void scatter(icontext_type& context, const vertex_type& vertex, edge_type& edge) const { const vertex_type other = edge.target(); pagerank_type value = vertex.data().pagerank / vertex.num_out_edges(); assert(other.id() != vertex.id()); const sum_pagerank_type msg(value); context.signal(other, msg); }
void apply(icontext_type& context, vertex_type& vertex, const gather_type& total) { cout << "apply(), vid=" << vertex.id() << endl; cout << "total=" << total << endl; // reset incoming messages vertex.data().multiplied_incoming_messages.clear(); // iterate over message targets for (set<vertex_id_type>::const_iterator target_it=total.message_targets.begin(); target_it!=total.message_targets.end(); ++target_it) { vertex_id_type target_id=*target_it; // iterate over message sources (and the betas) for (map<vertex_id_type, VectorXd>::const_iterator source_it=total.message_source_betas.begin(); source_it!=total.message_source_betas.end(); ++source_it) { vertex_id_type source_id=source_it->first; // we dont need to consider the kernel matrix of a edge with itself since this is always omitted in the message scheduling if (source_id==target_id) continue; cout << "adding message from " << source_id << " to " << vertex.id() << " to construct message from " << vertex.id() << " to " << target_id << endl; // extract K and beta for incoming message MatrixXd K=vertex.data().kernel_dict[pair<vertex_id_type, vertex_id_type>(target_id,source_id)]; VectorXd beta=source_it->second; // if beta has zero rows, it is initialised to constant with unit norm (first iteration) if (!beta.rows()) { beta=VectorXd::Constant(K.cols(), 1.0); beta=beta/beta.norm(); } cout << "K_" << vertex.id() << "^(" << target_id << "," << source_id << "):" << endl << K << endl; cout << "times" << endl; cout << "beta_(" << source_id << "," << vertex.id() << "):" << endl << beta << endl; // for a fixed source and target node, compute incoming kernelbp message VectorXd message=K*beta; cout << "message: " << message << endl; // multiply all messages together if (vertex.data().multiplied_incoming_messages.find(target_id)==vertex.data().multiplied_incoming_messages.end()) vertex.data().multiplied_incoming_messages[target_id]=message; else { cout << "old message product: " << vertex.data().multiplied_incoming_messages[target_id] << endl; vertex.data().multiplied_incoming_messages[target_id]=vertex.data().multiplied_incoming_messages[target_id].cwiseProduct(message); } cout << "new message product: " << vertex.data().multiplied_incoming_messages[target_id] << endl; } } }
gather_type gather(icontext_type& context, const vertex_type& vertex, edge_type& edge) const { cout << "gather(), edge=" << edge.source().id() << "->" << edge.target().id() << ", called from vid=" << vertex.id() << endl; gather_type gathered; // add id of other vertex of edge and add id->beta to map if message source if (edge.target().id()==vertex.id()) { // incoming edge, outgoing message, only if target is non-observed if (!edge.source().data().is_observed) { gathered.message_targets.insert(edge.source().id()); cout << "added " << edge.source().id() << " as message target" << endl; } } else { // outgoing edge, incoming message with beta gathered.message_source_betas[edge.target().id()]=edge.data().beta; cout << "added " << edge.target().id() << " as message source" << endl; } cout << "gathered=" << gathered << endl; return gathered; }
// Scatter to scatter_edges edges with the new message value. void scatter(icontext_type& context, const vertex_type& vertex, edge_type& edge) const { bool isEdgeSource = (vertex.id() == edge.source().id()); bool hasSameData = isEdgeSource ? (vertex.data() == edge.target().data()) : (vertex.data() == edge.source().data()) ; if (!hasSameData) { min_combiner combiner; combiner.value = message_value; context.signal(isEdgeSource ? edge.target() : edge.source(), combiner); } }
