/** Do the initial copy of the data from the input to the output workspace for
 * histogram workspaces.
 *  Takes out the bin width if necessary.
 *  @param inputWS  The input workspace
 *  @param outputWS The output workspace
 */
void ConvertUnitsUsingDetectorTable::fillOutputHist(
    const API::MatrixWorkspace_const_sptr inputWS,
    const API::MatrixWorkspace_sptr outputWS) {
  const int size = static_cast<int>(inputWS->blocksize());

  // Loop over the histograms (detector spectra)
  Progress prog(this, 0.0, 0.2, m_numberOfSpectra);
  int64_t numberOfSpectra_i =
      static_cast<int64_t>(m_numberOfSpectra); // cast to make openmp happy
  PARALLEL_FOR2(inputWS, outputWS)
  for (int64_t i = 0; i < numberOfSpectra_i; ++i) {
    PARALLEL_START_INTERUPT_REGION
    // Take the bin width dependency out of the Y & E data
    if (m_distribution) {
      for (int j = 0; j < size; ++j) {
        const double width =
            std::abs(inputWS->dataX(i)[j + 1] - inputWS->dataX(i)[j]);
        outputWS->dataY(i)[j] = inputWS->dataY(i)[j] * width;
        outputWS->dataE(i)[j] = inputWS->dataE(i)[j] * width;
      }
    } else {
      // Just copy over
      outputWS->dataY(i) = inputWS->readY(i);
      outputWS->dataE(i) = inputWS->readE(i);
    }
    // Copy over the X data
    outputWS->setX(i, inputWS->refX(i));

    prog.report("Convert to " + m_outputUnit->unitID());
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION
}
示例#2
0
/**
 * The main method to calculate the ring profile for 2d image based workspace.
 *
 * It will iterate over all the spectrum inside the workspace.
 * For each spectrum, it will use the RingProfile::getBinForPixel method to
 *identify
 * where, in the output_bins, the elements of the spectrum should be placed in.
 *
 * @param inputWS: pointer to the input workspace
 * @param output_bins: the reference to the vector to be filled with the
 *integration values
 */
void RingProfile::processNumericImageRingProfile(
    const API::MatrixWorkspace_sptr inputWS, std::vector<double> &output_bins) {
  // allocate the bin positions vector
  std::vector<int> bin_n(inputWS->dataY(0).size(), -1);

  // consider that each spectrum is a row in the image
  for (int i = 0; i < static_cast<int>(inputWS->getNumberHistograms()); i++) {
    m_progress->report("Computing ring bins positions for pixels");
    // get bin for the pixels inside this spectrum
    // for each column of the image
    getBinForPixel(inputWS, i, bin_n);

    // accumulate the values from the spectrum to the target bin
    // each column has it correspondend bin_position inside bin_n
    const MantidVec &refY = inputWS->dataY(i);
    for (size_t j = 0; j < bin_n.size(); j++) {

      // is valid bin? No -> skip
      if (bin_n[j] < 0)
        continue;

      // accumulate the values of this spectrum inside this bin
      output_bins[bin_n[j]] += refY[j];
    }
  }
}
示例#3
0
/**
 * Perform a call to nxgetslab, via the NexusClasses wrapped methods for a given blocksize. The xbins are read along with
 * each call to the data/error loading
 * @param data :: The NXDataSet object of y values
 * @param errors :: The NXDataSet object of error values
 * @param xbins :: The xbin NXDataSet
 * @param blocksize :: The blocksize to use
 * @param nchannels :: The number of channels for the block
 * @param hist :: The workspace index to start reading into
 * @param wsIndex :: The workspace index to save data into
 * @param local_workspace :: A pointer to the workspace
 */
void LoadNexusProcessed::loadBlock(NXDataSetTyped<double> & data, NXDataSetTyped<double> & errors, NXDouble & xbins,
    int64_t blocksize, int64_t nchannels, int64_t &hist, int64_t& wsIndex,
    API::MatrixWorkspace_sptr local_workspace)
{
  data.load(static_cast<int>(blocksize),static_cast<int>(hist));
  double *data_start = data();
  double *data_end = data_start + nchannels;
  errors.load(static_cast<int>(blocksize),static_cast<int>(hist));
  double *err_start = errors();
  double *err_end = err_start + nchannels;
  xbins.load(static_cast<int>(blocksize),static_cast<int>(hist));
  const int64_t nxbins(nchannels + 1);
  double *xbin_start = xbins();
  double *xbin_end = xbin_start + nxbins;
  int64_t final(hist + blocksize);
  while( hist < final )
  {
    MantidVec& Y = local_workspace->dataY(wsIndex);
    Y.assign(data_start, data_end);
    data_start += nchannels; data_end += nchannels;
    MantidVec& E = local_workspace->dataE(wsIndex);
    E.assign(err_start, err_end);
    err_start += nchannels; err_end += nchannels;
    MantidVec& X = local_workspace->dataX(wsIndex);
    X.assign(xbin_start, xbin_end);
    xbin_start += nxbins; xbin_end += nxbins;
    ++hist;
    ++wsIndex;
  }
}
示例#4
0
/** loadData
*  Load the counts data from an NXInt into a workspace
*/
void LoadMuonNexus2::loadData(const Mantid::NeXus::NXInt &counts,
                              const std::vector<double> &timeBins, int wsIndex,
                              int period, int spec,
                              API::MatrixWorkspace_sptr localWorkspace) {
  MantidVec &X = localWorkspace->dataX(wsIndex);
  MantidVec &Y = localWorkspace->dataY(wsIndex);
  MantidVec &E = localWorkspace->dataE(wsIndex);
  X.assign(timeBins.begin(), timeBins.end());

  int nBins = 0;
  int *data = nullptr;

  if (counts.rank() == 3) {
    nBins = counts.dim2();
    data = &counts(period, spec, 0);
  } else if (counts.rank() == 2) {
    nBins = counts.dim1();
    data = &counts(spec, 0);
  } else {
    throw std::runtime_error("Data have unsupported dimansionality");
  }
  assert(nBins + 1 == static_cast<int>(timeBins.size()));

  Y.assign(data, data + nBins);
  typedef double (*uf)(double);
  uf dblSqrt = std::sqrt;
  std::transform(Y.begin(), Y.end(), E.begin(), dblSqrt);
}
示例#5
0
/** Smoothing by zeroing.
 *  @param n :: The order of truncation
 *  @param unfilteredWS :: workspace for storing the unfiltered Fourier
 * transform of the input spectrum
 *  @param filteredWS :: workspace for storing the filtered spectrum
 */
void FFTSmooth2::zero(int n, API::MatrixWorkspace_sptr &unfilteredWS,
                      API::MatrixWorkspace_sptr &filteredWS) {
  int mx = static_cast<int>(unfilteredWS->readX(0).size());
  int my = static_cast<int>(unfilteredWS->readY(0).size());
  int ny = my / n;

  if (ny == 0)
    ny = 1;

  filteredWS =
      API::WorkspaceFactory::Instance().create(unfilteredWS, 2, mx, my);

  const Mantid::MantidVec &Yr = unfilteredWS->readY(0);
  const Mantid::MantidVec &Yi = unfilteredWS->readY(1);
  const Mantid::MantidVec &X = unfilteredWS->readX(0);

  Mantid::MantidVec &yr = filteredWS->dataY(0);
  Mantid::MantidVec &yi = filteredWS->dataY(1);
  Mantid::MantidVec &xr = filteredWS->dataX(0);
  Mantid::MantidVec &xi = filteredWS->dataX(1);

  xr.assign(X.begin(), X.end());
  xi.assign(X.begin(), X.end());
  yr.assign(Yr.size(), 0);
  yi.assign(Yr.size(), 0);

  for (int i = 0; i < ny; i++) {
    yr[i] = Yr[i];
    yi[i] = Yi[i];
  }
}
示例#6
0
void RadiusSum::setUpOutputWorkspace(std::vector<double> &values) {

  g_log.debug() << "Output calculated, setting up the output workspace\n";

  API::MatrixWorkspace_sptr outputWS = API::WorkspaceFactory::Instance().create(
      inputWS, 1, values.size() + 1, values.size());

  g_log.debug() << "Set the data\n";
  MantidVec &refY = outputWS->dataY(0);
  std::copy(values.begin(), values.end(), refY.begin());

  g_log.debug() << "Set the bins limits\n";
  MantidVec &refX = outputWS->dataX(0);
  double bin_size = (max_radius - min_radius) / num_bins;

  for (int i = 0; i < (static_cast<int>(refX.size())) - 1; i++)
    refX[i] = min_radius + i * bin_size;
  refX.back() = max_radius;

  // configure the axis:
  // for numeric images, the axis are the same as the input workspace, and are
  // copied in the creation.

