void traverse(Abc::IObject object, bool includeSelf) { if (includeSelf) { std::cout << "---------------------------------" << std::endl; std::cout << object.getFullName() << std::endl; if (Mat::IMaterial::matches(object.getHeader())) { std::cout << "(is material, local data shown)\n"; Mat::IMaterial mat(object, Abc::kWrapExisting); printMaterialSchema(mat.getSchema()); TESTING_ASSERT(object.getName() == "materialA" || object.getName() == "materialB"); } else { Mat::MaterialFlatten mafla(object); std::string name = object.getName(); std::cout << name << " " << mafla.empty() << std::endl; TESTING_ASSERT( (!mafla.empty() && (name == "geoA" || name == "geoB" || name == "geoC")) || (mafla.empty() && (name == "geometry" || name == "materials"))); if (!mafla.empty()) { std::cout << "(flattened material via has and/or assigned)\n"; printFlattenedMafla(mafla); } else { std::cout << "(neither is, has or is assigned)\n"; } } } for (size_t i = 0; i < object.getNumChildren(); ++i) { traverse(object.getChild(i), true); } }
AbcObjectCache::AbcObjectCache( Alembic::Abc::IObject & objToCache ) : obj( objToCache ), isMeshTopoDynamic(false), isMeshPointCache(false), fullName(objToCache.getFullName()) { ESS_PROFILE_SCOPE("AbcObjectCache::AbcObjectCache"); BasicSchemaData bsd; getBasicSchemaDataFromObject(objToCache, bsd); isConstant = bsd.isConstant; numSamples = bsd.nbSamples; bool isMesh = true; if ( bsd.type == bsd.__POLYMESH || !( isMesh = (bsd.type != bsd.__SUBDIV) ) ) { bool isTopoDyn = false; extractMeshInfo(&objToCache, isMesh, isMeshPointCache, isTopoDyn); if (!isConstant) isMeshTopoDynamic = isTopoDyn; } }
// returns the number of nodes int prescanAlembicHierarchy(AbcArchiveCache* pArchiveCache, AbcObjectCache* pRootObjectCache, std::vector<std::string>& nodes, std::map<std::string, bool>& map, bool bIncludeChildren) { for (int i = 0; i < nodes.size(); i++) { boost::to_upper(nodes[i]); } std::list<AlembicSelectionStackElement> sceneStack; for (size_t j = 0; j < pRootObjectCache->childIdentifiers.size(); j++) { AbcObjectCache* pChildObjectCache = &(pArchiveCache->find(pRootObjectCache->childIdentifiers[j])->second); sceneStack.push_back( AlembicSelectionStackElement(pChildObjectCache, false)); } int nNumNodes = 0; while (!sceneStack.empty()) { AlembicSelectionStackElement sElement = sceneStack.back(); Alembic::Abc::IObject iObj = sElement.pObjectCache->obj; bool bSelected = sElement.bSelected; sceneStack.pop_back(); nNumNodes++; bool bCreateNullNode = false; int nMergedGeomNodeIndex = -1; AbcObjectCache* pMergedChildObjectCache = NULL; getMergeInfo(pArchiveCache, sElement.pObjectCache, bCreateNullNode, nMergedGeomNodeIndex, &pMergedChildObjectCache); std::string name; std::string fullname; if (nMergedGeomNodeIndex != -1) { // we are merging Alembic::AbcGeom::IObject mergedGeomChild = pMergedChildObjectCache->obj; name = mergedGeomChild.getName(); fullname = mergedGeomChild.getFullName(); } else { // geometry node(s) under a dummy node (in pParentMaxNode) name = iObj.getName(); fullname = iObj.getFullName(); } bool bSelectChildren = false; if (bSelected) { map[fullname] = true; bSelectChildren = true; } else { boost::to_upper(name); for (int i = 0; i < nodes.size(); i++) { const char* cstrName = name.c_str(); const char* cstrNode = nodes[i].c_str(); if (name.find(nodes[i]) != std::string::npos) { if (bIncludeChildren) { bSelectChildren = true; } std::vector<std::string> parts; boost::split(parts, fullname, boost::is_any_of("/")); std::string nodeName; for (int j = 1; j < parts.size(); j++) { nodeName += "/"; nodeName += parts[j]; map[nodeName] = true; } } } } // push the children as the last step, since we need to who the parent is // first (we may have merged) for (size_t j = 0; j < sElement.pObjectCache->childIdentifiers.size(); j++) { AbcObjectCache* pChildObjectCache = &(pArchiveCache->find(sElement.pObjectCache->childIdentifiers[j]) ->second); Alembic::AbcGeom::IObject childObj = pChildObjectCache->obj; NodeCategory::type childCat = NodeCategory::get(childObj); if (childCat == NodeCategory::UNSUPPORTED) continue; // skip over unsupported types // I assume that geometry nodes are always leaf nodes. Thus, if we merged // a geometry node will its parent transform, we don't // need to push that geometry node to the stack. // A geometry node can't be combined with its transform node, the // transform node has other tranform nodes as children. These // nodes must be pushed. if (nMergedGeomNodeIndex != j) { sceneStack.push_back( AlembicSelectionStackElement(pChildObjectCache, bSelectChildren)); } } } return nNumNodes; }
