示例#1
0
PyObject*  MeshPy::splitFacet(PyObject *args)
{
    unsigned long facet;
    PyObject* vertex1;
    PyObject* vertex2;
    if (!PyArg_ParseTuple(args, "kO!O!", &facet, &Base::VectorPy::Type, &vertex1, 
                                                 &Base::VectorPy::Type, &vertex2))
        return NULL;

    Base::VectorPy  *pcObject = static_cast<Base::VectorPy*>(vertex1);
    Base::Vector3d* val = pcObject->getVectorPtr();
    Base::Vector3f v1((float)val->x,(float)val->y,(float)val->z);

    pcObject = static_cast<Base::VectorPy*>(vertex2);
    val = pcObject->getVectorPtr();
    Base::Vector3f v2((float)val->x,(float)val->y,(float)val->z);

    const MeshCore::MeshKernel& kernel = getMeshObjectPtr()->getKernel();
    PY_TRY {
        if (facet < 0 || facet >= kernel.CountFacets()) {
            PyErr_SetString(PyExc_IndexError, "Facet index out of range");
            return NULL;
        }
        
        getMeshObjectPtr()->splitFacet(facet, v1, v2);
    } PY_CATCH;

    Py_Return; 
}
示例#2
0
PyObject* MatrixPy::transform(PyObject * args)
{
    Base::Vector3d vec;
    Matrix4D mat;
    PyObject *pcVecObj,*pcMatObj;

    if (PyArg_ParseTuple(args, "O!O!: a transform point (Vector) and a transform matrix (Matrix) is needed",
        &(Base::VectorPy::Type), &pcVecObj, &(MatrixPy::Type), &pcMatObj) ) {   // convert args: Python->C
        Base::VectorPy  *pcObject = static_cast<Base::VectorPy*>(pcVecObj);
        Base::Vector3d* val = pcObject->getVectorPtr();
        vec.Set(val->x,val->y,val->z);
        mat = *(static_cast<MatrixPy*>(pcMatObj)->getMatrixPtr());
        // clears the error from the first PyArg_ParseTuple()6
        PyErr_Clear();
    }
    else
        return NULL;                                 // NULL triggers exception

    PY_TRY {
        getMatrixPtr()->transform(vec,mat);
    }
    PY_CATCH;

    Py_Return;
}
示例#3
0
PyObject*  MeshPy::splitEdge(PyObject *args)
{
    unsigned long facet, neighbour;
    PyObject* vertex;
    if (!PyArg_ParseTuple(args, "kkO!", &facet, &neighbour, &Base::VectorPy::Type, &vertex))
        return NULL;

    Base::VectorPy  *pcObject = static_cast<Base::VectorPy*>(vertex);
    Base::Vector3d* val = pcObject->getVectorPtr();
    Base::Vector3f v((float)val->x,(float)val->y,(float)val->z);

    const MeshCore::MeshKernel& kernel = getMeshObjectPtr()->getKernel();
    PY_TRY {
        if (facet < 0 || facet >= kernel.CountFacets()) {
            PyErr_SetString(PyExc_IndexError, "Facet index out of range");
            return NULL;
        }
        if (neighbour < 0 || neighbour >= kernel.CountFacets()) {
            PyErr_SetString(PyExc_IndexError, "Facet index out of range");
            return NULL;
        }

        const MeshCore::MeshFacet& rclF = kernel.GetFacets()[facet];
        if (rclF._aulNeighbours[0] != neighbour && rclF._aulNeighbours[1] != neighbour &&
            rclF._aulNeighbours[2] != neighbour) {
            PyErr_SetString(PyExc_IndexError, "No adjacent facets");
            return NULL;
        }
        
        getMeshObjectPtr()->splitEdge(facet, neighbour, v);
    } PY_CATCH;