  // for instrument related, the axis Y (1) continues to be the same.
  // it is necessary to change only the axis X. We have to change it to radius.
  if (inputWorkspaceHasInstrumentAssociated(inputWS)) {
    API::Axis *const horizontal = new API::NumericAxis(refX.size());
    auto labelX = UnitFactory::Instance().create("Label");
    boost::dynamic_pointer_cast<Units::Label>(labelX)->setLabel("Radius");
    horizontal->unit() = labelX;
    outputWS->replaceAxis(0, horizontal);
  }

  setProperty("OutputWorkspace", outputWS);
}
示例#7
0
/** Smoothing using Butterworth filter.
 *  @param n ::     The cutoff frequency control parameter.
 *               Cutoff frequency = my/n where my is the
 *               number of sample points in the data.
 *               As with the "Zeroing" case, the cutoff
 *               frequency is truncated to an integer value
 *               and set to 1 if the truncated value was zero.
 *  @param order :: The order of the Butterworth filter, 1, 2, etc.
 *               This must be a positive integer.
 *  @param unfilteredWS :: workspace for storing the unfiltered Fourier
 * transform of the input spectrum
 *  @param filteredWS :: workspace for storing the filtered spectrum
 */
void FFTSmooth2::Butterworth(int n, int order,
                             API::MatrixWorkspace_sptr &unfilteredWS,
                             API::MatrixWorkspace_sptr &filteredWS) {
  int mx = static_cast<int>(unfilteredWS->readX(0).size());
  int my = static_cast<int>(unfilteredWS->readY(0).size());
  int ny = my / n;

  if (ny == 0)
    ny = 1;

  filteredWS =
      API::WorkspaceFactory::Instance().create(unfilteredWS, 2, mx, my);

  const Mantid::MantidVec &Yr = unfilteredWS->readY(0);
  const Mantid::MantidVec &Yi = unfilteredWS->readY(1);
  const Mantid::MantidVec &X = unfilteredWS->readX(0);

  Mantid::MantidVec &yr = filteredWS->dataY(0);
  Mantid::MantidVec &yi = filteredWS->dataY(1);
  Mantid::MantidVec &xr = filteredWS->dataX(0);
  Mantid::MantidVec &xi = filteredWS->dataX(1);

  xr.assign(X.begin(), X.end());
  xi.assign(X.begin(), X.end());
  yr.assign(Yr.size(), 0);
  yi.assign(Yr.size(), 0);

  double cutoff = ny;

  for (int i = 0; i < my; i++) {
    double scale = 1.0 / (1.0 + pow(i / cutoff, 2 * order));
    yr[i] = scale * Yr[i];
    yi[i] = scale * Yi[i];
  }
}
示例#8
0
/**
 * Read spectra from the DAE
 * @param period :: Current period index
 * @param index :: First spectrum index
 * @param count :: Number of spectra to read
 * @param workspace :: Workspace to store the data
 * @param workspaceIndex :: index in workspace to store data
 */
void ISISHistoDataListener::getData(int period, int index, int count,
                                    API::MatrixWorkspace_sptr workspace,
                                    size_t workspaceIndex) {
  const int numberOfBins = m_numberOfBins[m_timeRegime];
  const size_t bufferSize = count * (numberOfBins + 1) * sizeof(int);
  std::vector<int> dataBuffer(bufferSize);
  // Read in spectra from DAE
  int ndims = 2, dims[2];
  dims[0] = count;
  dims[1] = numberOfBins + 1;

  int spectrumIndex = index + period * (m_totalNumberOfSpectra + 1);
  if (IDCgetdat(m_daeHandle, spectrumIndex, count, dataBuffer.data(), dims,
                &ndims) != 0) {
    g_log.error("Unable to read DATA from DAE " + m_daeName);
    throw Kernel::Exception::FileError("Unable to read DATA from DAE ",
                                       m_daeName);
  }

  for (size_t i = 0; i < static_cast<size_t>(count); ++i) {
    size_t wi = workspaceIndex + i;
    workspace->setX(wi, m_bins[m_timeRegime]);
    MantidVec &y = workspace->dataY(wi);
    MantidVec &e = workspace->dataE(wi);
    workspace->getSpectrum(wi)->setSpectrumNo(index + static_cast<specid_t>(i));
    size_t shift = i * (numberOfBins + 1) + 1;
    y.assign(dataBuffer.begin() + shift, dataBuffer.begin() + shift + y.size());
    std::transform(y.begin(), y.end(), e.begin(), dblSqrt);
  }
}
示例#9
0
void ConvertEmptyToTof::setTofInWS(const std::vector<double> &tofAxis,
                                   API::MatrixWorkspace_sptr outputWS) {

  const size_t numberOfSpectra = m_inputWS->getNumberHistograms();
  int64_t numberOfSpectraInt64 =
      static_cast<int64_t>(numberOfSpectra); // cast to make openmp happy

  g_log.debug() << "Setting the TOF X Axis for numberOfSpectra="
                << numberOfSpectra << '\n';

  Progress prog(this, 0.0, 0.2, numberOfSpectra);
  PARALLEL_FOR2(m_inputWS, outputWS)
  for (int64_t i = 0; i < numberOfSpectraInt64; ++i) {
    PARALLEL_START_INTERUPT_REGION
    // Just copy over
    outputWS->dataY(i) = m_inputWS->readY(i);
    outputWS->dataE(i) = m_inputWS->readE(i);
    // copy
    outputWS->setX(i, tofAxis);

    prog.report();
    PARALLEL_END_INTERUPT_REGION
  } // end for i
  PARALLEL_CHECK_INTERUPT_REGION
  outputWS->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
}
示例#10
0
/** Execute the algorithm.
 */
void DampSq::exec()
{
    // TODO Auto-generated execute stub

    // 1. Generate new workspace
    API::MatrixWorkspace_const_sptr isqspace = getProperty("InputWorkspace");
    API::MatrixWorkspace_sptr osqspace = WorkspaceFactory::Instance().create(isqspace, 1, isqspace->size(), isqspace->size());

    int mode = getProperty("Mode");
    double qmax = getProperty("QMax");

    if (mode < 1 || mode > 4) {
        g_log.error("Damp mode can only be 1, 2, 3, or 4");
        return;
    }

    // 2. Get access to all
    const MantidVec& iQVec = isqspace->dataX(0);
    const MantidVec& iSVec = isqspace->dataY(0);
    const MantidVec& iEVec = isqspace->dataE(0);

    MantidVec& oQVec = osqspace->dataX(0);
    MantidVec& oSVec = osqspace->dataY(0);
    MantidVec& oEVec = osqspace->dataE(0);

    // 3. Calculation
    double dqmax = qmax - iQVec[0];

    double damp;
    for (unsigned int i = 0; i < iQVec.size(); i ++) {
        // a) calculate damp coefficient
        switch (mode) {
        case 1:
            damp = dampcoeff1(iQVec[i], qmax, dqmax);
            break;
        case 2:
            damp = dampcoeff2(iQVec[i], qmax, dqmax);;
            break;
        case 3:
            damp = dampcoeff3(iQVec[i], qmax, dqmax);;
            break;
        case 4:
            damp = dampcoeff4(iQVec[i], qmax, dqmax);;
            break;
        default:
            damp = 0;
            break;
        }
        // b) calculate new S(q)
        oQVec[i] = iQVec[i];
        oSVec[i] = 1 + damp*(iSVec[i]-1);
        oEVec[i] = damp*iEVec[i];
    }  // i

