示例#1
0
static bool writeBMP(const Common::UString &filename, const byte *data,
		int width, int height) {

	if ((width <= 0) || (height <= 0) || !data)
		return false;

	Common::DumpFile file;

	if (!file.open(filename))
		return false;

	// The pitch of the output has to be divisible by 4, so
	// we output zeroes to make the pitch that far.
	int extraDataSize = width & 3;
	int imageSize = height * (width + extraDataSize) * 3;

	// Main bitmap header
	file.writeByte('B');
	file.writeByte('M');
	file.writeUint32LE(14 + 40 + imageSize); // Size
	file.writeUint32LE(0); // reserved
	file.writeUint32LE(14 + 40); // Image offset after both headers

	// v3 header
	file.writeUint32LE(40);
	file.writeUint32LE(width);
	file.writeUint32LE(height);
	file.writeUint16LE(1);
	file.writeUint16LE(24);
	file.writeUint32LE(0);
	file.writeUint32LE(imageSize);
	file.writeUint32LE(72);
	file.writeUint32LE(72);
	file.writeUint32LE(0);
	file.writeUint32LE(0);

	if (extraDataSize != 0) {
		// Dump, making sure the pitch is correct
		while (height--) {
			file.write(data, width * 3);

			// Ensure we're on a 4-byte boundary
			for (int i = 0; i < extraDataSize; i++)
				file.writeByte(0);

			data += width * 3;
		}
	} else {
		// Dump directly (can do all at once here because the data
		// is already good for BMP output)
		file.write(data, width * height * 3);
	}

	if (!file.flush() || file.err())
		return false;

	file.close();
	return true;
}
示例#2
0
文件: console.cpp 项目: Cruel/scummvm
bool Console::cmdDumpImage(int argc, const char **argv) {
	if (argc != 2) {
		debugPrintf("Use %s <TGA/TGZ name> to dump a Z-Vision TGA/TGZ image into a regular BMP image\n", argv[0]);
		return true;
	}

	Common::String fileName = argv[1];
	if (!fileName.hasSuffix(".tga")) {
		debugPrintf("%s is not an image file", argv[1]);
	}

	Common::File f;
	if (!_engine->getSearchManager()->openFile(f, argv[1])) {
		warning("File not found: %s", argv[1]);
		return true;
	}

	Graphics::Surface surface;
	_engine->getRenderManager()->readImageToSurface(argv[1], surface, false);

	// Open file
	Common::DumpFile out;

	fileName.setChar('b', fileName.size() - 3);
	fileName.setChar('m', fileName.size() - 2);
	fileName.setChar('p', fileName.size() - 1);

	out.open(fileName);

	// Write BMP header
	out.writeByte('B');
	out.writeByte('M');
	out.writeUint32LE(surface.h * surface.pitch + 54);
	out.writeUint32LE(0);
	out.writeUint32LE(54);
	out.writeUint32LE(40);
	out.writeUint32LE(surface.w);
	out.writeUint32LE(surface.h);
	out.writeUint16LE(1);
	out.writeUint16LE(16);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);

	// Write pixel data to BMP
	out.write(surface.getPixels(), surface.pitch * surface.h);

	out.flush();
	out.close();

	surface.free();

	return true;
}
示例#3
0
void OpenGLGraphicsManager::saveScreenshot(const Common::String &filename) const {
	const uint width  = _outputScreenWidth;
	const uint height = _outputScreenHeight;

	// A line of a BMP image must have a size divisible by 4.
	// We calculate the padding bytes needed here.
	// Since we use a 3 byte per pixel mode, we can use width % 4 here, since
	// it is equal to 4 - (width * 3) % 4. (4 - (width * Bpp) % 4, is the
	// usual way of computing the padding bytes required).
	const uint linePaddingSize = width % 4;
	const uint lineSize        = width * 3 + linePaddingSize;

	// Allocate memory for screenshot
	uint8 *pixels = new uint8[lineSize * height];

	// Get pixel data from OpenGL buffer
	GLCALL(glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels));

