn; m++)
            {
                Ql.set(m, 0.0 );
                Qr.set(m, 0.0 );

                // << -- NEW PART, ffl and ffr -- >> //
                ffl.set(m, 0.0 );
                ffr.set(m, 0.0 );

                for (int k=1; k<=kmax; k++)
                {
                    Ql.set(m, Ql.get(m) + EdgeData.phi_left->get(i,ell,k) 
                            *q.get(ileft, m,k) );
                    Qr.set(m, Qr.get(m) + EdgeData.phi_right->get(i,ell,k)
                            *q.get(iright,m,k) );

                    // << -- NEW PART, ffl and ffr -- >> //
                    // Is this the correct way to use the normal vector?
                    ffl.set(m, ffl.get(m) + EdgeData.phi_left->get (i, ell, k) * ( 
                        nhat.get(1)*F.get( ileft, m, k) + nhat.get(2)*G.get( ileft, m, k) ) );

                    ffr.set(m, ffr.get(m) + EdgeData.phi_right->get(i, ell, k) * (
                        nhat.get(1)*F.get(iright, m, k) + nhat.get(2)*G.get(iright, m, k) ) );

                }
            }

            // Riemann data - aux
            for (int m=1; m<=maux; m++)
            {
                Auxl.set(m, 0.0 );
                Auxr.set(m, 0.0 );

                for (int k=1; k<=kmax; k++)
                {
                    Auxl.set(m, Auxl.get(m) + EdgeData.phi_left->get(i,ell,k)  * aux.get(ileft, m,k) );
                    Auxr.set(m, Auxr.get(m) + EdgeData.phi_right->get(i,ell,k) * aux.get(iright,m,k) );
                }
            }

            // Solve Riemann problem
            dTensor1 xedge(2);
            double s = EdgeData.xpts1d->get(ell);
            xedge.set(1, x1 + 0.5*(s+1.0)*(x2-x1) );
            xedge.set(2, y1 + 0.5*(s+1.0)*(y2-y1) );

            // Solve the Riemann problem for this edge
            dTensor1 Fl(meqn), Fr(meqn);

            // Use the time-averaged fluxes to define left and right values for
            // the Riemann solver.
            const double smax_edge = RiemannSolveLxW(
                    nhat, xedge, Ql, Qr, Auxl, Auxr, ffl, ffr, Fl, Fr);
            smax.set(i, Max(smax_edge,smax.get(i)) );

            // Construct fluxes
            for (int m=1; m<=meqn; m++)
            {
                Fr_tmp.set(m,ell, Fr.get(m) );
                Fl_tmp.set(m,ell, Fl.get(m) );
            }
        }

        // Add edge integral to line integral around the full element
        for (int m=1; m<=meqn; m++)
        for (int k=1; k<=kmax; k++)
        {
            double Fl_sum = 0.0;
            double Fr_sum = 0.0;
            for (int ell=1; ell<=dogParams.get_space_order(); ell++)
            {
                Fl_sum = Fl_sum + 0.5*EdgeData.wgts1d->get(ell)
                    *EdgeData.phi_left->get(i,ell,k) *Fl_tmp.get(m,ell);
                Fr_sum = Fr_sum + 0.5*EdgeData.wgts1d->get(ell)
                    *EdgeData.phi_right->get(i,ell,k)*Fr_tmp.get(m,ell);
            }
            EdgeFluxIntegral.set(ileft, m,k, EdgeFluxIntegral.get(ileft, m,k) + Fl_sum/Areal );
            EdgeFluxIntegral.set(iright,m,k, EdgeFluxIntegral.get(iright,m,k) - Fr_sum/Arear );
        }
    }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part III: compute intra-element contributions
    // ---------------------------------------------------------
    if( dogParams.get_space_order() > 1 )
    {
        L2ProjectGradAddLegendre_Unst(1, NumPhysElems, space_order, 
            Mesh, &F, &G, &ElemFluxIntegral );
    }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part IV: construct Lstar
    // ---------------------------------------------------------
    if (dogParams.get_source_term()==0)  // Without Source Term
    { 
#pragma omp parallel for
        for (int i=1; i<=NumPhysElems; i++)	
        for (int m=1; m<=meqn; m++)
        for (int k=1; k<=kmax; k++)
        {
            double tmp = ElemFluxIntegral.get(i,m,k) - EdgeFluxIntegral.get(i,m,k);
            Lstar.set(i,m,k, tmp );	      
        }
    }
    else  // With Source Term
    {
#pragma omp parallel for
        for (int i=1; i<=NumPhysElems; i++)
        for (int m=1; m<=meqn; m++)
        for (int k=1; k<=kmax; k++)
        {
//          double tmp = ElemFluxIntegral.get(i,m,k) 
//              - EdgeFluxIntegral.get(i,m,k)
//              + Psi.get(i,m,k);