    // 4. Over
    setProperty("OutputWorkspace", osqspace);

    return;
}
示例#11
0
/** Performs the Holtzer transformation: IQ v Q
 *  @param ws The workspace to be transformed
 */
void IQTransform::holtzer(API::MatrixWorkspace_sptr ws)
{
  MantidVec& X = ws->dataX(0);
  MantidVec& Y = ws->dataY(0);
  MantidVec& E = ws->dataE(0);
  std::transform(Y.begin(),Y.end(),X.begin(),Y.begin(),std::multiplies<double>());
  std::transform(E.begin(),E.end(),X.begin(),E.begin(),std::multiplies<double>());

  ws->setYUnitLabel("I x Q");
}
示例#12
0
/** Performs the Porod transformation: IQ^4 v Q
 *  @param ws The workspace to be transformed
 */
void IQTransform::porod(API::MatrixWorkspace_sptr ws)
{
  MantidVec& X = ws->dataX(0);
  MantidVec& Y = ws->dataY(0);
  MantidVec& E = ws->dataE(0);
  MantidVec Q4(X.size());
  std::transform(X.begin(),X.end(),X.begin(),Q4.begin(),VectorHelper::TimesSquares<double>());
  std::transform(Y.begin(),Y.end(),Q4.begin(),Y.begin(),std::multiplies<double>());
  std::transform(E.begin(),E.end(),Q4.begin(),E.begin(),std::multiplies<double>());

  ws->setYUnitLabel("I x Q^4");
}
示例#13
0
/** Performs a log-log transformation: Ln(I) v Ln(Q)
 *  @param ws The workspace to be transformed
 *  @throw std::range_error if an attempt is made to take log of a negative number
 */
void IQTransform::logLog(API::MatrixWorkspace_sptr ws)
{
  MantidVec& X = ws->dataX(0);
  MantidVec& Y = ws->dataY(0);
  MantidVec& E = ws->dataE(0);
  std::transform(X.begin(),X.end(),X.begin(),VectorHelper::Log<double>());
  std::transform(E.begin(),E.end(),Y.begin(),E.begin(),std::divides<double>());
  std::transform(Y.begin(),Y.end(),Y.begin(),VectorHelper::LogNoThrow<double>());

  ws->setYUnitLabel("Ln(I)");
  m_label->setLabel("Ln(Q)");
}
示例#14
0
/** Performs the Guinier (sheets) transformation: Ln(IQ^2) v Q^2
 *  @param ws The workspace to be transformed
 *  @throw std::range_error if an attempt is made to take log of a negative number
 */
void IQTransform::guinierSheets(API::MatrixWorkspace_sptr ws)
{
  MantidVec& X = ws->dataX(0);
  MantidVec& Y = ws->dataY(0);
  MantidVec& E = ws->dataE(0);
  std::transform(E.begin(),E.end(),Y.begin(),E.begin(),std::divides<double>());
  std::transform(X.begin(),X.end(),X.begin(),VectorHelper::Squares<double>());
  std::transform(Y.begin(),Y.end(),X.begin(),Y.begin(),std::multiplies<double>());
  std::transform(Y.begin(),Y.end(),Y.begin(),VectorHelper::LogNoThrow<double>());

  ws->setYUnitLabel("Ln(I x Q^2)");
  m_label->setLabel("Q^2");
}
/** Remove background per pixel
 * @brief ConvertCWSDExpToMomentum::removeBackground
 * @param dataws
 */
void ConvertCWSDExpToMomentum::removeBackground(
    API::MatrixWorkspace_sptr dataws) {
  if (dataws->getNumberHistograms() != m_backgroundWS->getNumberHistograms())
    throw std::runtime_error("Impossible to have this situation");

  size_t numhist = dataws->getNumberHistograms();
  for (size_t i = 0; i < numhist; ++i) {
    double bkgd_y = m_backgroundWS->readY(i)[0];
    if (fabs(bkgd_y) > 1.E-2) {
      dataws->dataY(i)[0] -= bkgd_y;
      dataws->dataE(i)[0] = std::sqrt(dataws->readY(i)[0]);
    }
  }
}
示例#16
0
/** Unwraps the Y & E vectors of a spectrum according to the ranges found in
 * unwrapX.
 *  @param tempWS ::      A pointer to the temporary workspace in which the
 * results are being stored
 *  @param spectrum ::    The workspace index
 *  @param rangeBounds :: The upper and lower ranges for the unwrapping
 */
void UnwrapMonitor::unwrapYandE(const API::MatrixWorkspace_sptr &tempWS,
                                const int &spectrum,
                                const std::vector<int> &rangeBounds) {
  // Copy over the relevant ranges of Y & E data
  MantidVec &Y = tempWS->dataY(spectrum);
  MantidVec &E = tempWS->dataE(spectrum);
  // Get references to the input data
  const MantidVec &YIn = m_inputWS->dataY(spectrum);
  const MantidVec &EIn = m_inputWS->dataE(spectrum);
  if (rangeBounds[2] != -1) {
    // Copy in the upper range
    Y.assign(YIn.begin() + rangeBounds[2], YIn.end());
    E.assign(EIn.begin() + rangeBounds[2], EIn.end());
    // Propagate masking, if necessary
    if (m_inputWS->hasMaskedBins(spectrum)) {
      const MatrixWorkspace::MaskList &inputMasks =
          m_inputWS->maskedBins(spectrum);
      MatrixWorkspace::MaskList::const_iterator it;
      for (it = inputMasks.begin(); it != inputMasks.end(); ++it) {
        if (static_cast<int>((*it).first) >= rangeBounds[2])
          tempWS->flagMasked(spectrum, (*it).first - rangeBounds[2],
                             (*it).second);
      }
    }
  } else {
    // Y & E are references to existing vector. Assign above clears them, so
    // need to explicitly here
    Y.clear();
    E.clear();
  }
  if (rangeBounds[0] != -1 && rangeBounds[1] > 0) {
    // Now append the lower range
    MantidVec::const_iterator YStart = YIn.begin();
    MantidVec::const_iterator EStart = EIn.begin();
    Y.insert(Y.end(), YStart + rangeBounds[0], YStart + rangeBounds[1]);
    E.insert(E.end(), EStart + rangeBounds[0], EStart + rangeBounds[1]);
    // Propagate masking, if necessary
    if (m_inputWS->hasMaskedBins(spectrum)) {
      const MatrixWorkspace::MaskList &inputMasks =
          m_inputWS->maskedBins(spectrum);
      MatrixWorkspace::MaskList::const_iterator it;
      for (it = inputMasks.begin(); it != inputMasks.end(); ++it) {
        const int maskIndex = static_cast<int>((*it).first);
        if (maskIndex >= rangeBounds[0] && maskIndex < rangeBounds[1])
          tempWS->flagMasked(spectrum, maskIndex - rangeBounds[0],
                             (*it).second);
      }
    }
  }
}
示例#17
0
文件: LoadSPE.cpp 项目: mcvine/mantid
/** Reads in the data corresponding to a single spectrum
 *  @param speFile ::   The file handle
 *  @param workspace :: The output workspace
 *  @param index ::     The index of the current spectrum
 */
void LoadSPE::readHistogram(FILE *speFile, API::MatrixWorkspace_sptr workspace,
                            size_t index) {
  // First, there should be a comment line
  char comment[100];
  fgets(comment, 100, speFile);
  if (comment[0] != '#')
    reportFormatError(std::string(comment));