	// BMP stores as BGR. Since we can't assume that GL_BGR is supported we
	// will swap the components from the RGB we read to BGR on our own.
	for (uint y = height; y-- > 0;) {
		uint8 *line = pixels + y * lineSize;

		for (uint x = width; x > 0; --x, line += 3) {
			SWAP(line[0], line[2]);
		}
	}

	// Open file
	Common::DumpFile out;
	out.open(filename);

	// Write BMP header
	out.writeByte('B');
	out.writeByte('M');
	out.writeUint32LE(height * lineSize + 54);
	out.writeUint32LE(0);
	out.writeUint32LE(54);
	out.writeUint32LE(40);
	out.writeUint32LE(width);
	out.writeUint32LE(height);
	out.writeUint16LE(1);
	out.writeUint16LE(24);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);

	// Write pixel data to BMP
	out.write(pixels, lineSize * height);

	// Free allocated memory
	delete[] pixels;
}
示例#4
0
文件: console.cpp 项目: Cruel/scummvm
bool Console::cmdRawToWav(int argc, const char **argv) {
	if (argc != 3) {
		debugPrintf("Use %s <rawFilePath> <wavFileName> to dump a .RAW file to .WAV\n", argv[0]);
		return true;
	}

	Common::File file;
	if (!_engine->getSearchManager()->openFile(file, argv[1])) {
		warning("File not found: %s", argv[1]);
		return true;
	}

	Audio::AudioStream *audioStream = makeRawZorkStream(argv[1], _engine);

	Common::DumpFile output;
	output.open(argv[2]);

	output.writeUint32BE(MKTAG('R', 'I', 'F', 'F'));
	output.writeUint32LE(file.size() * 2 + 36);
	output.writeUint32BE(MKTAG('W', 'A', 'V', 'E'));
	output.writeUint32BE(MKTAG('f', 'm', 't', ' '));
	output.writeUint32LE(16);
	output.writeUint16LE(1);
	uint16 numChannels;
	if (audioStream->isStereo()) {
		numChannels = 2;
		output.writeUint16LE(2);
	} else {
		numChannels = 1;
		output.writeUint16LE(1);
	}
	output.writeUint32LE(audioStream->getRate());
	output.writeUint32LE(audioStream->getRate() * numChannels * 2);
	output.writeUint16LE(numChannels * 2);
	output.writeUint16LE(16);
	output.writeUint32BE(MKTAG('d', 'a', 't', 'a'));
	output.writeUint32LE(file.size() * 2);
	int16 *buffer = new int16[file.size()];
	audioStream->readBuffer(buffer, file.size());
#ifndef SCUMM_LITTLE_ENDIAN
	for (int i = 0; i < file.size(); ++i)
		buffer[i] = TO_LE_16(buffer[i]);
#endif
	output.write(buffer, file.size() * 2);

	delete[] buffer;


	return true;
}
示例#5
0
void convertRawToWav(const Common::String &inputFile, ZVision *engine, const Common::String &outputFile) {
	Common::File file;
	if (!file.open(inputFile))
		return;

	Audio::AudioStream *audioStream = makeRawZorkStream(inputFile, engine);

	Common::DumpFile output;
	output.open(outputFile);

	output.writeUint32BE(MKTAG('R', 'I', 'F', 'F'));
	output.writeUint32LE(file.size() * 2 + 36);
	output.writeUint32BE(MKTAG('W', 'A', 'V', 'E'));
	output.writeUint32BE(MKTAG('f', 'm', 't', ' '));
	output.writeUint32LE(16);
	output.writeUint16LE(1);
	uint16 numChannels;
	if (audioStream->isStereo()) {
		numChannels = 2;
		output.writeUint16LE(2);
	} else {
		numChannels = 1;
		output.writeUint16LE(1);
	}
	output.writeUint32LE(audioStream->getRate());
	output.writeUint32LE(audioStream->getRate() * numChannels * 2);
	output.writeUint16LE(numChannels * 2);
	output.writeUint16LE(16);
	output.writeUint32BE(MKTAG('d', 'a', 't', 'a'));
	output.writeUint32LE(file.size() * 2);
	int16 *buffer = new int16[file.size()];
	audioStream->readBuffer(buffer, file.size());
	output.write(buffer, file.size() * 2);