//          Lstar.set(i,m,k, tmp );

            printf("Source term has not been implemented for LxW solver.  Terminating program.");
            exit(1);
        }
    }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part V: add extra contributions to Lstar
    // ---------------------------------------------------------
    // Call LstarExtra
    LstarExtra_Unst(Mesh, &q, &aux, &Lstar);
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part VI: artificial viscosity limiter
    // ---------------------------------------------------------  
//  if (dogParams.get_space_order()>1  &&
//          dogParams.using_viscosity_limiter())
//  {  ArtificialViscosity(&aux,&q,&Lstar);  }
    // ---------------------------------------------------------

}
// This routine simply glues together many of the routines that are already
// written in the Poisson solver library
//
// phi( 1:SubNumPhysNodes       ) is a scalar quantity.  
//
// E1 ( 1:NumElems, 1:kmax2d ) is a vector quantity.
// E2 ( 1:NumElems, 1:kmax2d ) is a vector quantity.
//
// See also: ConvertEfieldOntoDGbasis
void ComputeElectricField( const double t, const mesh& Mesh, const dTensorBC5& q,
    dTensor2& E1, dTensor2& E2)
{

    //
    const int       mx = q.getsize(1);   assert_eq(mx,dogParamsCart2.get_mx());
    const int       my = q.getsize(2);   assert_eq(my,dogParamsCart2.get_my());
    const int NumElems = q.getsize(3);
    const int     meqn = q.getsize(4);
    const int     kmax = q.getsize(5);

    const int space_order = dogParams.get_space_order();

    // unstructured parameters:
    const int kmax2d    = E2.getsize(2);
    const int NumBndNodes  = Mesh.get_NumBndNodes();
    const int NumPhysNodes = Mesh.get_NumPhysNodes();

    // Quick error check
    if( !Mesh.get_is_submesh() )
    {
        printf("ERROR: mesh needs to have subfactor set to %d\n", space_order);
        printf("Go to Unstructured mesh and remesh the problem\n");
        exit(-1);
    }
    const int SubFactor    = Mesh.get_SubFactor();

    assert_eq( NumElems, Mesh.get_NumElems() );

    // -- Step 1: Compute rho -- //
    dTensor3 rho(NumElems, 1, kmax2d );
    void ComputeDensity( const mesh& Mesh, const dTensorBC5& q, dTensor3& rho );
    ComputeDensity( Mesh, q, rho );

    // -- Step 2: Figure out how large phi needs to be
    int SubNumPhysNodes = 0;
    int SubNumBndNodes  = 0;
    switch( dogParams.get_space_order() )
    {
        case 1:
            SubNumPhysNodes = NumPhysNodes;
            SubNumBndNodes  = NumBndNodes;
            break;

        case 2:
            SubNumPhysNodes = Mesh.get_SubNumPhysNodes();
            SubNumBndNodes  = Mesh.get_SubNumBndNodes();
            if(SubFactor!=2)
            {
                printf("\n");
                printf(" Error: for space_order = %i, need SubFactor = %i\n",space_order,2);
                printf("      SubFactor = %i\n",SubFactor);
                printf("\n");
                exit(1);
            }
            break;

        case 3:
            SubNumPhysNodes = Mesh.get_SubNumPhysNodes();
            SubNumBndNodes  = Mesh.get_SubNumBndNodes();
            if(SubFactor!=3)
            {
                printf("\n");
                printf(" Error: for space_order = %i, need SubFactor = %i\n",space_order,3);
                printf("      SubFactor = %i\n",SubFactor);
                printf("\n");
                exit(1);
            }
            break;

        default:
            printf("\n");
            printf(" ERROR in RunDogpack_unst.cpp: space_order value not supported.\n");
            printf("       space_order = %i\n",space_order);
            printf("\n");
            exit(1);
    }

    // local storage:
    dTensor1 rhs(SubNumPhysNodes);
    dTensor1 phi(SubNumPhysNodes);

