rowvec rand_dirichlet(const rowvec &alpha) { rowvec ret(alpha.size()); for (unsigned int i = 0; i < ret.size(); ++i) { gamma_distribution<> g(alpha[i], 1); ret[i] = g(GENERATOR); } normalize_simplex(ret); return ret; }
void normalize_simplex(rowvec &x) { double sum = 0; for (auto &xi : x) { assert(xi >= 0); sum += xi; } if (sum < numeric_limits<double>::epsilon()) { x.fill(1.0 / x.size()); } else { x /= sum; } }
void assignWinners(mat bids, rowvec prices, umat & assignments) { uword winnerIdx = 0, nItems = prices.size(); double winningBid; for(int item = 0; item < nItems; item++) { vec winner = getMaxItemBid(item, bids); winnerIdx = winner(0); winningBid = winner(1); if(winningBid < 0.0) continue; prices(item) += winningBid; assignments.col(item).fill(0); assignments(winnerIdx, item) = 1; } }
mat compute_hessian_theta1_delta_weighted(uint i, mat station_data, uint wdclat1_col, uint wdclon1_col, double pointslat1_i, double pointslon1_i, double beta1, double sigma0, colvec xdeltain, uvec st_point_list_uvec, rowvec deltain_row, urowvec mat_st_state_row, NumericVector xv0_vec, uint focal_station_index, uint xtheta1_size, double point_density_i, rowvec points_den_covariates) { rowvec station_data_dis_vIdx = conv_to< rowvec >::from(latlondistance(station_data.col(wdclat1_col), station_data.col(wdclon1_col), pointslat1_i, pointslon1_i)); rowvec util = exp(beta1*station_data_dis_vIdx + deltain_row)% (mat_st_state_row==0); double den_util = sum(util); uint no_t_st = util.size(); //rowvec lambda_st_t(no_t_st,fill::zeros); mat hessian_beta1_delta_t(1,no_t_st,fill::zeros); mat hessian_theta1_delta_t(xtheta1_size,no_t_st,fill::zeros); rowvec grad_delta(no_t_st,fill::zeros); uvec no_focal_indexes(no_t_st,fill::zeros); //fill no_focal_indexes with index sequence //find more efficient way to do this for(uint m=0; m<no_focal_indexes.size(); ++m) { no_focal_indexes(m)=m; } no_focal_indexes.shed_row(focal_station_index); for(int m=0; m<xv0_vec.size(); ++m) { double out = exp(-xv0_vec(m)*sigma0); double denutil_t = den_util+out; rowvec util_prob_t = util/denutil_t; rowvec disP = util_prob_t%station_data_dis_vIdx; double disP_sum = sum( disP); // rowvec disP_sum_vec(no_t_st); // disP_sum_vec.fill(disP_sum); vec val1(no_t_st,fill::zeros); val1 = station_data_dis_vIdx val1 += station_data_dis_vIdx(focal_station_index) - 2*disP_sum_vec; val1 = val1 % util_prob_t; val1 *= -util_prob_t(focal_station_index); //remove focal_station_index from val1 as it is incorrect. val1.shed_row(focal_station_index); hessian_beta1_delta_t(0,no_focal_indexes) += val1; hessian_beta1_delta_t(0,focal_station_index) += util_prob_t(focal_station_index) * (1-2*util_prob_t(focal_station_index))\ (station_data_dis_vIdx(focal_station_index)-disP_sum); grad_delta -= util_prob_t(focal_station_index)*util_prob_t; grad_delta(focal_station_index) += util_prob_t(focal_station_index); } grad_delta *= (1/xv0_vec.size()); hessian_beta1_delta_t *= (1/xv0_vec.size())* point_density_i; mat hessian_thetaden_delta_t = points_den_covariates.t() * grad_delta; assert(hessian_thetaden_delta_t.n_rows==points_den_covariates.size()); assert(hessian_thetaden_delta_t.n_cols==grad_delta.size()); hessian_theta1_delta_t.row(0)=hessian_beta1_delta_t; hessian_theta1_delta_t.rows(span(2,xtheta1_size-1))=hessian_thetaden_delta_t; return((hessian_theta1_delta_t)); }