	delete[] buffer;
}
示例#6
0
bool OpenGLGraphicsManager::getGLPixelFormat(const Graphics::PixelFormat &pixelFormat, GLenum &glIntFormat, GLenum &glFormat, GLenum &glType) const {
#ifdef SCUMM_LITTLE_ENDIAN
	if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888
#else
	if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888
#endif
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_BYTE;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 11, 5, 0, 0)) { // RGB565
		glIntFormat = GL_RGB;
		glFormat = GL_RGB;
		glType = GL_UNSIGNED_SHORT_5_6_5;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 11, 6, 1, 0)) { // RGBA5551
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_5_5_5_1;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 12, 8, 4, 0)) { // RGBA4444
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4;
		return true;
#ifndef USE_GLES
#ifdef SCUMM_LITTLE_ENDIAN
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_INT_8_8_8_8;
		return true;
#endif
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 0, 10, 5, 0, 0)) { // RGB555
		// GL_BGRA does not exist in every GLES implementation so should not be configured if
		// USE_GLES is set.
		glIntFormat = GL_RGB;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_1_5_5_5_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 16, 8, 0, 24)) { // ARGB8888
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_INT_8_8_8_8_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 8, 4, 0, 12)) { // ARGB4444
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4_REV;
		return true;
#ifdef SCUMM_BIG_ENDIAN
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_INT_8_8_8_8_REV;
		return true;
#endif
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 8, 16, 24, 0)) { // BGRA8888
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_INT_8_8_8_8;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 0, 5, 11, 0)) { // BGR565
		glIntFormat = GL_RGB;
		glFormat = GL_BGR;
		glType = GL_UNSIGNED_SHORT_5_6_5;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 1, 6, 11, 0)) { // BGRA5551
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_5_5_5_1;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 0, 4, 8, 12)) { // ABGR4444
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 4, 8, 12, 0)) { // BGRA4444
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4;
		return true;
#endif
	} else {
		return false;
	}
}

frac_t OpenGLGraphicsManager::getDesiredGameScreenAspect() const {
	const uint width  = _currentState.gameWidth;
	const uint height = _currentState.gameHeight;

	if (_currentState.aspectRatioCorrection) {
		// In case we enable aspect ratio correction we force a 4/3 ratio.
		// But just for 320x200 and 640x400 games, since other games do not need
		// this.
		if ((width == 320 && height == 200) || (width == 640 && height == 400)) {
			return intToFrac(4) / 3;
		}
	}

	return intToFrac(width) / height;
}

void OpenGLGraphicsManager::recalculateDisplayArea() {
	if (!_gameScreen || _outputScreenHeight == 0) {
		return;
	}

	const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight;
	const frac_t desiredAspect = getDesiredGameScreenAspect();

	_displayWidth = _outputScreenWidth;
	_displayHeight = _outputScreenHeight;

	// Adjust one dimension for mantaining the aspect ratio.
	if (outputAspect < desiredAspect) {
		_displayHeight = intToFrac(_displayWidth) / desiredAspect;
	} else if (outputAspect > desiredAspect) {
		_displayWidth = fracToInt(_displayHeight * desiredAspect);
	}

	// We center the screen in the middle for now.
	_displayX = (_outputScreenWidth  - _displayWidth ) / 2; 
	_displayY = (_outputScreenHeight - _displayHeight) / 2; 
}

void OpenGLGraphicsManager::updateCursorPalette() {
	if (!_cursor || !_cursor->hasPalette()) {
		return;
	}

	if (_cursorPaletteEnabled) {
		_cursor->setPalette(0, 256, _cursorPalette);
	} else {
		_cursor->setPalette(0, 256, _gamePalette);
	}

