std::vector<byte> encode_signature(CryptoPP::Integer r, CryptoPP::Integer s) { std::vector<byte> signature; signature.resize(64); r.Encode(signature.data(), 32); s.Encode(signature.data() + 32, 32); return signature; }
SecureBinaryData CryptoECDSA::SerializePublicKey(BTC_PUBKEY const & pubKey) { BTC_ECPOINT publicPoint = pubKey.GetPublicElement(); CryptoPP::Integer pubX = publicPoint.x; CryptoPP::Integer pubY = publicPoint.y; SecureBinaryData pubData(65); pubData.fill(0x04); // we fill just to set the first byte... pubX.Encode(pubData.getPtr()+1, 32, UNSIGNED); pubY.Encode(pubData.getPtr()+33, 32, UNSIGNED); return pubData; }
SecureBinaryData CryptoECDSA::SerializePrivateKey(BTC_PRIVKEY const & privKey) { CryptoPP::Integer privateExp = privKey.GetPrivateExponent(); SecureBinaryData privKeyData(32); privateExp.Encode(privKeyData.getPtr(), privKeyData.getSize(), UNSIGNED); return privKeyData; }
const vector<unsigned char> CryptoPpDlogZpSafePrime::decodeGroupElementToByteArray(GroupElement * groupElement) { ZpSafePrimeElementCryptoPp * zp_element = dynamic_cast<ZpSafePrimeElementCryptoPp *>(groupElement); if (!(zp_element)) throw invalid_argument("element type doesn't match the group type"); //Given a group element y, find the two inverses z,-z. Take z to be the value between 1 and (p-1)/2. Return s=z-1 biginteger y = zp_element->getElementValue(); biginteger p = ((ZpGroupParams * ) groupParams)->getP(); MathAlgorithms::SquareRootResults roots = MathAlgorithms::sqrtModP_3_4(y, p); biginteger goodRoot; biginteger halfP = (p - 1) / 2; if (roots.getRoot1()>1 && roots.getRoot1() < halfP) goodRoot = roots.getRoot1(); else goodRoot = roots.getRoot2(); goodRoot -= 1; CryptoPP::Integer cpi = biginteger_to_cryptoppint(goodRoot); int len = ceil((cpi.BitCount() + 1) / 8.0); //ceil(find_log2_floor(goodRoot) / 8.0); byte * output = new byte[len]; cpi.Encode(output, len); vector<byte> res; // Remove the padding byte at the most significant position (that was added while encoding) for (int i = 1; i < len; ++i) res.push_back(output[i]); return res; }
SecureBinaryData CryptoECDSA::InvMod(const SecureBinaryData& m) { static BinaryData N = BinaryData::CreateFromHex( "fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"); CryptoPP::Integer cppM; CryptoPP::Integer cppModulo; cppM.Decode(m.getPtr(), m.getSize(), UNSIGNED); cppModulo.Decode(N.getPtr(), N.getSize(), UNSIGNED); CryptoPP::Integer cppResult = cppM.InverseMod(cppModulo); SecureBinaryData result(32); cppResult.Encode(result.getPtr(), result.getSize(), UNSIGNED); return result; }
std::string security::str(const CryptoPP::Integer& input) { const auto input_size = input.MinEncodedSize(); CryptoPP::SecByteBlock block(input_size); input.Encode(block.BytePtr(), input_size); return str(block); // NOTE: CryptoPP::Integer has a weird ostream format (uses prefixes to specify numeric base) // /*std::ostringstream oss; oss << std::hex << input; return oss.str();*/ }