    // Get Cholesky factorization matrix R
    //
    // TODO - this should be saved earlier in the code rather than reading
    // from file every time we with to run a Poisson solve!
    //
    SparseCholesky R(SubNumPhysNodes);
    string outputdir = dogParams.get_outputdir();
    R.init(outputdir);
    R.read(outputdir);

    // Create right-hand side vector
    void Rhs2D_unst(const int space_order,
            const mesh& Mesh, const dTensor3& rhs_dg,
            dTensor1& rhs);
    Rhs2D_unst(space_order, Mesh, rho, rhs);

    // Call Poisson solver  
    void PoissonSolver2D_unst(const int space_order,
            const mesh& Mesh,
            const SparseCholesky& R,
            const dTensor1& rhs,
            dTensor1& phi,
            dTensor2& E1,
            dTensor2& E2);
    PoissonSolver2D_unst(space_order, Mesh, R, rhs, phi, E1, E2);

    // Compare errors with the exact Electric field:
    //
    void L2Project_Unst(
        const double time,
        const dTensor2* vel_vec,
        const int istart, 
        const int iend, 
        const int QuadOrder, 
        const int BasisOrder_qin,
        const int BasisOrder_auxin,
        const int BasisOrder_fout,
        const mesh& Mesh, 
        const dTensor3* qin, 
        const dTensor3* auxin, 
        dTensor3* fout, 
        void (*Func)(const double t, const dTensor2* vel_vec, const dTensor2&,const dTensor2&,
            const dTensor2&,dTensor2&));

    const int sorder = dogParams.get_space_order();
    dTensor3 qtmp   (NumElems, 2, kmax2d );  qtmp.setall(0.);
    dTensor3 auxtmp (NumElems, 0, kmax2d );
    dTensor3 ExactE (NumElems, 2, kmax2d );
    L2Project_Unst( t, NULL, 1, NumElems, 
        sorder, sorder, sorder, sorder, Mesh, 
        &qtmp, &auxtmp, &ExactE, 
        &ExactElectricField );

    // Compute errors on these two:
    //
    double err = 0.;
    for( int n=1; n <= NumElems; n++ )
    for( int k=1; k <= kmax2d;   k++ )
    {
        err += Mesh.get_area_prim(n)*pow( ExactE.get(n,1,k) - E1.get(n,k), 2 );
        err += Mesh.get_area_prim(n)*pow( ExactE.get(n,2,k) - E2.get(n,k), 2 );
    }
    printf("error = %2.15e\n", err );

}
示例#8
0
void ConstructA_CG2(const mesh& Mesh, FullMatrix& A)
{
  const int NumPhysElems = Mesh.get_NumPhysElems();
  const int NumBndNodes  = Mesh.get_SubNumBndNodes();
  const int Asize = Mesh.get_SubNumPhysNodes();

  assert_eq(Asize,A.get_NumRows());
  assert_eq(Asize,A.get_NumCols());
  
  dTensor1 A1(6);
  dTensor1 A2(6);
  dTensor1 A3(6);
  dTensor1 A4(6);
  dTensor1 A5(6);
  dTensor1 A6(6);

  A1.set(1, -oneninth     );
  A1.set(2,  4.0*oneninth );
  A1.set(3, -oneninth     );
  A1.set(4,  4.0*oneninth );
  A1.set(5,  4.0*oneninth );
  A1.set(6, -oneninth     );
  
  A2.set(1, -onethird     );
  A2.set(2,  0.0          );
  A2.set(3,  onethird     );
  A2.set(4, -4.0*onethird );
  A2.set(5,  4.0*onethird );
  A2.set(6,  0.0          );
  
  A3.set(1, -onethird     );
  A3.set(2, -4.0*onethird );
  A3.set(3,  0.0          );
  A3.set(4,  0.0          );
  A3.set(5,  4.0*onethird );
  A3.set(6,  onethird     );
  
  A4.set(1,  4.0          );
  A4.set(2, -4.0          );
  A4.set(3,  0.0          );
  A4.set(4, -4.0          );
  A4.set(5,  4.0          );
  A4.set(6,  0.0          );

  A5.set(1,  2.0          );
  A5.set(2, -4.0          );
  A5.set(3,  2.0          );
  A5.set(4,  0.0          );
  A5.set(5,  0.0          );
  A5.set(6,  0.0          );
  