	// We remove all alpha bits from the palette entry of the color key.
	// This makes sure its properly handled as color key.
	const Graphics::PixelFormat &hardwareFormat = _cursor->getHardwareFormat();
	const uint32 aMask = (0xFF >> hardwareFormat.aLoss) << hardwareFormat.aShift;

	if (hardwareFormat.bytesPerPixel == 2) {
		uint16 *palette = (uint16 *)_cursor->getPalette() + _cursorKeyColor;
		*palette &= ~aMask;
	} else if (hardwareFormat.bytesPerPixel == 4) {
		uint32 *palette = (uint32 *)_cursor->getPalette() + _cursorKeyColor;
		*palette &= ~aMask;
	} else {
		warning("OpenGLGraphicsManager::updateCursorPalette: Unsupported pixel depth %d", hardwareFormat.bytesPerPixel);
	}
}

void OpenGLGraphicsManager::recalculateCursorScaling() {
	if (!_cursor || !_gameScreen) {
		return;
	}

	// By default we use the unscaled versions.
	_cursorHotspotXScaled = _cursorHotspotX;
	_cursorHotspotYScaled = _cursorHotspotY;
	_cursorWidthScaled = _cursor->getWidth();
	_cursorHeightScaled = _cursor->getHeight();

	// In case scaling is actually enabled we will scale the cursor according
	// to the game screen.
	if (!_cursorDontScale) {
		const frac_t screenScaleFactorX = intToFrac(_displayWidth)  / _gameScreen->getWidth();
		const frac_t screenScaleFactorY = intToFrac(_displayHeight) / _gameScreen->getHeight();

		_cursorHotspotXScaled = fracToInt(_cursorHotspotXScaled * screenScaleFactorX);
		_cursorWidthScaled    = fracToInt(_cursorWidthScaled    * screenScaleFactorX);

		_cursorHotspotYScaled = fracToInt(_cursorHotspotYScaled * screenScaleFactorY);
		_cursorHeightScaled   = fracToInt(_cursorHeightScaled   * screenScaleFactorY);
	}
}

#ifdef USE_OSD
const Graphics::Font *OpenGLGraphicsManager::getFontOSD() {
	return FontMan.getFontByUsage(Graphics::FontManager::kLocalizedFont);
}
#endif

void OpenGLGraphicsManager::saveScreenshot(const Common::String &filename) const {
	const uint width  = _outputScreenWidth;
	const uint height = _outputScreenHeight;

	// A line of a BMP image must have a size divisible by 4.
	// We calculate the padding bytes needed here.
	// Since we use a 3 byte per pixel mode, we can use width % 4 here, since
	// it is equal to 4 - (width * 3) % 4. (4 - (width * Bpp) % 4, is the
	// usual way of computing the padding bytes required).
	const uint linePaddingSize = width % 4;
	const uint lineSize        = width * 3 + linePaddingSize;

	// Allocate memory for screenshot
	uint8 *pixels = new uint8[lineSize * height];

	// Get pixel data from OpenGL buffer
	GLCALL(glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels));

	// BMP stores as BGR. Since we can't assume that GL_BGR is supported we
	// will swap the components from the RGB we read to BGR on our own.
	for (uint y = height; y-- > 0;) {
		uint8 *line = pixels + y * lineSize;

		for (uint x = width; x > 0; --x, line += 3) {
			SWAP(line[0], line[2]);
		}
	}

	// Open file
	Common::DumpFile out;
	out.open(filename);

	// Write BMP header
	out.writeByte('B');
	out.writeByte('M');
	out.writeUint32LE(height * lineSize + 54);
	out.writeUint32LE(0);
	out.writeUint32LE(54);
	out.writeUint32LE(40);
	out.writeUint32LE(width);
	out.writeUint32LE(height);
	out.writeUint16LE(1);
	out.writeUint16LE(24);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);

	// Write pixel data to BMP
	out.write(pixels, lineSize * height);