CK_RV CKKeyObject::CopyInteger(CK_ATTRIBUTE& attribute, const CryptoPP::Integer& intValue) const { CK_ULONG intSize = intValue.MinEncodedSize(); if (attribute.pValue == NULL_PTR) { attribute.ulValueLen = intSize; } else if (attribute.ulValueLen < intSize) { attribute.ulValueLen = (CK_ULONG)-1; return CKR_BUFFER_TOO_SMALL; } else { attribute.ulValueLen = intSize; intValue.Encode((byte*)attribute.pValue, attribute.ulValueLen); } return CKR_OK; }
///////////////////////////////////////////////////////////////////////////// // Deterministically generate new private key using a chaincode // Changed: added using the hash of the public key to the mix // b/c multiplying by the chaincode alone is too "linear" // (there's no reason to believe it's insecure, but it doesn't // hurt to add some extra entropy/non-linearity to the chain // generation process) SecureBinaryData CryptoECDSA::ComputeChainedPrivateKey( SecureBinaryData const & binPrivKey, SecureBinaryData const & chainCode, SecureBinaryData binPubKey, SecureBinaryData* multiplierOut) { if(CRYPTO_DEBUG) { cout << "ComputeChainedPrivateKey:" << endl; cout << " BinPrv: " << binPrivKey.toHexStr() << endl; cout << " BinChn: " << chainCode.toHexStr() << endl; cout << " BinPub: " << binPubKey.toHexStr() << endl; } if( binPubKey.getSize()==0 ) binPubKey = ComputePublicKey(binPrivKey); if( binPrivKey.getSize() != 32 || chainCode.getSize() != 32) { LOGERR << "***ERROR: Invalid private key or chaincode (both must be 32B)"; LOGERR << "BinPrivKey: " << binPrivKey.getSize(); LOGERR << "BinPrivKey: (not logged for security)"; //LOGERR << "BinPrivKey: " << binPrivKey.toHexStr(); LOGERR << "BinChain : " << chainCode.getSize(); LOGERR << "BinChain : " << chainCode.toHexStr(); } // Adding extra entropy to chaincode by xor'ing with hash256 of pubkey BinaryData chainMod = binPubKey.getHash256(); BinaryData chainOrig = chainCode.getRawCopy(); BinaryData chainXor(32); for(uint8_t i=0; i<8; i++) { uint8_t offset = 4*i; *(uint32_t*)(chainXor.getPtr()+offset) = *(uint32_t*)( chainMod.getPtr()+offset) ^ *(uint32_t*)(chainOrig.getPtr()+offset); } // Hard-code the order of the group static SecureBinaryData SECP256K1_ORDER_BE = SecureBinaryData().CreateFromHex( "fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"); CryptoPP::Integer mult, origPrivExp, ecOrder; // A mult.Decode(chainXor.getPtr(), chainXor.getSize(), UNSIGNED); // B origPrivExp.Decode(binPrivKey.getPtr(), binPrivKey.getSize(), UNSIGNED); // C ecOrder.Decode(SECP256K1_ORDER_BE.getPtr(), SECP256K1_ORDER_BE.getSize(), UNSIGNED); // A*B mod C will get us a new private key exponent CryptoPP::Integer newPrivExponent = a_times_b_mod_c(mult, origPrivExp, ecOrder); // Convert new private exponent to big-endian binary string SecureBinaryData newPrivData(32); newPrivExponent.Encode(newPrivData.getPtr(), newPrivData.getSize(), UNSIGNED); if(multiplierOut != NULL) (*multiplierOut) = SecureBinaryData(chainXor); //LOGINFO << "Computed new chained private key using:"; //LOGINFO << " Public key: " << binPubKey.toHexStr().c_str(); //LOGINFO << " PubKeyHash: " << chainMod.toHexStr().c_str(); //LOGINFO << " Chaincode: " << chainOrig.toHexStr().c_str(); //LOGINFO << " Multiplier: " << chainXor.toHexStr().c_str(); return newPrivData; }
