示例#1
0
        svm_vector(const backend::command_queue &q, size_t n) : n(n), q(q), p(NULL) {
            q.context().set_current();

            CUdeviceptr dptr;
            cuda_check( cuMemAllocManaged(&dptr, n * sizeof(T), CU_MEM_ATTACH_GLOBAL) );
            p = reinterpret_cast<T*>(static_cast<size_t>(dptr));
        }
示例#2
0
inline kernel_call transpose_kernel(
        const backend::command_queue &queue, size_t width, size_t height,
        const backend::device_vector<T2> &in,
        const backend::device_vector<T2> &out
        )
{
    backend::source_generator o;
    kernel_common<T>(o, queue);

    // determine max block size to fit into local memory/workgroup
    size_t block_size = 128;
    {
#ifndef VEXCL_BACKEND_CUDA
        cl_device_id dev = backend::get_device_id(queue);
        cl_ulong local_size;
        size_t workgroup;
        clGetDeviceInfo(dev, CL_DEVICE_LOCAL_MEM_SIZE, sizeof(cl_ulong), &local_size, NULL);
        clGetDeviceInfo(dev, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &workgroup, NULL);
#else
        const auto local_size = queue.device().max_shared_memory_per_block();
        const auto workgroup = queue.device().max_threads_per_block();
#endif
        while(block_size * block_size * sizeof(T) * 2 > local_size) block_size /= 2;
        while(block_size * block_size > workgroup) block_size /= 2;
    }

    // from NVIDIA SDK.
    o.kernel("transpose").open("(")
        .template parameter< global_ptr<const T2> >("input")
        .template parameter< global_ptr<      T2> >("output")
        .template parameter< cl_uint              >("width")
        .template parameter< cl_uint              >("height")
    .close(")").open("{");

    o.new_line() << "const size_t global_x = " << o.global_id(0) << ";";
    o.new_line() << "const size_t global_y = " << o.global_id(1) << ";";
    o.new_line() << "const size_t local_x  = " << o.local_id(0)  << ";";
    o.new_line() << "const size_t local_y  = " << o.local_id(1)  << ";";
    o.new_line() << "const size_t group_x  = " << o.group_id(0)  << ";";
    o.new_line() << "const size_t group_y  = " << o.group_id(1)  << ";";
    o.new_line() << "const size_t target_x = local_y + group_y * " << block_size << ";";
    o.new_line() << "const size_t target_y = local_x + group_x * " << block_size << ";";
    o.new_line() << "const bool range = global_x < width && global_y < height;";

    // local memory
    {
        std::ostringstream s;
        s << "block[" << block_size * block_size << "]";
        o.smem_static_var(type_name<T2>(), s.str());
    }

    // copy from input to local memory
    o.new_line() << "if(range) "
        << "block[local_x + local_y * " << block_size << "] = input[global_x + global_y * width];";

    // wait until the whole block is filled
    o.new_line().barrier();

    // transpose local block to target
    o.new_line() << "if(range) "
      << "output[target_x + target_y * height] = block[local_x + local_y * " << block_size << "];";

    o.close("}");

    backend::kernel kernel(queue, o.str(), "transpose");

    kernel.push_arg(in);
    kernel.push_arg(out);
    kernel.push_arg(static_cast<cl_uint>(width));
    kernel.push_arg(static_cast<cl_uint>(height));

    // range multiple of wg size, last block maybe not completely filled.
    size_t r_w = (width  + block_size - 1) / block_size;
    size_t r_h = (height + block_size - 1) / block_size;

    kernel.config(backend::ndrange(r_w, r_h), backend::ndrange(block_size, block_size));

    std::ostringstream desc;
    desc << "transpose{"
         << "w=" << width << "(" << r_w << "), "
         << "h=" << height << "(" << r_h << "), "
         << "bs=" << block_size << "}";

    return kernel_call(false, desc.str(), kernel);
}
示例#3
0
文件: kernel.hpp 项目: ds283/vexcl
 size_t preferred_work_group_size_multiple(const backend::command_queue &q) const {
     return q.device().warp_size();
 }