  A6.set(1,  2.0          );
  A6.set(2,  0.0          );
  A6.set(3,  0.0          );
  A6.set(4, -4.0          );
  A6.set(5,  0.0          );
  A6.set(6,  2.0          );

  dTensor2 spts(3,2);
  spts.set(1,1,  1.0/3.0 );
  spts.set(1,2, -1.0/6.0 );
  
  spts.set(2,1, -1.0/6.0 );
  spts.set(2,2, -1.0/6.0 );
  
  spts.set(3,1, -1.0/6.0 );
  spts.set(3,2,  1.0/3.0 );
  
  dTensor1 wgts(3);
  wgts.set(1, 1.0/6.0 );
  wgts.set(2, 1.0/6.0 );
  wgts.set(3, 1.0/6.0 );
  
  // Loop over all elements in the mesh
  for (int i=1; i<=NumPhysElems; i++)
    {
      // Information for element i
      iTensor1 tt(6);
      for (int k=1; k<=6; k++)
	{  tt.set(k, Mesh.get_node_subs(i,k) );  }
      
      // Evaluate gradients of the Lagrange polynomials on Gauss quadrature points      
      dTensor2 gpx(6,3);
      dTensor2 gpy(6,3);
      
      for (int m=1; m<=3; m++)
	{
	  double  xi = spts.get(m,1);
	  double eta = spts.get(m,2);
	  
	  for (int k=1; k<=6; k++)
	    {
	      double gp_xi  = A2.get(k) + 2.0*A5.get(k)*xi + A4.get(k)*eta;
	      double gp_eta = A3.get(k) + A4.get(k)*xi + 2.0*A6.get(k)*eta;

	      gpx.set(k,m, Mesh.get_jmat(i,1,1)*gp_xi
		         + Mesh.get_jmat(i,1,2)*gp_eta );
	      gpy.set(k,m, Mesh.get_jmat(i,2,1)*gp_xi
		         + Mesh.get_jmat(i,2,2)*gp_eta );
	    }
	}

      // Entries of the stiffness matrix A
      double Area = Mesh.get_area_prim(i);
      for (int j=1; j<=6; j++)
	for (int k=1; k<=6; k++)
	  {
	    double tmp = A.get(tt.get(j),tt.get(k));
	    for (int m=1; m<=3; m++)
	      {
		tmp = tmp + 2.0*Area*wgts.get(m)*(gpx.get(j,m)*gpx.get(k,m)+gpy.get(j,m)*gpy.get(k,m));
	      }
	    A.set(tt.get(j),tt.get(k), tmp );
	  }
    }

  // Replace boundary node equations by Dirichlet boundary condition enforcement
  for (int i=1; i<=NumBndNodes; i++)
    {
      const int j=Mesh.get_sub_bnd_node(i);
      
      for (int k=1; k<=A.get_NumCols(); k++)
	{
	  A.set(j,k, 0.0 );	  
	}
      for (int k=1; k<=A.get_NumRows(); k++)
	{
	  A.set(k,j, 0.0 );
	}
      A.set(j,j, 1.0 );
    }

  // Get sparse structure representation
  A.Sparsify();
  
}
// GAUSS-LOBATTO QUADRATURE ALONG EDGE
void SetEdgeDataGL_Unst(const mesh& Mesh, 
			int NumQuadPoints, 
			int NumBasisOrder, 
			edge_data_Unst* EdgeData)
{
  // Quick error check
  if (NumQuadPoints<2 || NumQuadPoints>6 || NumBasisOrder<1 || NumBasisOrder>5)
    {
      printf(" \n");
      printf(" Error in SetEdgeData_Unst.cpp \n");
      printf("   NumQuadPoints must be 2,3,4,5, or 6.\n");
      printf("   NumBasisOrder must be 1,2,3,4, or 5.\n");
      printf("     NumQuadPoints = %i\n",NumQuadPoints);
      printf("     NumBasisOrder = %i\n",NumBasisOrder);
      printf("\n");
      exit(1);
    }

  // ---------------------------------
  // Set quadrature weights and points
  // ---------------------------------
  switch( NumQuadPoints )
    {
    case 2:
      EdgeData->GL_wgts1d->set(1,  1.0 );
      EdgeData->GL_wgts1d->set(2,  1.0 );
      
