void Reconstruction::ReconstructPlanarUnconstrIter(const mat& matchesInit, LaplacianMesh& resMesh, uvec& inlierMatchIdxs) { // Input check if (matchesInit.n_rows == 0) { inlierMatchIdxs.resize(0); return; } Timer timer; double wr = this->wrInit; // Currently used regularization weight double radius = this->radiusInit; // Currently used radius of the estimator vec reprojErrors; // Reprojection errors // First, we need to build the correspondent matrix with all given matches to avoid re-computation this->buildCorrespondenceMatrix(matchesInit); // Then compute MPinit. Function reconstructPlanarUnconstr() will use part of MPinit w.r.t currently used matches this->MPinit = this->Minit * this->refMesh.GetBigParamMat(); uvec matchesInitIdxs = linspace<uvec>(0, matchesInit.n_rows-1, matchesInit.n_rows); // Currently used matches represented by their indices. Initially, use all matches: [0,1,2..n-1] inlierMatchIdxs = matchesInitIdxs; for (int i = 0; i < nUncstrIters; i++) { this->reconstructPlanarUnconstr(inlierMatchIdxs, wr, resMesh); // If it is the final iteration, break and don't update "inlierMatchIdxs" or "weights", "radius" if (i == nUncstrIters - 1) { //cout << "Current radius: " << radius << endl; //cout << "Current wr: " << wr << endl; //Reconstruction::computeCurrentMatrices(currentMatchIdxs, 325); // For Ferns break; } // Otherwise, remove outliers int iterTO = nUncstrIters - 2; if (i >= iterTO) reprojErrors = this->computeReprojectionErrors(resMesh, matchesInit, matchesInitIdxs); else reprojErrors = this->computeReprojectionErrors(resMesh, matchesInit, inlierMatchIdxs); uvec idxs = find( reprojErrors < radius ); if (idxs.n_elem == 0) break; if (i >= iterTO) inlierMatchIdxs = matchesInitIdxs.elem(idxs); else inlierMatchIdxs = inlierMatchIdxs.elem(idxs); // Update parameters wr = wr / Reconstruction::ROBUST_SCALE; radius = radius / Reconstruction::ROBUST_SCALE; } }
//----------------------------------------------------- // Cross-validation across an array of lambda and pick up the best. List CV_lam_grid_cpp(vec y_vect, mat x_mat, vec id_vect, mat hat_R_full, vec beta_ini, int fold, int n, vec m, int obs_n, int p, uvec start, uvec end, vec lam_vect, double eps_tozero, double eps_stop, int iter_try){ int lam_length = lam_vect.n_elem; double lam_temp, cv_sum, flag_stop_sum, iter_n_sum, cv_min = math::inf(), lam_min = -1; uvec cvgrps_seq = linspace<uvec>(0, (n-1), n); uvec cvgrps_subsets = shuffle(cvgrps_seq); uvec cvgrps_which = cvgrps_seq - floor( cvgrps_seq / fold) * fold; uvec index_cv_train, index_cv_test; vec cv_vect(lam_length), flag_stop_vect(lam_length), iter_n_vect(lam_length); uvec idx_train, idx_test; vec y_train, y_test, id_train, m_train, beta_train; mat x_train, x_test; List indGen_res, beta_shrink_res; for(int lam_iter = 0; lam_iter < lam_length; lam_iter++) { lam_temp = lam_vect(lam_iter); cv_sum = 0; flag_stop_sum = 0; iter_n_sum = 0; for(int k = 0; k < fold; k++) { index_cv_train = cvgrps_subsets.elem(find(cvgrps_which != k)); index_cv_test = cvgrps_subsets.elem(find(cvgrps_which == k)); idx_train = unique(seqJoin_vec(start.elem(index_cv_train), end.elem(index_cv_train), m.elem(index_cv_train))); idx_test = unique(seqJoin_vec(start.elem(index_cv_test), end.elem(index_cv_test), m.elem(index_cv_test))); y_train = y_vect.elem(idx_train); x_train = x_mat.rows(idx_train); id_train = id_vect.elem(idx_train); indGen_res = indGen_cpp(id_train); y_test = y_vect.elem(idx_test); x_test = x_mat.rows(idx_test); beta_shrink_res = beta_shrink_normal_cpp(y_train, x_train, id_train, hat_R_full, beta_ini, as<int>(indGen_res[0]), as<vec>(indGen_res[1]), as<int>(indGen_res[2]), p, as<uvec>(indGen_res[3]), as<uvec>(indGen_res[4]), as<vec>(indGen_res[5]), as<uvec>(indGen_res[6]), lam_temp, eps_tozero, eps_stop, iter_try); cv_sum += sqrt(mean(pow((y_test - x_test * as<vec>(beta_shrink_res[0])),2))); flag_stop_sum += as<double>(beta_shrink_res[2]); iter_n_sum += as<double>(beta_shrink_res[3]); } // Calculate average across k-fold validation cv_vect(lam_iter) = cv_sum / fold; flag_stop_vect(lam_iter) = flag_stop_sum / fold; iter_n_vect(lam_iter) = iter_n_sum / fold; if(cv_sum < cv_min) { lam_min = lam_temp; cv_min = cv_sum; } } return List::create(Named("lam.vect") = lam_vect, Named("cv.vect") = cv_vect, Named("flag_stop_vect") = flag_stop_vect, Named("iter_n_vect") = iter_n_vect, Named("lam.min") = lam_min, Named("cv.min") = cv_min ); }