    Py_Return; 
}
示例#4
0
void PropertyNormalList::setPyObject(PyObject *value)
{
    if (PyList_Check(value)) {
        Py_ssize_t nSize = PyList_Size(value);
        std::vector<Base::Vector3f> values;
        values.resize(nSize);

        for (Py_ssize_t i=0; i<nSize;++i) {
            PyObject* item = PyList_GetItem(value, i);
            App::PropertyVector val;
            val.setPyObject( item );
            values[i] = Base::convertTo<Base::Vector3f>(val.getValue());
        }

        setValues(values);
    }
    else if (PyObject_TypeCheck(value, &(Base::VectorPy::Type))) {
        Base::VectorPy  *pcObject = static_cast<Base::VectorPy*>(value);
        Base::Vector3d* val = pcObject->getVectorPtr();
        setValue(Base::convertTo<Base::Vector3f>(*val));
    }
    else if (PyTuple_Check(value) && PyTuple_Size(value) == 3) {
        App::PropertyVector val;
        val.setPyObject( value );
        setValue(Base::convertTo<Base::Vector3f>(val.getValue()));
    }
    else {
        std::string error = std::string("type must be 'Vector' or list of 'Vector', not ");
        error += value->ob_type->tp_name;
        throw Py::TypeError(error);
    }
}
示例#5
0
PyObject* MatrixPy::scale(PyObject * args)
{
    double x,y,z;
    Base::Vector3d vec;
    PyObject *pcVecObj;

    if (PyArg_ParseTuple(args, "ddd", &x,&y,&z)) {   // convert args: Python->C
        vec.x = x;
        vec.y = y;
        vec.z = z;
    }
    else if (PyArg_ParseTuple(args, "O!:three floats or a vector is needed", 
        &PyTuple_Type, &pcVecObj)) {
        vec = getVectorFromTuple<double>(pcVecObj);
        // clears the error from the first PyArg_ParseTuple()6
        PyErr_Clear();
    }
    else if (PyArg_ParseTuple(args, "O!:three floats or a vector is needed", &(Base::VectorPy::Type), &pcVecObj)) {
        // convert args: Python->C
        Base::VectorPy  *pcObject = static_cast<Base::VectorPy*>(pcVecObj);
        Base::Vector3d* val = pcObject->getVectorPtr();
        vec.Set(val->x,val->y,val->z);
        // clears the error from the first PyArg_ParseTuple()6
        PyErr_Clear();
    }
    else
        return NULL;

    PY_TRY {
        getMatrixPtr()->scale(vec);
    }
    PY_CATCH;

    Py_Return;
}
Py::Object MeshPointPy::getVector(void) const
{
    MeshPointPy::PointerType ptr = reinterpret_cast<MeshPointPy::PointerType>(_pcTwinPointer);
    
    Base::VectorPy* vec = new Base::VectorPy(*ptr);
    vec->setConst();
    return Py::Object(vec,true);
}
示例#7
0
void PropertyVector::setPyObject(PyObject *value)
{
    if (PyObject_TypeCheck(value, &(Base::VectorPy::Type))) {
        Base::VectorPy  *pcObject = static_cast<Base::VectorPy*>(value);
        Base::Vector3d* val = pcObject->getVectorPtr();
        setValue(*val);
    }
    else if (PyTuple_Check(value)&&PyTuple_Size(value)==3) {
        PyObject* item;
        Base::Vector3d cVec;
        // x
        item = PyTuple_GetItem(value,0);
        if (PyFloat_Check(item))
            cVec.x = PyFloat_AsDouble(item);
#if PY_MAJOR_VERSION < 3
        else if (PyInt_Check(item))
            cVec.x = (double)PyInt_AsLong(item);
#else
        else if (PyLong_Check(item))
            cVec.x = (double)PyLong_AsLong(item);
#endif
        else
            throw Base::TypeError("Not allowed type used in tuple (float expected)...");
        // y
        item = PyTuple_GetItem(value,1);
        if (PyFloat_Check(item))
            cVec.y = PyFloat_AsDouble(item);
#if PY_MAJOR_VERSION < 3
        else if (PyInt_Check(item))
            cVec.y = (double)PyInt_AsLong(item);
#else
        else if (PyLong_Check(item))
            cVec.y = (double)PyLong_AsLong(item);
#endif
        else
            throw Base::TypeError("Not allowed type used in tuple (float expected)...");
        // z
        item = PyTuple_GetItem(value,2);
        if (PyFloat_Check(item))
            cVec.z = PyFloat_AsDouble(item);
#if PY_MAJOR_VERSION < 3
        else if (PyInt_Check(item))
            cVec.z = (double)PyInt_AsLong(item);
#else
        else if (PyLong_Check(item))
            cVec.z = (double)PyLong_AsLong(item);
#endif
        else
            throw Base::TypeError("Not allowed type used in tuple (float expected)...");
        setValue( cVec );
    }
    else {
        std::string error = std::string("type must be 'Vector' or tuple of three floats, not ");
        error += value->ob_type->tp_name;
        throw Base::TypeError(error);
    }
}
Py::Object MeshPointPy::getNormal(void) const
{
    if (!getMeshPointPtr()->isBound())
        PyErr_SetString(Base::BaseExceptionFreeCADError, "This object is not bounded to a mesh, so no topological operation is possible!");