int CEncryptedStreamSocket::Negotiate(const uchar* pBuffer, uint32_t nLen){ uint32_t nRead = 0; ASSERT( m_nReceiveBytesWanted > 0 ); try{ while (m_NegotiatingState != ONS_COMPLETE && m_nReceiveBytesWanted > 0){ if (m_nReceiveBytesWanted > 512){ ASSERT( false ); return 0; } if (m_pfiReceiveBuffer == NULL){ BYTE* pReceiveBuffer = (BYTE*)malloc(512); // use a fixed size buffer if (pReceiveBuffer == NULL) AfxThrowMemoryException(); m_pfiReceiveBuffer = new CSafeMemFile(pReceiveBuffer, 512); } const uint32_t nToRead = min(nLen - nRead, m_nReceiveBytesWanted); m_pfiReceiveBuffer->Write(pBuffer + nRead, nToRead); nRead += nToRead; m_nReceiveBytesWanted -= nToRead; if (m_nReceiveBytesWanted > 0) return nRead; const uint32_t nCurrentBytesLen = (uint32_t)m_pfiReceiveBuffer->GetPosition(); if (m_NegotiatingState != ONS_BASIC_CLIENTA_RANDOMPART && m_NegotiatingState != ONS_BASIC_SERVER_DHANSWER){ // don't have the keys yet BYTE* pCryptBuffer = m_pfiReceiveBuffer->Detach(); RC4Crypt(pCryptBuffer, pCryptBuffer, nCurrentBytesLen, m_pRC4ReceiveKey); m_pfiReceiveBuffer->Attach(pCryptBuffer, 512); } m_pfiReceiveBuffer->SeekToBegin(); switch (m_NegotiatingState){ case ONS_NONE: // would be a bug ASSERT( false ); return 0; case ONS_BASIC_CLIENTA_RANDOMPART:{ ASSERT( m_pRC4ReceiveKey == NULL ); uchar achKeyData[21]; md4cpy(achKeyData, thePrefs.GetUserHash()); achKeyData[16] = MAGICVALUE_REQUESTER; m_pfiReceiveBuffer->Read(achKeyData + 17, 4); // random key part sent from remote client MD5Sum md5(achKeyData, sizeof(achKeyData)); m_pRC4ReceiveKey = RC4CreateKey(md5.GetRawHash(), 16, NULL); achKeyData[16] = MAGICVALUE_SERVER; md5.Calculate(achKeyData, sizeof(achKeyData)); m_pRC4SendKey = RC4CreateKey(md5.GetRawHash(), 16, NULL); m_NegotiatingState = ONS_BASIC_CLIENTA_MAGICVALUE; m_nReceiveBytesWanted = 4; break; } case ONS_BASIC_CLIENTA_MAGICVALUE:{ uint32_t dwValue = m_pfiReceiveBuffer->ReadUInt32(); if (dwValue == MAGICVALUE_SYNC){ // yup, the one or the other way it worked, this is an encrypted stream //DEBUG_ONLY( DebugLog(_T("Received proper magic value, clientIP: %s"), DbgGetIPString()) ); // set the receiver key m_NegotiatingState = ONS_BASIC_CLIENTA_METHODTAGSPADLEN; m_nReceiveBytesWanted = 3; } else{ DebugLogError(_T("CEncryptedStreamSocket: Received wrong magic value from clientIP %s on a supposly encrytped stream / Wrong Header"), DbgGetIPString()); OnError(ERR_ENCRYPTION); return (-1); } break; } case ONS_BASIC_CLIENTA_METHODTAGSPADLEN: m_dbgbyEncryptionSupported = m_pfiReceiveBuffer->ReadUInt8(); m_dbgbyEncryptionRequested = m_pfiReceiveBuffer->ReadUInt8(); if (m_dbgbyEncryptionRequested != ENM_OBFUSCATION) AddDebugLogLine(DLP_LOW, false, _T("CEncryptedStreamSocket: Client %s preffered unsupported encryption method (%i)"), DbgGetIPString(), m_dbgbyEncryptionRequested); m_nReceiveBytesWanted = m_pfiReceiveBuffer->ReadUInt8(); m_NegotiatingState = ONS_BASIC_CLIENTA_PADDING; //if (m_nReceiveBytesWanted > 16) // AddDebugLogLine(DLP_LOW, false, _T("CEncryptedStreamSocket: Client %s sent more than 16 (%i) padding bytes"), DbgGetIPString(), m_nReceiveBytesWanted); if (m_nReceiveBytesWanted > 0) break; case ONS_BASIC_CLIENTA_PADDING:{ // ignore the random bytes, send the