	// Free allocated memory
	delete[] pixels;
}

} // End of namespace OpenGL
示例#7
0
bool OpenGLGraphicsManager::getGLPixelFormat(const Graphics::PixelFormat &pixelFormat, GLenum &glIntFormat, GLenum &glFormat, GLenum &glType) const {
#ifdef SCUMM_LITTLE_ENDIAN
	if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888
#else
	if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888
#endif
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_BYTE;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 11, 5, 0, 0)) { // RGB565
		glIntFormat = GL_RGB;
		glFormat = GL_RGB;
		glType = GL_UNSIGNED_SHORT_5_6_5;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 11, 6, 1, 0)) { // RGBA5551
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_5_5_5_1;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 12, 8, 4, 0)) { // RGBA4444
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4;
		return true;
#if !USE_FORCED_GLES && !USE_FORCED_GLES2
	// The formats below are not supported by every GLES implementation.
	// Thus, we do not mark them as supported when a GLES context is setup.
	} else if (isGLESContext()) {
		return false;
#ifdef SCUMM_LITTLE_ENDIAN
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 24, 16, 8, 0)) { // RGBA8888
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_INT_8_8_8_8;
		return true;
#endif
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 0, 10, 5, 0, 0)) { // RGB555
		glIntFormat = GL_RGB;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_1_5_5_5_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 8, 4, 0, 12)) { // ARGB4444
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4_REV;
		return true;
#ifdef SCUMM_BIG_ENDIAN
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 0, 8, 16, 24)) { // ABGR8888
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_INT_8_8_8_8_REV;
		return true;
#endif
	} else if (pixelFormat == Graphics::PixelFormat(4, 8, 8, 8, 8, 8, 16, 24, 0)) { // BGRA8888
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_INT_8_8_8_8;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 6, 5, 0, 0, 5, 11, 0)) { // BGR565
		glIntFormat = GL_RGB;
		glFormat = GL_RGB;
		glType = GL_UNSIGNED_SHORT_5_6_5_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 5, 5, 5, 1, 1, 6, 11, 0)) { // BGRA5551
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_5_5_5_1;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 0, 4, 8, 12)) { // ABGR4444
		glIntFormat = GL_RGBA;
		glFormat = GL_RGBA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4_REV;
		return true;
	} else if (pixelFormat == Graphics::PixelFormat(2, 4, 4, 4, 4, 4, 8, 12, 0)) { // BGRA4444
		glIntFormat = GL_RGBA;
		glFormat = GL_BGRA;
		glType = GL_UNSIGNED_SHORT_4_4_4_4;
		return true;
#endif // !USE_FORCED_GLES && !USE_FORCED_GLES2
	} else {
		return false;
	}
}

frac_t OpenGLGraphicsManager::getDesiredGameScreenAspect() const {
	const uint width  = _currentState.gameWidth;
	const uint height = _currentState.gameHeight;

	if (_currentState.aspectRatioCorrection) {
		// In case we enable aspect ratio correction we force a 4/3 ratio.
		// But just for 320x200 and 640x400 games, since other games do not need
		// this.
		if ((width == 320 && height == 200) || (width == 640 && height == 400)) {
			return intToFrac(4) / 3;
		}
	}

	return intToFrac(width) / height;
}

void OpenGLGraphicsManager::recalculateDisplayArea() {
	if (!_gameScreen || _outputScreenHeight == 0) {
		return;
	}

	const frac_t outputAspect = intToFrac(_outputScreenWidth) / _outputScreenHeight;
	const frac_t desiredAspect = getDesiredGameScreenAspect();

	_displayWidth = _outputScreenWidth;
	_displayHeight = _outputScreenHeight;

	// Adjust one dimension for mantaining the aspect ratio.
	if (outputAspect < desiredAspect) {
		_displayHeight = intToFrac(_displayWidth) / desiredAspect;
	} else if (outputAspect > desiredAspect) {
		_displayWidth = fracToInt(_displayHeight * desiredAspect);
	}

	// We center the screen in the middle for now.
	_displayX = (_outputScreenWidth  - _displayWidth ) / 2;
	_displayY = (_outputScreenHeight - _displayHeight) / 2;

