bool fiber_waiter::wait_ready(std::chrono::steady_clock::time_point timeout_point) noexcept { if (gth_thread_type == thread_type::thread) { std::unique_lock<std::mutex> lk(m_thread_mutex); return m_thread_var.wait_until(lk, timeout_point, [this] { return m_ready.load(std::memory_order_relaxed); }); } else { std::unique_lock<boost::fibers::mutex> lk(m_fiber_mutex); return m_fiber_var.wait_until(lk, timeout_point, [this] { return m_ready.load(std::memory_order_relaxed); }); } }
void fn3( boost::fibers::mutex & m, boost::fibers::condition_variable & cv) { std::unique_lock< boost::fibers::mutex > lk( m); BOOST_CHECK(test2 == 0); test1 = 1; cv.notify_one(); std::chrono::steady_clock::time_point t0 = std::chrono::steady_clock::now(); std::chrono::steady_clock::time_point t = t0 + ms(250); bool r = cv.wait_until(lk, t, Pred(test2)); std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now(); if (runs == 0) { BOOST_CHECK(t1 - t0 < ms(250)); BOOST_CHECK(test2 != 0); BOOST_CHECK(r); } else { BOOST_CHECK(t1 - t0 - ms(250) < ms(250+100)); BOOST_CHECK(test2 == 0); BOOST_CHECK(!r); } ++runs; }
void fn2( boost::fibers::mutex & m, boost::fibers::condition_variable & cv) { std::unique_lock< boost::fibers::mutex > lk( m); BOOST_CHECK(test2 == 0); test1 = 1; cv.notify_one(); std::chrono::system_clock::time_point t0 = std::chrono::system_clock::now(); std::chrono::system_clock::time_point t = t0 + ms(250); int count=0; while (test2 == 0 && cv.wait_until(lk, t) == boost::fibers::cv_status::no_timeout) count++; std::chrono::system_clock::time_point t1 = std::chrono::system_clock::now(); if (runs == 0) { BOOST_CHECK(t1 - t0 < ms(250)); BOOST_CHECK(test2 != 0); } else { BOOST_CHECK(t1 - t0 - ms(250) < ms(count*250+100+1000)); BOOST_CHECK(test2 == 0); } ++runs; }