  // Then it's the Y values
  MantidVec &Y = workspace->dataY(index);
  const size_t nbins = workspace->blocksize();
  int retval;
  for (size_t i = 0; i < nbins; ++i) {
    retval = fscanf(speFile, "%10le", &Y[i]);
    // g_log.error() << Y[i] << std::endl;
    if (retval != 1) {
      std::stringstream ss;
      ss << "Reading data value" << i << " of histogram " << index;
      reportFormatError(ss.str());
    }
    // -10^30 is the flag for not a number used in SPE files (from
    // www.mantidproject.org/images/3/3d/Spe_file_format.pdf)
    if (Y[i] == SaveSPE::MASK_FLAG) {
      Y[i] = std::numeric_limits<double>::quiet_NaN();
    }
  }
  // Read to EOL
  fgets(comment, 100, speFile);

  // Another comment line
  fgets(comment, 100, speFile);
  if (comment[0] != '#')
    reportFormatError(std::string(comment));

  // And then the error values
  MantidVec &E = workspace->dataE(index);
  for (size_t i = 0; i < nbins; ++i) {
    retval = fscanf(speFile, "%10le", &E[i]);
    if (retval != 1) {
      std::stringstream ss;
      ss << "Reading error value" << i << " of histogram " << index;
      reportFormatError(ss.str());
    }
  }
  // Read to EOL
  fgets(comment, 100, speFile);

  return;
}
示例#18
0
/** Divide each bin by the width of its q bin.
 *  @param outputWS :: The output workspace
 *  @param qAxis ::    A vector of the q bin boundaries
 */
void SofQWCentre::makeDistribution(API::MatrixWorkspace_sptr outputWS,
                                   const std::vector<double> qAxis) {
  std::vector<double> widths(qAxis.size());
  std::adjacent_difference(qAxis.begin(), qAxis.end(), widths.begin());

  const size_t numQBins = outputWS->getNumberHistograms();
  for (size_t i = 0; i < numQBins; ++i) {
    MantidVec &Y = outputWS->dataY(i);
    MantidVec &E = outputWS->dataE(i);
    std::transform(Y.begin(), Y.end(), Y.begin(),
                   std::bind2nd(std::divides<double>(), widths[i + 1]));
    std::transform(E.begin(), E.end(), E.begin(),
                   std::bind2nd(std::divides<double>(), widths[i + 1]));
  }
}
示例#19
0
/**
 * Here is the main logic to perform the transformation, to calculate the bin
 *position in degree for each spectrum.
 *
 * The first part of the method is to check if the pixel position is inside the
 *ring defined as minRadio and maxRadio.
 *
 * To do this, it deducts the pixel position. This deduction follows the
 *followin assumption:
 *
 *  - the spectrum_index == row number
 *  - the position in the 'Y' direction is given by getAxis(1)[spectrum_index]
 *  - the position in the 'X' direction is the central point of the bin
 *(dataX[column] + dataX[column+1])/2
 *
 * Having the position of the pixel, as defined above, if the distance is
 *outside the ring defined by minRadio, maxRadio,
 * it defines the bin position as -1.
 *
 * If the pixel is inside the ring, it calculates the angle of the pixel and
 *calls fromAngleToBin to define the bin
 * position.
 * @param ws: pointer to the workspace
 * @param spectrum_index: index of the spectrum
 * @param bins_pos: bin positions (for each column inside the spectrum, the
 *correspondent bin_pos)
 */
void RingProfile::getBinForPixel(const API::MatrixWorkspace_sptr ws,
                                 int spectrum_index,
                                 std::vector<int> &bins_pos) {

  if (bins_pos.size() != ws->dataY(spectrum_index).size())
    throw std::runtime_error("Invalid bin positions vector");

  API::NumericAxis *oldAxis2 = dynamic_cast<API::NumericAxis *>(ws->getAxis(1));
  // assumption y position is the ws->getAxis(1)(spectrum_index)
  if (!oldAxis2) {
    throw std::logic_error("Failed to cast workspace axis to NumericAxis");
  }

  // calculate ypos, the difference of y - centre and  the square of this
  // difference
  double ypos = (*oldAxis2)(spectrum_index);
  double diffy = ypos - centre_y;
  double diffy_quad = pow(diffy, 2.0);

  // the reference to X bins (the limits for each pixel in the horizontal
  // direction)
  auto xvec = ws->dataX(spectrum_index);

  // for each pixel inside this row
  for (size_t i = 0; i < xvec.size() - 1; i++) {

    double xpos = (xvec[i] + xvec[i + 1]) /
                  2.0; // the x position is the centre of the bins boundaries
    double diffx = xpos - centre_x;
    // calculate the distance => norm of pixel position - centre
    double distance = sqrt(pow(diffx, 2.0) + diffy_quad);

    // check if the distance is inside the ring
    if (distance < min_radius || distance > max_radius || distance == 0) {
      bins_pos[i] = -1;
      continue;
    }

    double angle = atan2(diffy, diffx);

    // call fromAngleToBin (radians)
    bins_pos[i] = fromAngleToBin(angle, false);
  }
}
示例#20
0
/** Performs a transformation of the form: Q^A x I^B x Ln(Q^C x I^D x E) v Q^F x
 * I^G x Ln(Q^H x I^I x J).
 *  Uses the 'GeneralFunctionConstants' property where A-J are the 10 (ordered)
 * input constants.
 *  @param ws The workspace to be transformed
 *  @throw std::range_error if an attempt is made to take log of a negative
 * number
 */
void IQTransform::general(API::MatrixWorkspace_sptr ws) {
  MantidVec &X = ws->dataX(0);
  MantidVec &Y = ws->dataY(0);
  MantidVec &E = ws->dataE(0);
  const std::vector<double> C = getProperty("GeneralFunctionConstants");
  // Check for the correct number of elements
  if (C.size() != 10) {
    std::string mess(
        "The General transformation requires 10 values to be provided.");
    g_log.error(mess);
    throw std::invalid_argument(mess);
  }

  for (size_t i = 0; i < Y.size(); ++i) {
    double tmpX = std::pow(X[i], C[7]) * std::pow(Y[i], C[8]) * C[9];
    if (tmpX <= 0.0)
      throw std::range_error(
          "Attempt to take log of a zero or negative number.");
    tmpX = std::pow(X[i], C[5]) * std::pow(Y[i], C[6]) * std::log(tmpX);
    const double tmpY = std::pow(X[i], C[2]) * std::pow(Y[i], C[3]) * C[4];
    if (tmpY <= 0.0)
      throw std::range_error(
          "Attempt to take log of a zero or negative number.");
    const double newY =
        std::pow(X[i], C[0]) * std::pow(Y[i], C[1]) * std::log(tmpY);

    E[i] *= std::pow(X[i], C[0]) *
            (C[1] * std::pow(Y[i], C[1] - 1) * std::log(tmpY) +
             ((std::pow(Y[i], C[1]) * std::pow(X[i], C[2]) * C[4] * C[3] *
               std::pow(Y[i], C[3] - 1)) /
              tmpY));
    X[i] = tmpX;
    Y[i] = newY;
  }

  std::stringstream ylabel;
  ylabel << "Q^" << C[0] << " x I^" << C[1] << " x Ln( Q^" << C[2] << " x I^"
         << C[3] << " x " << C[4] << ")";
  ws->setYUnitLabel(ylabel.str());
  std::stringstream xlabel;
  xlabel << "Q^" << C[5] << " x I^" << C[6] << " x Ln( Q^" << C[7] << " x I^"
         << C[8] << " x " << C[9] << ")";
  m_label->setLabel(xlabel.str());
}
示例#21
0
/** Performs the Debye-Bueche transformation: 1/sqrt(I) v Q^2
 *  The output is set to zero for negative input Y values
 *  @param ws The workspace to be transformed
 */
void IQTransform::debyeBueche(API::MatrixWorkspace_sptr ws) {
  MantidVec &X = ws->dataX(0);
  MantidVec &Y = ws->dataY(0);
  MantidVec &E = ws->dataE(0);
  std::transform(X.begin(), X.end(), X.begin(),
                 VectorHelper::Squares<double>());
  for (size_t i = 0; i < Y.size(); ++i) {
    if (Y[i] > 0.0) {
      Y[i] = 1.0 / std::sqrt(Y[i]);
      E[i] *= std::pow(Y[i], 3);
    } else {
      Y[i] = 0.0;
      E[i] = 0.0;
    }
  }