      EdgeData->GL_xpts1d->set(1,  1.0 );
      EdgeData->GL_xpts1d->set(2, -1.0 );
      break;
      
    case 3:
      EdgeData->GL_wgts1d->set(1,  onethird );
      EdgeData->GL_wgts1d->set(2,  4.0*onethird );
      EdgeData->GL_wgts1d->set(3,  onethird );
      
      EdgeData->GL_xpts1d->set(1,  1.0 );
      EdgeData->GL_xpts1d->set(2,  0.0 );
      EdgeData->GL_xpts1d->set(3, -1.0 );
      break;
      
    case 4:
      EdgeData->GL_wgts1d->set(1,  0.5*onethird );
      EdgeData->GL_wgts1d->set(2,  2.5*onethird );
      EdgeData->GL_wgts1d->set(3,  2.5*onethird );
      EdgeData->GL_wgts1d->set(4,  0.5*onethird );
      
      EdgeData->GL_xpts1d->set(1,  1.0  );
      EdgeData->GL_xpts1d->set(2,  osq5 );
      EdgeData->GL_xpts1d->set(3, -osq5 );
      EdgeData->GL_xpts1d->set(4, -1.0  );
      break;
      
    case 5:
      EdgeData->GL_wgts1d->set(1,  0.1  );
      EdgeData->GL_wgts1d->set(2,  49.0/90.0 );
      EdgeData->GL_wgts1d->set(3,  32.0/45.0 );
      EdgeData->GL_wgts1d->set(4,  49.0/90.0 );
      EdgeData->GL_wgts1d->set(5,  0.1 );
      
      EdgeData->GL_xpts1d->set(1,  1.0      );
      EdgeData->GL_xpts1d->set(2,  sq3*osq7 );
      EdgeData->GL_xpts1d->set(3,  0.0      );
      EdgeData->GL_xpts1d->set(4, -sq3*osq7 );
      EdgeData->GL_xpts1d->set(5, -1.0      );        
      break;
      
    case 6:      
      EdgeData->GL_wgts1d->set(1,  0.2*onethird  );
      EdgeData->GL_wgts1d->set(2,  (1.4 - 0.1*sq7)*onethird );
      EdgeData->GL_wgts1d->set(3,  (1.4 + 0.1*sq7)*onethird );
      EdgeData->GL_wgts1d->set(4,  (1.4 + 0.1*sq7)*onethird );
      EdgeData->GL_wgts1d->set(5,  (1.4 - 0.1*sq7)*onethird );
      EdgeData->GL_wgts1d->set(6,  0.2*onethird );
      
      EdgeData->GL_xpts1d->set(1,  1.0                           );
      EdgeData->GL_xpts1d->set(2,  (1/21.0)*sqrt(147.0+42.0*sq7) );
      EdgeData->GL_xpts1d->set(3,  (1/21.0)*sqrt(147.0-42.0*sq7) );
      EdgeData->GL_xpts1d->set(4, -(1/21.0)*sqrt(147.0-42.0*sq7) );
      EdgeData->GL_xpts1d->set(5, -(1/21.0)*sqrt(147.0+42.0*sq7) );
      EdgeData->GL_xpts1d->set(6, -1.0                           );
      break;
    }

  // ---------------------------------
  // Legendre basis functions on the 
  // left and right of each edge
  // ---------------------------------
  const int NumEdges = Mesh.get_NumEdges();
  const int NumBasisComps = (NumBasisOrder*(NumBasisOrder+1))/2;
  dTensor1 xp1(3);
  dTensor1 yp1(3);
  dTensor1 xp2(3);
  dTensor1 yp2(3);
  dTensor1 xy1(2);
  dTensor1 xy2(2);
  dTensor1 mu1(NumBasisComps);
  dTensor1 mu2(NumBasisComps);

  for (int i=1; i<=NumEdges; i++)
    {   
      // Get edge information
      const double x1 = Mesh.get_edge(i,1);
      const double y1 = Mesh.get_edge(i,2);
      const double x2 = Mesh.get_edge(i,3);
      const double y2 = Mesh.get_edge(i,4);
      
      const int e1 = Mesh.get_eelem(i,1);
      const int e2 = Mesh.get_eelem(i,2);