// Receive inbound message (minimum data of adjacent vertices) void init(icontext_type& context, const vertex_type& vertex, const message_type& message) { // message.value == 4294967295 on first run, so init message_value to vertex data. if (message.value == 4294967295) { message_value = vertex.id(); } else { // else, set the local copy to the message parameter. message_value = message.value; } }
gather_type gather(icontext_type& context, const vertex_type& vertex, edge_type& edge) const { if (context.iteration() == 0) { if (vertex.id() == edge.source().id()) { return gather_type(edge.target().id()); } else { return gather_type(edge.source().id()); } } else { return gather_type(); } }
pair<size_t, size_t> count_triangles(const vertex_type& a, const vertex_type& b, const bool inverted=false) const { typedef neighbors_type::const_iterator neighbors_iterator_type; const vertex_id_type a_id = a.id(); const vertex_id_type b_id = b.id(); const neighbors_type& a_adj = a.data().neighbors; const neighbors_type& b_adj = b.data().neighbors; const bool directed = global_directed; if (a_adj.at(b_id) > 1 && a.id() < b.id() && !inverted) { return make_pair(0, 0); } if (a_adj.size() > b_adj.size()) { return reverse(count_triangles(b, a, true)); } size_t a_count = 0; size_t b_count = 0; for (neighbors_iterator_type it_a = a_adj.begin(); it_a != a_adj.end(); it_a++) { const vertex_id_type c_id = it_a->first; neighbors_iterator_type it_b = b_adj.find(it_a->first); if (it_b != b_adj.end()) { if (b_id < c_id) { a_count += directed ? it_b->second : 2; } if (a_id < c_id) { b_count += directed ? it_a->second : 2; } } } return make_pair(a_count, b_count); }
/* Gather the weighted rank of the adjacent page */ double gather(icontext_type& context, const vertex_type& vertex, edge_type& edge) const { if (edge.data().role == edge_data::PREDICT) return 0; bool brows = vertex.id() < (uint)info.get_start_node(false); if (info.is_square()) brows = !mi.A_transpose; if (mi.A_offset && mi.x_offset >= 0){ double val = edge.data().obs * (brows ? edge.target().data().pvec[mi.x_offset] : edge.source().data().pvec[mi.x_offset]); //printf("gather edge on vertex %d val %lg obs %lg\n", vertex.id(), val, edge.data().obs); return val; } //printf("edge on vertex %d val %lg\n", vertex.id(), 0.0); return 0; }
void scatter(icontext_type& context, const vertex_type& vertex, edge_type& edge) const { cout << "scatter(), edge=" << edge.source().id() << "->" << edge.target().id() << ", called from vid=" << vertex.id() << endl; cout << "computing message from vid=" << vertex.id() << " to vid=" << edge.source().id() << endl; vertex_id_type message_target=edge.source().id(); // find out whether full rank or incomplete Cholesky mode // distinguish case this node being observed or not VectorXd new_beta; if (edge.target().data().is_observed) { cout << "observed target" << endl; // extract system solutions and observation kernel vector, base on full rank or incomplete Cholesky if (edge.data().full_rank) { cout << "full rank case" << endl; MatrixXd L_s=edge.data().solution_matrices["L_s"]; cout << "L_s:" << L_s << endl; MatrixXd L_t=edge.data().solution_matrices["L_t"]; cout << "L_t:" << L_t << endl; VectorXd k=vertex.data().kernel_dict_obs.at(message_target); cout << "k:" << k << endl; // L_{s}^{-T}(L_{s}^{-1}(L_{t}^{-T}(L_{t}^{-1}k_{t}^{s}), from right to left, 4 solver calls new_beta=k; new_beta=L_t.triangularView<Lower>().solve(new_beta); new_beta=L_t.transpose().triangularView<Upper>().solve(new_beta); new_beta=L_s.triangularView<Lower>().solve(new_beta); new_beta=L_s.transpose().triangularView<Upper>().solve(new_beta); } else { cout << "incomplete Cholesky case" << endl; MatrixXd Q_s=edge.data().solution_matrices["Q_s"]; cout << "Q_s:" << Q_s << endl; MatrixXd R_s=edge.data().solution_matrices["R_s"]; cout << "R_s:" << R_s << endl; MatrixXd P_s=edge.data().solution_matrices["P_s"]; cout << "P_s:" << P_s << endl; MatrixXd