  ws->setYUnitLabel("1/sqrt(I)");
  m_label->setLabel("Q^2");
}
/** Zeroes all data points outside the X values given
 *  @param outputWorkspace :: The output workspace - data has already been
 * copied
 *  @param inIndex ::         The workspace index of the spectrum in the input
 * workspace
 *  @param outIndex ::        The workspace index of the spectrum in the output
 * workspace
 */
void ExtractSpectra::cropRagged(API::MatrixWorkspace_sptr outputWorkspace,
                                int inIndex, int outIndex) {
  MantidVec &Y = outputWorkspace->dataY(outIndex);
  MantidVec &E = outputWorkspace->dataE(outIndex);
  const size_t size = Y.size();
  size_t startX = this->getXMin(inIndex);
  if (startX > size)
    startX = size;
  for (size_t i = 0; i < startX; ++i) {
    Y[i] = 0.0;
    E[i] = 0.0;
  }
  size_t endX = this->getXMax(inIndex);
  if (endX > 0)
    endX -= m_histogram;
  for (size_t i = endX; i < size; ++i) {
    Y[i] = 0.0;
    E[i] = 0.0;
  }
}
示例#23
0
/**
 * Perform a call to nxgetslab, via the NexusClasses wrapped methods for a given blocksize. This assumes that the
 * xbins have alread been cached
 * @param data :: The NXDataSet object of y values
 * @param errors :: The NXDataSet object of error values
 * @param blocksize :: The blocksize to use
 * @param nchannels :: The number of channels for the block
 * @param hist :: The workspace index to start reading into
 * @param local_workspace :: A pointer to the workspace
 */
void LoadNexusProcessed::loadBlock(NXDataSetTyped<double> & data, NXDataSetTyped<double> & errors,
    int64_t blocksize, int64_t nchannels, int64_t &hist,
    API::MatrixWorkspace_sptr local_workspace)
{
  data.load(static_cast<int>(blocksize),static_cast<int>(hist));
  errors.load(static_cast<int>(blocksize),static_cast<int>(hist));
  double *data_start = data();
  double *data_end = data_start + nchannels;
  double *err_start = errors();
  double *err_end = err_start + nchannels;
  int64_t final(hist + blocksize);
  while( hist < final )
  {
    MantidVec& Y = local_workspace->dataY(hist);
    Y.assign(data_start, data_end);
    data_start += nchannels; data_end += nchannels;
    MantidVec& E = local_workspace->dataE(hist);
    E.assign(err_start, err_end);
    err_start += nchannels; err_end += nchannels;
    local_workspace->setX(hist, m_xbins);
    ++hist;
  }
}
示例#24
0
/** Carries out the bin-by-bin normalisation
 *  @param inputWorkspace The input workspace
 *  @param outputWorkspace The result workspace
 */
void NormaliseToMonitor::normaliseBinByBin(API::MatrixWorkspace_sptr inputWorkspace,
                                           API::MatrixWorkspace_sptr& outputWorkspace)
{ 
  EventWorkspace_sptr inputEvent = boost::dynamic_pointer_cast<EventWorkspace>(inputWorkspace);
  EventWorkspace_sptr outputEvent;

  // Only create output workspace if different to input one
  if (outputWorkspace != inputWorkspace )
  {
    if (inputEvent)
    {
      //Make a brand new EventWorkspace
      outputEvent = boost::dynamic_pointer_cast<EventWorkspace>(
          API::WorkspaceFactory::Instance().create("EventWorkspace", inputEvent->getNumberHistograms(), 2, 1));
      //Copy geometry and data
      API::WorkspaceFactory::Instance().initializeFromParent(inputEvent, outputEvent, false);
      outputEvent->copyDataFrom( (*inputEvent) );
      outputWorkspace = boost::dynamic_pointer_cast<MatrixWorkspace>(outputEvent);
    }
    else
      outputWorkspace = WorkspaceFactory::Instance().create(inputWorkspace);
  }

  // Get hold of the monitor spectrum
  const MantidVec& monX = m_monitor->readX(0);
  MantidVec& monY = m_monitor->dataY(0);
  MantidVec& monE = m_monitor->dataE(0);
  // Calculate the overall normalisation just the once if bins are all matching
  if (m_commonBins) this->normalisationFactor(m_monitor->readX(0),&monY,&monE);


  const size_t numHists = inputWorkspace->getNumberHistograms();
  MantidVec::size_type specLength = inputWorkspace->blocksize();
  Progress prog(this,0.0,1.0,numHists);
  // Loop over spectra
  PARALLEL_FOR3(inputWorkspace,outputWorkspace,m_monitor)
  for (int64_t i = 0; i < int64_t(numHists); ++i)
  {
    PARALLEL_START_INTERUPT_REGION
    prog.report();

    const MantidVec& X = inputWorkspace->readX(i);
    // If not rebinning, just point to our monitor spectra, otherwise create new vectors
    MantidVec* Y = ( m_commonBins ? &monY : new MantidVec(specLength) );
    MantidVec* E = ( m_commonBins ? &monE : new MantidVec(specLength) );

    if (!m_commonBins)
    {
      // ConvertUnits can give X vectors of all zeroes - skip these, they cause problems
      if (X.back() == 0.0 && X.front() == 0.0) continue;
      // Rebin the monitor spectrum to match the binning of the current data spectrum
      VectorHelper::rebinHistogram(monX,monY,monE,X,*Y,*E,false);
      // Recalculate the overall normalisation factor
      this->normalisationFactor(X,Y,E);
    }

    if (inputEvent)
    {
      // ----------------------------------- EventWorkspace ---------------------------------------
      EventList & outEL = outputEvent->getEventList(i);
      outEL.divide(X, *Y, *E);
    }
    else
    {
      // ----------------------------------- Workspace2D ---------------------------------------
      const MantidVec& inY = inputWorkspace->readY(i);
      const MantidVec& inE = inputWorkspace->readE(i);
      MantidVec& YOut = outputWorkspace->dataY(i);
      MantidVec& EOut = outputWorkspace->dataE(i);
      outputWorkspace->dataX(i) = inputWorkspace->readX(i);
      // The code below comes more or less straight out of Divide.cpp
      for (MantidVec::size_type k = 0; k < specLength; ++k)
      {
        // Get references to the input Y's
        const double& leftY = inY[k];
        const double& rightY = (*Y)[k];

        // Calculate result and store in local variable to avoid overwriting original data if
        // output workspace is same as one of the input ones
        const double newY = leftY/rightY;

        if (fabs(rightY)>1.0e-12 && fabs(newY)>1.0e-12)
        {
          const double lhsFactor = (inE[k]<1.0e-12|| fabs(leftY)<1.0e-12) ? 0.0 : pow((inE[k]/leftY),2);
          const double rhsFactor = (*E)[k]<1.0e-12 ? 0.0 : pow(((*E)[k]/rightY),2);
          EOut[k] = std::abs(newY) * sqrt(lhsFactor+rhsFactor);
        }

        // Now store the result
        YOut[k] = newY;
      } // end Workspace2D case
    } // end loop over current spectrum

    if (!m_commonBins) { delete Y; delete E; }
    PARALLEL_END_INTERUPT_REGION
  } // end loop over spectra
  PARALLEL_CHECK_INTERUPT_REGION
}
示例#25
0
		/** Executes the rebin algorithm
		*
		*  @throw runtime_error Thrown if
		*/
		void Rebunch::exec()
		{
			// retrieve the properties
			int n_bunch=getProperty("NBunch");