      // Get element information about
      // the two elements that meet at
      // the current edge
      const double Area1 = Mesh.get_area_prim(e1);
      const double Area2 = Mesh.get_area_prim(e2);

      for (int k=1; k<=3; k++)
	{
	  xp1.set(k, Mesh.get_node(Mesh.get_tnode(e1,k),1) );
	  yp1.set(k, Mesh.get_node(Mesh.get_tnode(e1,k),2) );

	  xp2.set(k, Mesh.get_node(Mesh.get_tnode(e2,k),1) );
	  yp2.set(k, Mesh.get_node(Mesh.get_tnode(e2,k),2) );
	}

      const double xc1 = (xp1.get(1) + xp1.get(2) + xp1.get(3))/3.0;
      const double yc1 = (yp1.get(1) + yp1.get(2) + yp1.get(3))/3.0;
      const double xc2 = (xp2.get(1) + xp2.get(2) + xp2.get(3))/3.0;
      const double yc2 = (yp2.get(1) + yp2.get(2) + yp2.get(3))/3.0;

      // quadrature points on the edge
      for (int m=1; m<=NumQuadPoints; m++)
	{
	  // Take integration point s (in [-1,1])
	  // and map to physical domain
	  const double s = EdgeData->GL_xpts1d->get(m);
	  const double x = x1 + 0.5*(s+1.0)*(x2-x1);
	  const double y = y1 + 0.5*(s+1.0)*(y2-y1);

	  // Take physical point (x,y)
	  // and map into the coordinates
	  // of the two triangles that are
	  // adjacent to the current edge
	  xy1.set(1, ((yp1.get(3)-yp1.get(1))*(x-xc1) 
		    + (xp1.get(1)-xp1.get(3))*(y-yc1))/(2.0*Area1) );
	  xy1.set(2, ((yp1.get(1)-yp1.get(2))*(x-xc1) 
		    + (xp1.get(2)-xp1.get(1))*(y-yc1))/(2.0*Area1) );
	  
	  xy2.set(1, ((yp2.get(3)-yp2.get(1))*(x-xc2) 
		    + (xp2.get(1)-xp2.get(3))*(y-yc2))/(2.0*Area2) );
	  xy2.set(2, ((yp2.get(1)-yp2.get(2))*(x-xc2) 
		    + (xp2.get(2)-xp2.get(1))*(y-yc2))/(2.0*Area2) );

	  // Evaluate monomials at locations xy1
	  double xi = xy1.get(1);
	  double xi2 = xi*xi;
	  double xi3 = xi*xi2;
	  double xi4 = xi*xi3;

	  double eta = xy1.get(2);
	  double eta2 = eta*eta;
	  double eta3 = eta*eta2;
	  double eta4 = eta*eta3;

	  switch( NumBasisOrder )
	    {
	    case 5:  // fifth order		    		    
	      mu1.set(15, eta4     );
	      mu1.set(14, xi4      );
	      mu1.set(13, xi2*eta2 );
	      mu1.set(12, eta3*xi  );
	      mu1.set(11, xi3*eta  );
	      
	    case 4:  // fourth order
	      mu1.set(10, eta3     );
	      mu1.set(9,  xi3      );
	      mu1.set(8,  xi*eta2  );
	      mu1.set(7,  eta*xi2  );
	      
	    case 3:  // third order
	      mu1.set(6,  eta2     );
	      mu1.set(5,  xi2      );
	      mu1.set(4,  xi*eta   );		    
	      
	    case 2:  // second order		    
	      mu1.set(3, eta       );
	      mu1.set(2, xi        );
	      
	    case 1:  // first order
	      mu1.set(1, 1.0       );
	      
	      break;		    
	    }
	  
	  // Evaluate monomials at locations xy2
	  xi = xy2.get(1);
	  xi2 = xi*xi;
	  xi3 = xi*xi2;
	  xi4 = xi*xi3;
	  
	  eta = xy2.get(2);
	  eta2 = eta*eta;
	  eta3 = eta*eta2;
	  eta4 = eta*eta3;

	  switch( NumBasisOrder )
	    {
	    case 5:  // fifth order		    		    
	      mu2.set(15, eta4     );
	      mu2.set(14, xi4      );
	      mu2.set(13, xi2*eta2 );
	      mu2.set(12, eta3*xi  );
	      mu2.set(11, xi3*eta  );
	      
	    case 4:  // fourth order
	      mu2.set(10, eta3     );
	      mu2.set(9,  xi3      );
	      mu2.set(8,  xi*eta2  );
	      mu2.set(7,  eta*xi2  );
	      
