void ms::evolve(population &pop) const { // Let's store some useful variables. const population::size_type NP = pop.size(); // Get out if there is nothing to do. if (m_starts == 0 || NP == 0) { return; } // Local population used in the algorithm iterations. population working_pop(pop); //ms main loop for (int i=0; i< m_starts; ++i) { working_pop.reinit(); m_algorithm->evolve(working_pop); if (working_pop.problem().compare_fc(working_pop.get_individual(working_pop.get_best_idx()).cur_f,working_pop.get_individual(working_pop.get_best_idx()).cur_c, pop.get_individual(pop.get_worst_idx()).cur_f,pop.get_individual(pop.get_worst_idx()).cur_c ) ) { //update best population replacing its worst individual with the good one just produced. pop.set_x(pop.get_worst_idx(),working_pop.get_individual(working_pop.get_best_idx()).cur_x); pop.set_v(pop.get_worst_idx(),working_pop.get_individual(working_pop.get_best_idx()).cur_v); } if (m_screen_output) { std::cout << i << ". " << "\tCurrent iteration best: " << working_pop.get_individual(working_pop.get_best_idx()).cur_f << "\tOverall champion: " << pop.champion().f << std::endl; } } }
/** * Run the CORE algorithm * * @param[in,out] pop input/output pagmo::population to be evolved. */ void cstrs_core::evolve(population &pop) const { // store useful variables const problem::base &prob = pop.problem(); const population::size_type pop_size = pop.size(); const problem::base::size_type prob_dimension = prob.get_dimension(); // get the constraints dimension problem::base::c_size_type prob_c_dimension = prob.get_c_dimension(); //We perform some checks to determine wether the problem/population are suitable for CORE if(prob_c_dimension < 1) { pagmo_throw(value_error,"The problem is not constrained and CORE is not suitable to solve it"); } if(prob.get_f_dimension() != 1) { pagmo_throw(value_error,"The problem is multiobjective and CORE is not suitable to solve it"); } // Get out if there is nothing to do. if(pop_size == 0) { return; } // generates the unconstrained problem problem::con2uncon prob_unconstrained(prob); // associates the population to this problem population pop_uncon(prob_unconstrained); // fill this unconstrained population pop_uncon.clear(); for(population::size_type i=0; i<pop_size; i++) { pop_uncon.push_back(pop.get_individual(i).cur_x); } // vector containing the infeasibles positions std::vector<population::size_type> pop_infeasibles; // Main CORE loop for(int k=0; k<m_gen; k++) { if(k%m_repair_frequency == 0) { pop_infeasibles.clear(); // get the infeasible individuals for(population::size_type i=0; i<pop_size; i++) { if(!prob.feasibility_c(pop.get_individual(i).cur_c)) { pop_infeasibles.push_back(i); } } // random shuffle of infeasibles? population::size_type number_of_repair = (population::size_type)(m_repair_ratio * pop_infeasibles.size()); // repair the infeasible individuals for(population::size_type i=0; i<number_of_repair; i++) { const population::size_type ¤t_individual_idx = pop_infeasibles.at(i); pop.repair(current_individual_idx, m_repair_algo); } // the population is repaired, it can be now used in the new unconstrained population // only the repaired individuals are put back in the population for(population::size_type i=0; i<number_of_repair; i++) { population::size_type current_individual_idx = pop_infeasibles.at(i); pop_uncon.set_x(current_individual_idx, pop.get_individual(current_individual_idx).cur_x); } } m_original_algo->evolve(pop_uncon); // push back the population in the main problem pop.clear(); for(population::size_type i=0; i<pop_size; i++) { pop.push_back(pop_uncon.get_individual(i).cur_x); } // Check the exit conditions (every 40 generations, just as DE) if(k % 40 == 0) { decision_vector tmp(prob_dimension); double dx = 0; for(decision_vector::size_type i=0; i<prob_dimension; i++) { tmp[i] = pop.get_individual(pop.get_worst_idx()).best_x[i] - pop.get_individual(pop.get_best_idx()).best_x[i]; dx += std::fabs(tmp[i]); } if(dx < m_xtol ) { if (m_screen_output) { std::cout << "Exit condition -- xtol < " << m_xtol << std::endl; } break; } double mah = std::fabs(pop.get_individual(pop.get_worst_idx()).best_f[0] - pop.get_individual(pop.get_best_idx()).best_f[0]); if(mah < m_ftol) { if(m_screen_output) { std::cout << "Exit condition -- ftol < " << m_ftol << std::endl; } break; } // outputs current values if(m_screen_output) { std::cout << "Generation " << k << " ***" << std::endl; std::cout << " Best global fitness: " << pop.champion().f << std::endl; std::cout << " xtol: " << dx << ", ftol: " << mah << std::endl; std::cout << " xtol: " << dx << ", ftol: " << mah << std::endl; } } } }