			// Get the input workspace
			MatrixWorkspace_const_sptr inputW = getProperty("InputWorkspace");

			bool dist = inputW->isDistribution();

			// workspace independent determination of length
                        int histnumber = static_cast<int>(inputW->size()/inputW->blocksize());

			/*
			const std::vector<double>& Xold = inputW->readX(0);
			const std::vector<double>& Yold = inputW->readY(0);
			int size_x=Xold.size();
			int size_y=Yold.size();
			*/
                        int size_x = static_cast<int>(inputW->readX(0).size());
                        int size_y = static_cast<int>(inputW->readY(0).size());

			//signal is the same length for histogram and point data
			int ny=(size_y/n_bunch);
			if(size_y%n_bunch >0)ny+=1;
			// default is for hist
			int nx=ny+1;
			bool point=false;
			if (size_x==size_y)
			{
				point=true;
				nx=ny;
			}

			// make output Workspace the same type is the input, but with new length of signal array
			API::MatrixWorkspace_sptr outputW = API::WorkspaceFactory::Instance().create(inputW,histnumber,nx,ny);

            int progress_step = histnumber / 100;
            if (progress_step == 0) progress_step = 1;
			PARALLEL_FOR2(inputW,outputW)
			for (int hist=0; hist <  histnumber;hist++)
			{
				PARALLEL_START_INTERUPT_REGION
				// Ensure that axis information are copied to the output workspace if the axis exists
			        try
				{
				  outputW->getAxis(1)->spectraNo(hist)=inputW->getAxis(1)->spectraNo(hist);
				}
				catch( Exception::IndexError& )
				{ 
				  // Not a Workspace2D
				}

				// get const references to input Workspace arrays (no copying)
				const MantidVec& XValues = inputW->readX(hist);
				const MantidVec& YValues = inputW->readY(hist);
				const MantidVec& YErrors = inputW->readE(hist);

				//get references to output workspace data (no copying)
				MantidVec& XValues_new=outputW->dataX(hist);
				MantidVec& YValues_new=outputW->dataY(hist);
				MantidVec& YErrors_new=outputW->dataE(hist);

				// output data arrays are implicitly filled by function
				if(point)
				{
					rebunch_point(XValues,YValues,YErrors,XValues_new,YValues_new,YErrors_new,n_bunch);
				}
				else
				{
					rebunch_hist(XValues,YValues,YErrors,XValues_new,YValues_new,YErrors_new,n_bunch, dist);
				}

				if (hist % progress_step == 0)
				{
				  progress(double(hist)/histnumber);
				  interruption_point();
				}
				PARALLEL_END_INTERUPT_REGION
			}
			PARALLEL_CHECK_INTERUPT_REGION
			outputW->isDistribution(dist);

			// Copy units
			if (outputW->getAxis(0)->unit().get())
			  outputW->getAxis(0)->unit() = inputW->getAxis(0)->unit();
			try
			{
			  if (inputW->getAxis(1)->unit().get())
			    outputW->getAxis(1)->unit() = inputW->getAxis(1)->unit();
			}
			catch(Exception::IndexError&) {
			  // OK, so this isn't a Workspace2D
			}

			// Assign it to the output workspace property
			setProperty("OutputWorkspace",outputW);

			return;
		}
示例#26
0
/**
*  Move the user selected spectra in the input workspace into groups in the output workspace
*  @param inputWS :: user selected input workspace for the algorithm
*  @param outputWS :: user selected output workspace for the algorithm
*  @param prog4Copy :: the amount of algorithm progress to attribute to moving a single spectra
*  @return number of new grouped spectra
*/
size_t GroupDetectors2::formGroupsEvent( DataObjects::EventWorkspace_const_sptr inputWS, DataObjects::EventWorkspace_sptr  outputWS,
            const double prog4Copy)
{
  // get "Behaviour" string
  const std::string behaviour = getProperty("Behaviour");
  int bhv = 0;
  if ( behaviour == "Average" ) bhv = 1;

  API::MatrixWorkspace_sptr beh = API::WorkspaceFactory::Instance().create(
    "Workspace2D", static_cast<int>(m_GroupSpecInds.size()), 1, 1);

  g_log.debug() << name() << ": Preparing to group spectra into " << m_GroupSpecInds.size() << " groups\n";


  // where we are copying spectra to, we start copying to the start of the output workspace
  size_t outIndex = 0;
  // Only used for averaging behaviour. We may have a 1:1 map where a Divide would be waste as it would be just dividing by 1
  bool requireDivide(false);
  for ( storage_map::const_iterator it = m_GroupSpecInds.begin(); it != m_GroupSpecInds.end() ; ++it )
  {
    // This is the grouped spectrum
    EventList & outEL = outputWS->getEventList(outIndex);

    // The spectrum number of the group is the key
    outEL.setSpectrumNo(it->first);
    // Start fresh with no detector IDs
    outEL.clearDetectorIDs();

    // the Y values and errors from spectra being grouped are combined in the output spectrum
    // Keep track of number of detectors required for masking
    size_t nonMaskedSpectra(0);
    beh->dataX(outIndex)[0] = 0.0;
    beh->dataE(outIndex)[0] = 0.0;
    for( std::vector<size_t>::const_iterator wsIter = it->second.begin(); wsIter != it->second.end(); ++wsIter)
    {
      const size_t originalWI = *wsIter;

      const EventList & fromEL=inputWS->getEventList(originalWI);
      //Add the event lists with the operator
      outEL += fromEL;


      // detectors to add to the output spectrum
      outEL.addDetectorIDs(fromEL.getDetectorIDs() );
      try
      {
        Geometry::IDetector_const_sptr det = inputWS->getDetector(originalWI);
        if( !det->isMasked() ) ++nonMaskedSpectra;
      }
      catch(Exception::NotFoundError&)
      {
        // If a detector cannot be found, it cannot be masked
        ++nonMaskedSpectra;
      }
    }
    if( nonMaskedSpectra == 0 ) ++nonMaskedSpectra; // Avoid possible divide by zero
    if(!requireDivide) requireDivide = (nonMaskedSpectra > 1);
    beh->dataY(outIndex)[0] = static_cast<double>(nonMaskedSpectra);

    // make regular progress reports and check for cancelling the algorithm
    if ( outIndex % INTERVAL == 0 )
    {
      m_FracCompl += INTERVAL*prog4Copy;
      if ( m_FracCompl > 1.0 )
        m_FracCompl = 1.0;
      progress(m_FracCompl);
      interruption_point();
    }
    outIndex ++;
  }

  // Refresh the spectraDetectorMap
  outputWS->doneAddingEventLists();

  if ( bhv == 1 && requireDivide )
  {
    g_log.debug() << "Running Divide algorithm to perform averaging.\n";
    Mantid::API::IAlgorithm_sptr divide = createChildAlgorithm("Divide");
    divide->initialize();
    divide->setProperty<API::MatrixWorkspace_sptr>("LHSWorkspace", outputWS);
    divide->setProperty<API::MatrixWorkspace_sptr>("RHSWorkspace", beh);
    divide->setProperty<API::MatrixWorkspace_sptr>("OutputWorkspace", outputWS);
    divide->execute();
  }


  g_log.debug() << name() << " created " << outIndex << " new grouped spectra\n";
  return outIndex;
}
示例#27
0
/**
*  Move the user selected spectra in the input workspace into groups in the output workspace
*  @param inputWS :: user selected input workspace for the algorithm
*  @param outputWS :: user selected output workspace for the algorithm
*  @param prog4Copy :: the amount of algorithm progress to attribute to moving a single spectra
*  @return number of new grouped spectra
*/
size_t GroupDetectors2::formGroups( API::MatrixWorkspace_const_sptr inputWS, API::MatrixWorkspace_sptr outputWS, 
            const double prog4Copy)
{
  // get "Behaviour" string
  const std::string behaviour = getProperty("Behaviour");
  int bhv = 0;
  if ( behaviour == "Average" ) bhv = 1;