	    case 3:  // third order
	      mu2.set(6,  eta2     );
	      mu2.set(5,  xi2      );
	      mu2.set(4,  xi*eta   );		    
	      
	    case 2:  // second order		    
	      mu2.set(3, eta       );
	      mu2.set(2, xi        );
	      
	    case 1:  // first order
	      mu2.set(1, 1.0       );
	      
	      break;		    
	    }
	  
	  // Finally, convert monomials to Legendre Polys
	  // on the two adjacent triangle
	  for (int k=1; k<=NumBasisComps; k++)
	    {
	      double tmp1 = 0.0;
	      double tmp2 = 0.0;
	      for (int j=1; j<=k; j++)
		{  
		  tmp1 = tmp1 + Mmat[k-1][j-1]*mu1.get(j);
		  tmp2 = tmp2 + Mmat[k-1][j-1]*mu2.get(j);
		}
	      
	      EdgeData->GL_phi_left->set(i,m,k,  tmp1 );
	      EdgeData->GL_phi_right->set(i,m,k, tmp2 );
	    }
	}
    }
  
}
示例#10
0
void ConstructL_Unst(
    const double t,
    const dTensor2* vel_vec,
    const mesh& Mesh,
    const edge_data_Unst& EdgeData,
    dTensor3& aux, // SetBndValues_Unst modifies ghost cells
    dTensor3& q,   // SetBndValues_Unst modifies ghost cells
    dTensor3& Lstar, 
    dTensor1& smax)
{

    const int NumElems      = Mesh.get_NumElems();
    const int NumPhysElems  = Mesh.get_NumPhysElems();
    const int NumEdges      = Mesh.get_NumEdges();
    const int meqn          = q.getsize(2);
    const int kmax          = q.getsize(3);
    const int maux          = aux.getsize(2);
    const int space_order   = dogParams.get_space_order();

    dTensor3 EdgeFluxIntegral(NumElems,meqn,kmax);
    dTensor3 ElemFluxIntegral(NumElems,meqn,kmax);
    dTensor3              Psi(NumElems,meqn,kmax);


    // ---------------------------------------------------------
    // Boundary Conditions
    SetBndValues_Unst(Mesh,&q,&aux);  
    
    // Positivity limiter
    void ApplyPosLimiter_Unst(const mesh& Mesh, const dTensor3& aux, dTensor3& q);
    if( dogParams.using_moment_limiter() )
    { ApplyPosLimiter_Unst(Mesh, aux, q); }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part I: compute flux integral on element edges
    // ---------------------------------------------------------

    // Loop over all interior edges and solve Riemann problems
    // dTensor1 nvec(2);

    // Loop over all interior edges
    EdgeFluxIntegral.setall(0.);
    ElemFluxIntegral.setall(0.);

    // Loop over all interior edges
#pragma omp parallel for
    for (int i=1; i<=NumEdges; i++)
    {
        // Edge coordinates
        double x1 = Mesh.get_edge(i,1);
        double y1 = Mesh.get_edge(i,2);
        double x2 = Mesh.get_edge(i,3);
        double y2 = Mesh.get_edge(i,4);

        // Elements on either side of edge
        int ileft  = Mesh.get_eelem(i,1);
        int iright = Mesh.get_eelem(i,2);  
        double Areal = Mesh.get_area_prim(ileft);
        double Arear = Mesh.get_area_prim(iright);

        // Scaled normal to edge
        dTensor1 nhat(2);      
        nhat.set(1, (y2-y1) );
        nhat.set(2, (x1-x2) );

        // Variables to store flux integrals along edge
        dTensor2 Fr_tmp(meqn,dogParams.get_space_order());
        dTensor2 Fl_tmp(meqn,dogParams.get_space_order());

        // Loop over number of quadrature points along each edge
        for (int ell=1; ell<=dogParams.get_space_order(); ell++)
        {
            dTensor1 Ql(meqn),Qr(meqn);
            dTensor1 Auxl(maux),Auxr(maux);	  

            // Riemann data - q
            for (int m=1; m<=meqn; m++)
            {
                Ql.set(m, 0.0 );
                Qr.set(m, 0.0 );

                for (int k=1; k<=kmax; k++)
                {
                    Ql.set(m, Ql.get(m) + EdgeData.phi_left->get(i,ell,k) 
                            *q.get(ileft, m,k) );
                    Qr.set(m, Qr.get(m) + EdgeData.phi_right->get(i,ell,k)
                            *q.get(iright,m,k) );
                }