    Base::Vector3d* v = new Base::Vector3d(getMeshPointPtr()->Mesh->getPointNormal(getMeshPointPtr()->Index));
    Base::VectorPy* normal = new Base::VectorPy(v);
    normal->setConst();
    return Py::Object(normal,true);
}
示例#9
0
static PyObject * 
calculateEigenTransform(PyObject *self, PyObject *args)
{
    PyObject *input;

    if (!PyArg_ParseTuple(args, "O",&input))
        return NULL;

    if(! PySequence_Check(input) ){
        PyErr_SetString(Base::BaseExceptionFreeCADError, "Input have to be a sequence of Base.Vector()");
        return NULL;
    }

    PY_TRY {
        MeshCore::MeshKernel aMesh;
        MeshCore::MeshPointArray vertices;
        vertices.clear();
        MeshCore::MeshFacetArray faces;
        faces.clear();
        MeshCore::MeshPoint current_node;

        Py::Sequence list(input);
        for (Py::Sequence::iterator it = list.begin(); it != list.end(); ++it) {
            PyObject* value = (*it).ptr();
            if (PyObject_TypeCheck(value, &(Base::VectorPy::Type))) {
                Base::VectorPy  *pcObject = static_cast<Base::VectorPy*>(value);
                Base::Vector3d* val = pcObject->getVectorPtr();


			    current_node.Set(float(val->x),float(val->y),float(val->z));
			    vertices.push_back(current_node);
            }
		}

		MeshCore::MeshFacet aFacet;
		aFacet._aulPoints[0] = 0;aFacet._aulPoints[1] = 1;aFacet._aulPoints[2] = 2;
		faces.push_back(aFacet);
		//Fill the Kernel with the temp smesh structure and delete the current containers
		aMesh.Adopt(vertices,faces);
		MeshCore::MeshEigensystem pca(aMesh);
		pca.Evaluate();
		Base::Matrix4D Trafo = pca.Transform();

        return new Base::PlacementPy(new Base::Placement(Trafo) );

	} PY_CATCH;

	Py_Return;
}
示例#10
0
PyObject*  MeshPy::snapVertex(PyObject *args)
{
    unsigned long facet;
    PyObject* vertex;
    if (!PyArg_ParseTuple(args, "kO!", &facet, &Base::VectorPy::Type, &vertex))
        return NULL;

    Base::VectorPy  *pcObject = static_cast<Base::VectorPy*>(vertex);
    Base::Vector3d* val = pcObject->getVectorPtr();
    Base::Vector3f v((float)val->x,(float)val->y,(float)val->z);

    PY_TRY {
        if (facet < 0 || facet >= getMeshObjectPtr()->countFacets()) {
            PyErr_SetString(PyExc_IndexError, "Facet index out of range");
            return NULL;
        }
        
        getMeshObjectPtr()->snapVertex(facet, v);
    } PY_CATCH;

    Py_Return; 
}
示例#11
0
PyObject*  BoundBoxPy::isInside(PyObject *args)
{
    PyObject *object;
    Py::Boolean retVal;

    if (!PyArg_ParseTuple(args,"O", &object))
        return 0;
    if (PyObject_TypeCheck(object, &(Base::VectorPy::Type))) {
        Base::VectorPy *vec = static_cast<Base::VectorPy*>(object);
        retVal = getBoundBoxPtr()->IsInBox(*vec->getVectorPtr());
    }
    else if (PyObject_TypeCheck(object, &(Base::BoundBoxPy::Type))) {
        Base::BoundBoxPy *box = static_cast<Base::BoundBoxPy*>(object);
        retVal = getBoundBoxPtr()->IsInBox(*box->getBoundBoxPtr());
    }
    else {
        PyErr_SetString(PyExc_TypeError, "Either a Vector or BoundBox object expected");
        return 0;
    }

    return Py::new_reference_to(retVal);
}