	// Setup drawing limitation for game graphics.
	// This invovles some trickery because OpenGL's viewport coordinate system
	// is upside down compared to ours.
	_backBuffer.setScissorBox(_displayX,
	                          _outputScreenHeight - _displayHeight - _displayY,
	                          _displayWidth,
	                          _displayHeight);
	// Clear the whole screen for the first three frames to remove leftovers.
	_scissorOverride = 3;

	// Update the cursor position to adjust for new display area.
	setMousePosition(_cursorX, _cursorY);

	// Force a redraw to assure screen is properly redrawn.
	_forceRedraw = true;
}

void OpenGLGraphicsManager::updateCursorPalette() {
	if (!_cursor || !_cursor->hasPalette()) {
		return;
	}

	if (_cursorPaletteEnabled) {
		_cursor->setPalette(0, 256, _cursorPalette);
	} else {
		_cursor->setPalette(0, 256, _gamePalette);
	}

	_cursor->setColorKey(_cursorKeyColor);
}

void OpenGLGraphicsManager::recalculateCursorScaling() {
	if (!_cursor || !_gameScreen) {
		return;
	}

	// By default we use the unscaled versions.
	_cursorHotspotXScaled = _cursorHotspotX;
	_cursorHotspotYScaled = _cursorHotspotY;
	_cursorWidthScaled = _cursor->getWidth();
	_cursorHeightScaled = _cursor->getHeight();

	// In case scaling is actually enabled we will scale the cursor according
	// to the game screen.
	if (!_cursorDontScale) {
		const frac_t screenScaleFactorX = intToFrac(_displayWidth)  / _gameScreen->getWidth();
		const frac_t screenScaleFactorY = intToFrac(_displayHeight) / _gameScreen->getHeight();

		_cursorHotspotXScaled = fracToInt(_cursorHotspotXScaled * screenScaleFactorX);
		_cursorWidthScaled    = fracToInt(_cursorWidthScaled    * screenScaleFactorX);

		_cursorHotspotYScaled = fracToInt(_cursorHotspotYScaled * screenScaleFactorY);
		_cursorHeightScaled   = fracToInt(_cursorHeightScaled   * screenScaleFactorY);
	}
}

#ifdef USE_OSD
const Graphics::Font *OpenGLGraphicsManager::getFontOSD() {
	return FontMan.getFontByUsage(Graphics::FontManager::kLocalizedFont);
}
#endif

void OpenGLGraphicsManager::saveScreenshot(const Common::String &filename) const {
	const uint width  = _outputScreenWidth;
	const uint height = _outputScreenHeight;

	// A line of a BMP image must have a size divisible by 4.
	// We calculate the padding bytes needed here.
	// Since we use a 3 byte per pixel mode, we can use width % 4 here, since
	// it is equal to 4 - (width * 3) % 4. (4 - (width * Bpp) % 4, is the
	// usual way of computing the padding bytes required).
	const uint linePaddingSize = width % 4;
	const uint lineSize        = width * 3 + linePaddingSize;

	// Allocate memory for screenshot
	uint8 *pixels = new uint8[lineSize * height];

	// Get pixel data from OpenGL buffer
	GL_CALL(glReadPixels(0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, pixels));

	// BMP stores as BGR. Since we can't assume that GL_BGR is supported we
	// will swap the components from the RGB we read to BGR on our own.
	for (uint y = height; y-- > 0;) {
		uint8 *line = pixels + y * lineSize;

		for (uint x = width; x > 0; --x, line += 3) {
			SWAP(line[0], line[2]);
		}
	}

	// Open file
	Common::DumpFile out;
	out.open(filename);

	// Write BMP header
	out.writeByte('B');
	out.writeByte('M');
	out.writeUint32LE(height * lineSize + 54);
	out.writeUint32LE(0);
	out.writeUint32LE(54);
	out.writeUint32LE(40);
	out.writeUint32LE(width);
	out.writeUint32LE(height);
	out.writeUint16LE(1);
	out.writeUint16LE(24);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);
	out.writeUint32LE(0);

	// Write pixel data to BMP
	out.write(pixels, lineSize * height);

	// Free allocated memory
	delete[] pixels;
}

} // End of namespace OpenGL