  API::MatrixWorkspace_sptr beh = API::WorkspaceFactory::Instance().create(
    "Workspace2D", static_cast<int>(m_GroupSpecInds.size()), 1, 1);

  g_log.debug() << name() << ": Preparing to group spectra into " << m_GroupSpecInds.size() << " groups\n";

  // where we are copying spectra to, we start copying to the start of the output workspace
  size_t outIndex = 0;
  // Only used for averaging behaviour. We may have a 1:1 map where a Divide would be waste as it would be just dividing by 1
  bool requireDivide(false);
  for ( storage_map::const_iterator it = m_GroupSpecInds.begin(); it != m_GroupSpecInds.end() ; ++it )
  {
    // This is the grouped spectrum
    ISpectrum * outSpec = outputWS->getSpectrum(outIndex);

    // The spectrum number of the group is the key
    outSpec->setSpectrumNo(it->first);
    // Start fresh with no detector IDs
    outSpec->clearDetectorIDs();

    // Copy over X data from first spectrum, the bin boundaries for all spectra are assumed to be the same here
    outSpec->dataX() = inputWS->readX(0);

    // the Y values and errors from spectra being grouped are combined in the output spectrum
    // Keep track of number of detectors required for masking
    size_t nonMaskedSpectra(0);
    beh->dataX(outIndex)[0] = 0.0;
    beh->dataE(outIndex)[0] = 0.0;
    for( std::vector<size_t>::const_iterator wsIter = it->second.begin(); wsIter != it->second.end(); ++wsIter)
    {
      const size_t originalWI = *wsIter;

      // detectors to add to firstSpecNum
      const ISpectrum * fromSpectrum = inputWS->getSpectrum(originalWI);

      // Add up all the Y spectra and store the result in the first one
      // Need to keep the next 3 lines inside loop for now until ManagedWorkspace mru-list works properly
      MantidVec &firstY = outSpec->dataY();
      MantidVec::iterator fYit;
      MantidVec::iterator fEit = outSpec->dataE().begin();
      MantidVec::const_iterator Yit = fromSpectrum->dataY().begin();
      MantidVec::const_iterator Eit = fromSpectrum->dataE().begin();
      for (fYit = firstY.begin(); fYit != firstY.end(); ++fYit, ++fEit, ++Yit, ++Eit)
      {
        *fYit += *Yit;
        // Assume 'normal' (i.e. Gaussian) combination of errors
        *fEit = std::sqrt( (*fEit)*(*fEit) + (*Eit)*(*Eit) );
      }

      // detectors to add to the output spectrum
      outSpec->addDetectorIDs(fromSpectrum->getDetectorIDs() );
      try
      {
        Geometry::IDetector_const_sptr det = inputWS->getDetector(originalWI);
        if( !det->isMasked() ) ++nonMaskedSpectra;
      }
      catch(Exception::NotFoundError&)
      {
        // If a detector cannot be found, it cannot be masked
        ++nonMaskedSpectra;
      }
    }
    if( nonMaskedSpectra == 0 ) ++nonMaskedSpectra; // Avoid possible divide by zero
    if(!requireDivide) requireDivide = (nonMaskedSpectra > 1);
    beh->dataY(outIndex)[0] = static_cast<double>(nonMaskedSpectra);

    // make regular progress reports and check for cancelling the algorithm
    if ( outIndex % INTERVAL == 0 )
    {
      m_FracCompl += INTERVAL*prog4Copy;
      if ( m_FracCompl > 1.0 )
        m_FracCompl = 1.0;
      progress(m_FracCompl);
      interruption_point();
    }
    outIndex ++;
  }
  
  // Refresh the spectraDetectorMap
  outputWS->generateSpectraMap();

  if ( bhv == 1 && requireDivide )
  {
    g_log.debug() << "Running Divide algorithm to perform averaging.\n";
    Mantid::API::IAlgorithm_sptr divide = createChildAlgorithm("Divide");
    divide->initialize();
    divide->setProperty<API::MatrixWorkspace_sptr>("LHSWorkspace", outputWS);
    divide->setProperty<API::MatrixWorkspace_sptr>("RHSWorkspace", beh);
    divide->setProperty<API::MatrixWorkspace_sptr>("OutputWorkspace", outputWS);
    divide->execute();
  }

  g_log.debug() << name() << " created " << outIndex << " new grouped spectra\n";
  return outIndex;
}
示例#28
0
    /** 
     * Takes a single valued histogram workspace and assesses which histograms are within the limits. 
     * Those that are not are masked on the input workspace.
     * @param countsWS :: Input/Output Integrated workspace to diagnose.
     * @param medianvec The median value calculated from the current counts.
     * @param indexmap Index map.
     * @param maskWS :: A mask workspace to apply.
     * @return The number of detectors that failed the tests, not including those skipped.
     */
    int MedianDetectorTest::doDetectorTests(const API::MatrixWorkspace_sptr countsWS, const std::vector<double> medianvec,
                                            std::vector<std::vector<size_t> > indexmap, API::MatrixWorkspace_sptr maskWS)
    {
      g_log.debug("Applying the criteria to find failing detectors");

      // A spectra can't fail if the statistics show its value is consistent with the mean value, 
      // check the error and how many errorbars we are away
      const double minSigma = getProperty("SignificanceTest");

      // prepare to report progress
      const int numSpec(m_maxSpec - m_minSpec);
      const int progStep = static_cast<int>(ceil(numSpec/30.0));
      int steps(0);

      const double deadValue(1.0);
      int numFailed(0);


      bool checkForMask = false;
      Geometry::Instrument_const_sptr instrument = countsWS->getInstrument();
      if (instrument != NULL)
      {
        checkForMask = ((instrument->getSource() != NULL) && (instrument->getSample() != NULL));
      }

      PARALLEL_FOR2(countsWS, maskWS)
      for (int j=0;j<static_cast<int>(indexmap.size());++j)
      {
        std::vector<size_t> hists=indexmap.at(j);
        double median=medianvec.at(j);
        const size_t nhist = hists.size();
        g_log.debug() << "new component with " <<nhist <<" spectra.\n";
        for (size_t i = 0; i < nhist; ++i)
        {
          g_log.debug() << "Counts workspace index=" << i 
                        << ", Mask workspace index=" << hists.at(i) << std::endl;
          PARALLEL_START_INTERUPT_REGION
          ++steps;
          // update the progressbar information
          if (steps % progStep == 0)
          {
            progress(advanceProgress(progStep*static_cast<double>(RTMarkDetects)/numSpec));
          }

          if (checkForMask)
          {
            const std::set<detid_t>& detids = countsWS->getSpectrum(i)->getDetectorIDs();
            if (instrument->isDetectorMasked(detids))
            {
              maskWS->dataY(hists.at(i))[0] = deadValue;
              continue;
            }
            if (instrument->isMonitor(detids))
            {
              // Don't include in calculation but don't mask it
              continue;
            }
          }

          const double signal = countsWS->dataY(hists.at(i))[0];

          // Mask out NaN and infinite
          if( boost::math::isinf(signal) || boost::math::isnan(signal) )
          {
            maskWS->dataY(hists.at(i))[0] = deadValue;
            PARALLEL_ATOMIC
            ++numFailed;
            continue;
          }

          const double error = minSigma*countsWS->readE(hists.at(i))[0];

          if( (signal < median*m_loFrac && (signal-median < -error)) ||
              (signal > median*m_hiFrac && (signal-median > error)) )
          {
            maskWS->dataY(hists.at(i))[0] = deadValue;
            PARALLEL_ATOMIC
            ++numFailed;
          }

          PARALLEL_END_INTERUPT_REGION
        }
        PARALLEL_CHECK_INTERUPT_REGION

      // Log finds
      g_log.information() << numFailed << " spectra failed the median tests.\n";