            }


            // Riemann data - aux
            for (int m=1; m<=maux; m++)
            {
                Auxl.set(m, 0.0 );
                Auxr.set(m, 0.0 );

                for (int k=1; k<=kmax; k++)
                {
                    Auxl.set(m, Auxl.get(m) + EdgeData.phi_left->get(i,ell,k)
                            *aux.get(ileft, m,k) );
                    Auxr.set(m, Auxr.get(m) + EdgeData.phi_right->get(i,ell,k)
                            *aux.get(iright,m,k) );
                }
            }

            // Solve Riemann problem
            dTensor1 xedge(2);
            double s = EdgeData.xpts1d->get(ell);
            xedge.set(1, x1 + 0.5*(s+1.0)*(x2-x1) );
            xedge.set(2, y1 + 0.5*(s+1.0)*(y2-y1) );
            dTensor1 Fl(meqn),Fr(meqn);
            const double smax_edge = RiemannSolve(vel_vec, nhat, xedge, Ql, Qr, Auxl, Auxr, Fl, Fr);
            smax.set(i, Max(smax_edge,smax.get(i)) );

            // Construct fluxes
            for (int m=1; m<=meqn; m++)
            {
                Fr_tmp.set(m,ell, Fr.get(m) );
                Fl_tmp.set(m,ell, Fl.get(m) );
            }
        }

        // Add edge integral to line integral around the full element
        for (int m=1; m<=meqn; m++)
        for (int k=1; k<=kmax; k++)
        {
            double Fl_sum = 0.0;
            double Fr_sum = 0.0;
            for (int ell=1; ell<=dogParams.get_space_order(); ell++)
            {
                Fl_sum = Fl_sum + 0.5*EdgeData.wgts1d->get(ell)
                    *EdgeData.phi_left->get(i,ell,k) *Fl_tmp.get(m,ell);
                Fr_sum = Fr_sum + 0.5*EdgeData.wgts1d->get(ell)
                    *EdgeData.phi_right->get(i,ell,k)*Fr_tmp.get(m,ell);
            }
            EdgeFluxIntegral.set(ileft, m,k, EdgeFluxIntegral.get(ileft, m,k) + Fl_sum/Areal );
            EdgeFluxIntegral.set(iright,m,k, EdgeFluxIntegral.get(iright,m,k) - Fr_sum/Arear );
        }
    }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part II: compute intra-element contributions
    // ---------------------------------------------------------
    L2ProjectGrad_Unst(vel_vec, 1,NumPhysElems,
            space_order,space_order,space_order,space_order,
            Mesh,&q,&aux,&ElemFluxIntegral,&FluxFunc);
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part III: compute source term
    // --------------------------------------------------------- 
    if ( dogParams.get_source_term()>0 )
    {        
        // Set source term on computational grid
        // Set values and apply L2-projection
        L2Project_Unst(t, vel_vec, 1,NumPhysElems,
                space_order,space_order,space_order,space_order,
                Mesh,&q,&aux,&Psi,&SourceTermFunc);
    }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part IV: construct Lstar
    // ---------------------------------------------------------
    if (dogParams.get_source_term()==0)  // Without Source Term
    { 
#pragma omp parallel for
        for (int i=1; i<=NumPhysElems; i++)	
        for (int m=1; m<=meqn; m++)
        for (int k=1; k<=kmax; k++)
        {
            double tmp = ElemFluxIntegral.get(i,m,k) - EdgeFluxIntegral.get(i,m,k);
            Lstar.set(i,m,k, tmp );	      
        }
    }
    else  // With Source Term
    {
#pragma omp parallel for
        for (int i=1; i<=NumPhysElems; i++)
        for (int m=1; m<=meqn; m++)
        for (int k=1; k<=kmax; k++)
        {
            double tmp = ElemFluxIntegral.get(i,m,k) 
                - EdgeFluxIntegral.get(i,m,k)
                + Psi.get(i,m,k);

            Lstar.set(i,m,k, tmp );
        }
    }
    // ---------------------------------------------------------

    // ---------------------------------------------------------
    // Part V: add extra contributions to Lstar
    // ---------------------------------------------------------
    // Call LstarExtra
    LstarExtra_Unst(Mesh,&q,&aux,&Lstar);
    // ---------------------------------------------------------

}