Q_t=edge.data().solution_matrices["Q_t"]; cout << "Q_t:" << Q_t << endl; MatrixXd R_t=edge.data().solution_matrices["R_t"]; cout << "R_t:" << R_t << endl; MatrixXd P_t=edge.data().solution_matrices["P_t"]; cout << "P_t:" << P_t << endl; MatrixXd W=edge.data().solution_matrices["W"]; cout << "W:" << W << endl; VectorXd k=vertex.data().kernel_dict_obs.at(message_target); cout << "k:" << k << endl; // R_{s}^{-1}(Q_{s}^{T}((P_{s}(W_{s}W_{t}^{T}))(R_{t}^{-1}(Q_{t}^{T}(P_{t}k_{\mathcal{I}_{t}}^{(s)}))) new_beta=k; new_beta=P_t.transpose()*new_beta; new_beta=Q_t.transpose()*new_beta; new_beta=R_t.triangularView<Upper>().solve(new_beta); new_beta=W*new_beta; new_beta=P_s.transpose()*new_beta; new_beta=Q_s.transpose()*new_beta; new_beta=R_s.triangularView<Upper>().solve(new_beta); } } else { cout << "non-observed target" << endl; cout << "multiplied_incoming_messages: " << vertex.data().multiplied_incoming_messages << endl; // extract system solutions, depending on full rank or incomplete Cholesky if (edge.data().full_rank) { cout << "full rank case" << endl; MatrixXd L_s=edge.data().solution_matrices["L_s"]; cout << "L_s:" << L_s << endl; VectorXd k; if (!vertex.data().multiplied_incoming_messages.size()) { cout << "no incoming messages, using constant unit norm vector" << endl; k=VectorXd::Constant(L_s.cols(), 1.0/sqrt(L_s.cols())); } else { k=vertex.data().multiplied_incoming_messages.at(message_target); } cout << "k:" << k << endl; // (K_{s}+\lambda I){}^{-1}k_{ut}^{(s)}=L_{s}^{-T}(L_{s}^{-1}k_{ut}^{(s)}) from right to left, 2 solver calls new_beta=k; new_beta=L_s.triangularView<Lower>().solve(new_beta); new_beta=L_s.transpose().triangularView<Upper>().solve(new_beta); } else { cout << "incomplete Cholesky case" << endl; MatrixXd Q_s=edge.data().solution_matrices["Q_s"]; cout << "Q_s:" << Q_s << endl; MatrixXd R_s=edge.data().solution_matrices["R_s"]; cout << "R_s:" << R_s << endl; MatrixXd P_s=edge.data().solution_matrices["P_s"]; cout << "P_s:" << P_s << endl; MatrixXd W=edge.data().solution_matrices["W"]; cout << "W:" << W << endl; VectorXd k; if (!vertex.data().multiplied_incoming_messages.size()) { cout << "no incoming messages, using constant unit norm vector" << endl; k=VectorXd::Constant(W.cols(), 1.0/sqrt(W.cols())); } else { k=vertex.data().multiplied_incoming_messages.at(message_target); } cout << "k:" << k << endl; // R_{s}^{-1}(Q_{s}^{T}(P_{s}^{T}k_{t}^{(s)})) new_beta=k; new_beta=W*new_beta; new_beta=P_s.transpose()*new_beta; new_beta=Q_s.transpose()*new_beta; new_beta=R_s.triangularView<Upper>().solve(new_beta); } } // normalise new_beta=new_beta/new_beta.norm(); // check whether has changed or not yet existed double difference; if (!edge.data().beta.rows()) difference=numeric_limits<double>::infinity(); else difference=(new_beta-edge.data().beta).norm(); cout << "beta norm difference is " << difference << endl; if (difference>BETA_EPSILON) { // store new message and signal depending node if beta has changed or has not yet existed edge.data().beta=new_beta; context.signal(edge.source()); cout << "beta has changed, new_beta=" << new_beta << "\nhas norm=" << new_beta.norm() << ", signalling vid=" << edge.source().id() << endl; } else { cout << "converged!\n"; } cout << "beta: " << edge.source().id() << "->" << edge.target().id() << ": " << edge.data().beta << endl; }
void scatter(icontext_type& context, const vertex_type& vertex, edge_type& edge) const { const vertex_type& other = edge.source().id() == vertex.id() ? edge.target() : edge.source(); context.signal(other); }
gather_type gather(icontext_type& context, const vertex_type& vertex, edge_type& edge) const { const vertex_type& other = edge.source().id() == vertex.id() ? edge.target() : edge.source(); return gather_type(other.data()); }
edge_dir_type gather_edges(icontext_type& context, const vertex_type& vertex) const { if (vertex.id() < rows) return OUT_EDGES; else return IN_EDGES; }