      }
      return numFailed;
    }
示例#29
0
  /** Generate peaks in the given output workspace
    * @param functionmap :: map to contain the list of functions with key as their spectra
    * @param dataWS :: output matrix workspace
    */
  void GeneratePeaks::generatePeaks(const std::map<specid_t, std::vector<std::pair<double, API::IFunction_sptr> > >& functionmap,
                                    API::MatrixWorkspace_sptr dataWS)
  {
    // Calcualte function
    std::map<specid_t, std::vector<std::pair<double, API::IFunction_sptr> > >::const_iterator mapiter;
    for (mapiter = functionmap.begin(); mapiter != functionmap.end(); ++mapiter)
    {
      // Get spec id and translated to wsindex in the output workspace
      specid_t specid = mapiter->first;
      specid_t wsindex;
      if (m_newWSFromParent) wsindex = specid;
      else wsindex = m_SpectrumMap[specid];

      const std::vector<std::pair<double, API::IFunction_sptr> >& vec_centrefunc = mapiter->second;
      size_t numpeaksinspec = mapiter->second.size();

      for (size_t ipeak = 0; ipeak < numpeaksinspec; ++ipeak)
      {
        const std::pair<double, API::IFunction_sptr>& centrefunc = vec_centrefunc[ipeak];

        // Determine boundary
        API::IPeakFunction_sptr thispeak = getPeakFunction(centrefunc.second);
        double centre = centrefunc.first;
        double fwhm = thispeak->fwhm();

        //
        const MantidVec& X = dataWS->dataX(wsindex);
        double leftbound = centre - m_numPeakWidth*fwhm;
        if (ipeak > 0)
        {
          // Not left most peak.
          API::IPeakFunction_sptr leftPeak = getPeakFunction(vec_centrefunc[ipeak-1].second);

          double middle = 0.5*(centre + leftPeak->centre());
          if (leftbound < middle)
            leftbound = middle;
        }
        std::vector<double>::const_iterator left = std::lower_bound(X.begin(), X.end(), leftbound);
        if (left == X.end())
          left = X.begin();

        double rightbound = centre + m_numPeakWidth*fwhm;
        if (ipeak != numpeaksinspec-1)
        {
          // Not the rightmost peak
          IPeakFunction_sptr rightPeak = getPeakFunction(vec_centrefunc[ipeak+1].second);
          double middle = 0.5*(centre + rightPeak->centre());
          if (rightbound > middle)
            rightbound = middle;
        }
        std::vector<double>::const_iterator right = std::lower_bound(left + 1, X.end(), rightbound);

        // Build domain & function
        API::FunctionDomain1DVector domain(left, right); //dataWS->dataX(wsindex));

        // Evaluate the function
        API::FunctionValues values(domain);
        centrefunc.second->function(domain, values);

        // Put to output
        std::size_t offset = (left-X.begin());
        std::size_t numY = values.size();
        for (std::size_t i = 0; i < numY; i ++)
        {
          dataWS->dataY(wsindex)[i + offset] += values[i];
        }

      } // ENDFOR(ipeak)

    }

    return;
  }
示例#30
0
/** Executes the algorithm
 *
 */
void SplineBackground::exec()
{

  API::MatrixWorkspace_sptr inWS = getProperty("InputWorkspace");
  int spec = getProperty("WorkspaceIndex");

  if (spec > static_cast<int>(inWS->getNumberHistograms()))
    throw std::out_of_range("WorkspaceIndex is out of range.");

  const MantidVec& X = inWS->readX(spec);
  const MantidVec& Y = inWS->readY(spec);
  const MantidVec& E = inWS->readE(spec);
  const bool isHistogram = inWS->isHistogramData();

  const int ncoeffs = getProperty("NCoeff");
  const int k = 4; // order of the spline + 1 (cubic)
  const int nbreak = ncoeffs - (k - 2);

  if (nbreak <= 0)
    throw std::out_of_range("Too low NCoeff");

  gsl_bspline_workspace *bw;
  gsl_vector *B;

  gsl_vector *c, *w, *x, *y;
  gsl_matrix *Z, *cov;
  gsl_multifit_linear_workspace *mw;
  double chisq;

  int n = static_cast<int>(Y.size());
  bool isMasked = inWS->hasMaskedBins(spec);
  std::vector<int> masked(Y.size());
  if (isMasked)
  {
    for(API::MatrixWorkspace::MaskList::const_iterator it=inWS->maskedBins(spec).begin();it!=inWS->maskedBins(spec).end();++it)
      masked[it->first] = 1;
    n -= static_cast<int>(inWS->maskedBins(spec).size());
  }

  if (n < ncoeffs)
  {
    g_log.error("Too many basis functions (NCoeff)");
    throw std::out_of_range("Too many basis functions (NCoeff)");
  }

  /* allocate a cubic bspline workspace (k = 4) */
  bw = gsl_bspline_alloc(k, nbreak);
  B = gsl_vector_alloc(ncoeffs);

  x = gsl_vector_alloc(n);
  y = gsl_vector_alloc(n);
  Z = gsl_matrix_alloc(n, ncoeffs);
  c = gsl_vector_alloc(ncoeffs);
  w = gsl_vector_alloc(n);
  cov = gsl_matrix_alloc(ncoeffs, ncoeffs);
  mw = gsl_multifit_linear_alloc(n, ncoeffs);

  /* this is the data to be fitted */
  int j = 0;
  for (MantidVec::size_type i = 0; i < Y.size(); ++i)
  {
    if (isMasked && masked[i]) continue;
    gsl_vector_set(x, j, (isHistogram ? (0.5*(X[i]+X[i+1])) : X[i])); // Middle of the bins, if a histogram
    gsl_vector_set(y, j, Y[i]);
    gsl_vector_set(w, j, E[i]>0.?1./(E[i]*E[i]):0.);

    ++j;
  }

  if (n != j)
  {
    gsl_bspline_free(bw);
    gsl_vector_free(B);
    gsl_vector_free(x);
    gsl_vector_free(y);
    gsl_matrix_free(Z);
    gsl_vector_free(c);
    gsl_vector_free(w);
    gsl_matrix_free(cov);
    gsl_multifit_linear_free(mw);

    throw std::runtime_error("Assertion failed: n != j");
  }

  double xStart = X.front();
  double xEnd =   X.back();

  /* use uniform breakpoints */
  gsl_bspline_knots_uniform(xStart, xEnd, bw);

  /* construct the fit matrix X */
  for (int i = 0; i < n; ++i)
  {
    double xi=gsl_vector_get(x, i);

    /* compute B_j(xi) for all j */
    gsl_bspline_eval(xi, B, bw);

    /* fill in row i of X */
    for (j = 0; j < ncoeffs; ++j)
    {
      double Bj = gsl_vector_get(B, j);
      gsl_matrix_set(Z, i, j, Bj);
    }
  }

  /* do the fit */
  gsl_multifit_wlinear(Z, w, y, c, cov, &chisq, mw);

  /* output the smoothed curve */
  API::MatrixWorkspace_sptr outWS = WorkspaceFactory::Instance().create(inWS,1,X.size(),Y.size());
  {
    outWS->getAxis(1)->setValue(0, inWS->getAxis(1)->spectraNo(spec));
    double xi, yi, yerr;
    for (MantidVec::size_type i=0;i<Y.size();i++)
    {
      xi = X[i];
      gsl_bspline_eval(xi, B, bw);
      gsl_multifit_linear_est(B, c, cov, &yi, &yerr);
      outWS->dataY(0)[i] = yi;
      outWS->dataE(0)[i] = yerr;
    }
    outWS->dataX(0) = X;
  }

  gsl_bspline_free(bw);
  gsl_vector_free(B);
  gsl_vector_free(x);
  gsl_vector_free(y);
  gsl_matrix_free(Z);
  gsl_vector_free(c);
  gsl_vector_free(w);
  gsl_matrix_free(cov);
  gsl_multifit_linear_free(mw);

  setProperty("OutputWorkspace",outWS);

}