AtNode *createInstanceNode(nodeData &nodata, userData * ud, int i) { Alembic::AbcGeom::IPoints typedObject(ud->gIObjects[i].abc, Alembic::Abc::kWrapExisting); instanceCloudInfo * info = ud->gIObjects[i].instanceCloud; // check that we have the masternode size_t id = (size_t)ud->gIObjects[i].ID; size_t instanceID = (size_t)ud->gIObjects[i].instanceID; if(instanceID >= info->groupInfos.size()) { AiMsgError("[ExocortexAlembicArnold] Instance '%s.%d' has an invalid instanceID . Aborting.",ud->gIObjects[i].abc.getFullName().c_str(),(int)id); return NULL; } size_t groupID = (size_t)ud->gIObjects[i].instanceGroupID; if(groupID >= info->groupInfos[instanceID].identifiers.size()) { AiMsgError("[ExocortexAlembicArnold] Instance '%s.%d' has an invalid instanceGroupID. Aborting.",ud->gIObjects[i].abc.getFullName().c_str(),(int)id); return NULL; } instanceGroupInfo * group = &info->groupInfos[instanceID]; // get the right centroidTime float centroidTime = ud->gCentroidTime; if(info->time.size() > 0) { centroidTime = info->time[0]->get()[id < info->time[0]->size() ? id : info->time[0]->size() - 1]; if(info->time.size() > 1) centroidTime = (1.0f - info->timeAlpha) * centroidTime + info->timeAlpha * info->time[1]->get()[id < info->time[1]->size() ? id : info->time[1]->size() - 1]; centroidTime = roundCentroid(centroidTime); } std::map<float,AtNode*>::iterator it = group->nodes[groupID].find(centroidTime); if(it == group->nodes[groupID].end()) { AiMsgError("[ExocortexAlembicArnold] Cannot find masterNode '%s' for centroidTime '%f'. Aborting.",group->identifiers[groupID].c_str(),centroidTime); return NULL; } AtNode *usedMasterNode = it->second; AtNode *shapeNode = AiNode("ginstance"); // setup name, id and the master node AiNodeSetStr(shapeNode, "name", getNameFromIdentifier(ud->gIObjects[i].abc.getFullName(),ud->gIObjects[i].ID,(long)groupID).c_str()); AiNodeSetInt(shapeNode, "id", ud->gIObjects[i].instanceID); AiNodeSetPtr(shapeNode, "node", usedMasterNode); // declare color on the ginstance if(info->color.size() > 0 && AiNodeDeclare(shapeNode, "Color", "constant RGBA")) { Alembic::Abc::C4f color = info->color[0]->get()[id < info->color[0]->size() ? id : info->color[0]->size() - 1]; AiNodeSetRGBA(shapeNode, "Color", color.r, color.g, color.b, color.a); } // now let's take care of the transform AtArray * matrices = AiArrayAllocate(1,(AtInt)ud->gMbKeys.size(),AI_TYPE_MATRIX); for(size_t j=0;j<ud->gMbKeys.size(); ++j) { SampleInfo sampleInfo = getSampleInfo( ud->gMbKeys[j], typedObject.getSchema().getTimeSampling(), typedObject.getSchema().getNumSamples() ); Alembic::Abc::M44f matrixAbc; matrixAbc.makeIdentity(); const size_t floorIndex = j << 1; const size_t ceilIndex = floorIndex + 1; // apply translation if(info->pos[floorIndex]->size() == info->pos[ceilIndex]->size()) { matrixAbc.setTranslation(float(1.0 - sampleInfo.alpha) * info->pos[floorIndex]->get()[id < info->pos[floorIndex]->size() ? id : info->pos[floorIndex]->size() - 1] + float(sampleInfo.alpha) * info->pos[ceilIndex]->get()[id < info->pos[ceilIndex]->size() ? id : info->pos[ceilIndex]->size() - 1]); } else { const float timeAlpha = getTimeOffsetFromObject( typedObject, sampleInfo ); matrixAbc.setTranslation(info->pos[floorIndex]->get()[id < info->pos[floorIndex]->size() ? id : info->pos[floorIndex]->size() - 1] + info->vel[floorIndex]->get()[id < info->vel[floorIndex]->size() ? id : info->vel[floorIndex]->size() - 1] * timeAlpha); } // now take care of rotation if(info->rot.size() == ud->gMbKeys.size()) { Alembic::Abc::Quatf rotAbc = info->rot[j]->get()[id < info->rot[j]->size() ? id : info->rot[j]->size() - 1]; if(info->ang.size() == ud->gMbKeys.size() && sampleInfo.alpha > 0.0) { Alembic::Abc::Quatf angAbc = info->ang[j]->get()[id < info->ang[j]->size() ? id : info->ang[j]->size() -1] * (float)sampleInfo.alpha; if(angAbc.axis().length2() != 0.0f && angAbc.r != 0.0f) { rotAbc = angAbc * rotAbc; rotAbc.normalize(); } } Alembic::Abc::M44f matrixAbcRot; matrixAbcRot.setAxisAngle(rotAbc.axis(),rotAbc.angle()); matrixAbc = matrixAbcRot * matrixAbc; } // and finally scaling if(info->scale.size() == ud->gMbKeys.size() * 2) { const Alembic::Abc::V3f scalingAbc = info->scale[floorIndex]->get()[id < info->scale[floorIndex]->size() ? id : info->scale[floorIndex]->size() - 1] * info->width[floorIndex]->get()[id < info->width[floorIndex]->size() ? id : info->width[floorIndex]->size() - 1] * float(1.0 - sampleInfo.alpha) + info->scale[ceilIndex]->get()[id < info->scale[ceilIndex]->size() ? id : info->scale[ceilIndex]->size() - 1] * info->width[ceilIndex]->get()[id < info->width[ceilIndex]->size() ? id : info->width[ceilIndex]->size() - 1] * float(sampleInfo.alpha); matrixAbc.scale(scalingAbc); } else { const float width = info->width[floorIndex]->get()[id < info->width[floorIndex]->size() ? id : info->width[floorIndex]->size() - 1] * float(1.0 - sampleInfo.alpha) + info->width[ceilIndex]->get()[id < info->width[ceilIndex]->size() ? id : info->width[ceilIndex]->size() - 1] * float(sampleInfo.alpha); matrixAbc.scale(Alembic::Abc::V3f(width,width,width)); } // if we have offset matrices if(group->parents.size() > groupID && group->matrices.size() > groupID) { if(group->objects[groupID].valid() && group->parents[groupID].valid()) { // we have a matrix map and a parent. // now we need to check if we already exported the matrices std::map<float,std::vector<Alembic::Abc::M44f> >::iterator it; std::vector<Alembic::Abc::M44f> offsets; it = group->matrices[groupID].find(centroidTime); if(it == group->matrices[groupID].end()) { std::vector<float> samples(ud->gMbKeys.size()); offsets.resize(ud->gMbKeys.size()); for(AtInt sampleIndex=0;sampleIndex<(AtInt)ud->gMbKeys.size(); ++sampleIndex) { offsets[sampleIndex].makeIdentity(); // centralize the time once more samples[sampleIndex] = centroidTime + ud->gMbKeys[sampleIndex] - ud->gCentroidTime; } // if the transform differs, we need to compute the offset matrices // get the parent, which should be a transform Alembic::Abc::IObject parent = group->parents[groupID]; Alembic::Abc::IObject xform = group->objects[groupID].getParent(); while(Alembic::AbcGeom::IXform::matches(xform.getMetaData()) && xform.getFullName() != parent.getFullName()) { // cast to a xform Alembic::AbcGeom::IXform parentXform(xform,Alembic::Abc::kWrapExisting); if(parentXform.getSchema().getNumSamples() == 0) break; // loop over all samples for(size_t sampleIndex=0;sampleIndex<ud->gMbKeys.size(); ++sampleIndex) { SampleInfo sampleInfo = getSampleInfo( samples[sampleIndex], parentXform.getSchema().getTimeSampling(), parentXform.getSchema().getNumSamples() ); // get the data and blend it if necessary Alembic::AbcGeom::XformSample sample; parentXform.getSchema().get(sample,sampleInfo.floorIndex); Alembic::Abc::M44f abcMatrix; Alembic::Abc::M44d abcMatrixd = sample.getMatrix(); for(int x=0;x<4;x++) for(int y=0;y<4;y++) abcMatrix[x][y] = (float)abcMatrixd[x][y]; if(sampleInfo.alpha >= sampleTolerance) { parentXform.getSchema().get(sample,sampleInfo.ceilIndex); Alembic::Abc::M44d ceilAbcMatrixd = sample.getMatrix(); Alembic::Abc::M44f ceilAbcMatrix; for(int x=0;x<4;x++) for(int y=0;y<4;y++) ceilAbcMatrix[x][y] = (float)ceilAbcMatrixd[x][y]; abcMatrix = float(1.0 - sampleInfo.alpha) * abcMatrix + float(sampleInfo.alpha) * ceilAbcMatrix; } offsets[sampleIndex] = abcMatrix * offsets[sampleIndex]; } // go upwards xform = xform.getParent(); } group->matrices[groupID].insert(std::pair<float,std::vector<Alembic::Abc::M44f> >(centroidTime,offsets)); } else offsets = it->second; // this means we have the right amount of matrices to blend against if(offsets.size() > j) matrixAbc = offsets[j] * matrixAbc; } } // store it to the array AiArraySetMtx(matrices,(AtULong)j,matrixAbc.x); } AiNodeSetArray(shapeNode,"matrix",matrices); AiNodeSetBool(shapeNode, "inherit_xform", FALSE); return shapeNode; }