response, set status complete CSafeMemFile fileResponse(26); fileResponse.WriteUInt32(MAGICVALUE_SYNC); const uint8_t bySelectedEncryptionMethod = ENM_OBFUSCATION; // we do not support any further encryption in this version, so no need to look which the other client preferred fileResponse.WriteUInt8(bySelectedEncryptionMethod); SOCKADDR_IN sockAddr = {0}; int nSockAddrLen = sizeof(sockAddr); GetPeerName((SOCKADDR*)&sockAddr, &nSockAddrLen); const uint8_t byPaddingLen = theApp.serverconnect->AwaitingTestFromIP(sockAddr.sin_addr.S_un.S_addr) ? 16 : (thePrefs.GetCryptTCPPaddingLength() + 1); uint8_t byPadding = (uint8_t)(cryptRandomGen.GenerateByte() % byPaddingLen); fileResponse.WriteUInt8(byPadding); for (int i = 0; i < byPadding; i++) fileResponse.WriteUInt8(static_cast<uint8_t>(rand() & 0xFF)); SendNegotiatingData(fileResponse.GetBuffer(), (uint32_t)fileResponse.GetLength()); m_NegotiatingState = ONS_COMPLETE; m_StreamCryptState = ECS_ENCRYPTING; //DEBUG_ONLY( DebugLog(_T("CEncryptedStreamSocket: Finished Obufscation handshake with client %s (incoming)"), DbgGetIPString()) ); break; } case ONS_BASIC_CLIENTB_MAGICVALUE:{ if (m_pfiReceiveBuffer->ReadUInt32() != MAGICVALUE_SYNC){ DebugLogError(_T("CEncryptedStreamSocket: EncryptedstreamSyncError: Client sent wrong Magic Value as answer, cannot complete handshake (%s)"), DbgGetIPString()); OnError(ERR_ENCRYPTION); return (-1); } m_NegotiatingState = ONS_BASIC_CLIENTB_METHODTAGSPADLEN; m_nReceiveBytesWanted = 2; break; } case ONS_BASIC_CLIENTB_METHODTAGSPADLEN:{ m_dbgbyEncryptionMethodSet = m_pfiReceiveBuffer->ReadUInt8(); if (m_dbgbyEncryptionMethodSet != ENM_OBFUSCATION){ DebugLogError( _T("CEncryptedStreamSocket: Client %s set unsupported encryption method (%i), handshake failed"), DbgGetIPString(), m_dbgbyEncryptionMethodSet); OnError(ERR_ENCRYPTION); return (-1); } m_nReceiveBytesWanted = m_pfiReceiveBuffer->ReadUInt8(); m_NegotiatingState = ONS_BASIC_CLIENTB_PADDING; if (m_nReceiveBytesWanted > 0) break; } case ONS_BASIC_CLIENTB_PADDING: // ignore the random bytes, the handshake is complete m_NegotiatingState = ONS_COMPLETE; m_StreamCryptState = ECS_ENCRYPTING; //DEBUG_ONLY( DebugLog(_T("CEncryptedStreamSocket: Finished Obufscation handshake with client %s (outgoing)"), DbgGetIPString()) ); break; case ONS_BASIC_SERVER_DHANSWER:{ ASSERT( !m_cryptDHA.IsZero() ); uchar aBuffer[PRIMESIZE_BYTES + 1]; m_pfiReceiveBuffer->Read(aBuffer, PRIMESIZE_BYTES); CryptoPP::Integer cryptDHAnswer((byte*)aBuffer, PRIMESIZE_BYTES); CryptoPP::Integer cryptDHPrime((byte*)dh768_p, PRIMESIZE_BYTES); // our fixed prime CryptoPP::Integer cryptResult = CryptoPP::a_exp_b_mod_c(cryptDHAnswer, m_cryptDHA, cryptDHPrime); m_cryptDHA = 0; DEBUG_ONLY( ZeroMemory(aBuffer, sizeof(aBuffer)) ); ASSERT( cryptResult.MinEncodedSize() <= PRIMESIZE_BYTES ); // create the keys cryptResult.Encode(aBuffer, PRIMESIZE_BYTES); aBuffer[PRIMESIZE_BYTES] = MAGICVALUE_REQUESTER; MD5Sum md5(aBuffer, sizeof(aBuffer)); m_pRC4SendKey = RC4CreateKey(md5.GetRawHash(), 16, NULL); aBuffer[PRIMESIZE_BYTES] = MAGICVALUE_SERVER; md5.Calculate(aBuffer, sizeof(aBuffer)); m_pRC4ReceiveKey = RC4CreateKey(md5.GetRawHash(), 16, NULL); m_NegotiatingState = ONS_BASIC_SERVER_MAGICVALUE; m_nReceiveBytesWanted = 4; break; } case ONS_BASIC_SERVER_MAGICVALUE:{ uint32_t dwValue = m_pfiReceiveBuffer->ReadUInt32(); if (dwValue == MAGICVALUE_SYNC){ // yup, the one or the other way it worked, this is an encrypted stream DebugLog(_T("Received proper magic value after DH-Agreement from Serverconnection IP: %s"), DbgGetIPString()); // set the receiver key m_NegotiatingState = ONS_BASIC_SERVER_METHODTAGSPADLEN; m_nReceiveBytesWanted = 3; } else{ DebugLogError(_T("CEncryptedStreamSocket: Received wrong magic value after DH-Agreement from Serverconnection"), DbgGetIPString()); OnError(ERR_ENCRYPTION); return (-1); } break; } case ONS_BASIC_SERVER_METHODTAGSPADLEN: m_dbgbyEncryptionSupported = m_pfiReceiveBuffer->ReadUInt8(); m_dbgbyEncryptionRequested = m_pfiReceiveBuffer->ReadUInt8(); if (m_dbgbyEncryptionRequested != ENM_OBFUSCATION) AddDebugLogLine(DLP_LOW, false, _T("CEncryptedStreamSocket: Server %s preffered unsupported encryption method (%i)"), DbgGetIPString(), m_dbgbyEncryptionRequested); m_nReceiveBytesWanted = m_pfiReceiveBuffer->ReadUInt8(); m_NegotiatingState = ONS_BASIC_SERVER_PADDING; if (m_nReceiveBytesWanted > 16) AddDebugLogLine(DLP_LOW, false, _T("CEncryptedStreamSocket: Server %s sent more than 16 (%i) padding bytes"), DbgGetIPString(), m_nReceiveBytesWanted); if (m_nReceiveBytesWanted > 0) break; case ONS_BASIC_SERVER_PADDING:{ // ignore the random bytes (they are decrypted already), send the response, set status complete CSafeMemFile fileResponse(26); fileResponse.WriteUInt32(MAGICVALUE_SYNC); const uint8_t bySelectedEncryptionMethod = ENM_OBFUSCATION; // we do not support any further encryption in this version, so no need to look which the other client preferred fileResponse.WriteUInt8(bySelectedEncryptionMethod); uint8_t byPadding = (uint8_t)(cryptRandomGen.GenerateByte() % 16); fileResponse.WriteUInt8(byPadding); for (int i = 0; i < byPadding; i++) fileResponse.WriteUInt8(static_cast<uint8_t>(rand() & 0xFF)); m_NegotiatingState = ONS_BASIC_SERVER_DELAYEDSENDING; SendNegotiatingData(fileResponse.GetBuffer(), (uint32_t)fileResponse.GetLength(), 0, true); // don't actually send it right now, store it in our sendbuffer m_StreamCryptState = ECS_ENCRYPTING; DEBUG_ONLY( DebugLog(_T("CEncryptedStreamSocket: Finished DH Obufscation handshake with Server %s"), DbgGetIPString()) ); break; } default: ASSERT( false ); } m_pfiReceiveBuffer->SeekToBegin(); } if (m_pfiReceiveBuffer != NULL) free(m_pfiReceiveBuffer->Detach()); delete m_pfiReceiveBuffer; m_pfiReceiveBuffer = NULL; return nRead; } catch(CFileException* error){ // can only be caused by a bug in negationhandling, not by the datastream error->Delete(); ASSERT( false ); OnError(ERR_ENCRYPTION); if (m_pfiReceiveBuffer != NULL) free(m_pfiReceiveBuffer->Detach()); delete m_pfiReceiveBuffer; m_pfiReceiveBuffer = NULL; return (-1); } }
void CEncryptedStreamSocket::StartNegotiation(bool bOutgoing){ if (!bOutgoing){ m_NegotiatingState = ONS_BASIC_CLIENTA_RANDOMPART; m_StreamCryptState = ECS_NEGOTIATING; m_nReceiveBytesWanted = 4; } else if (m_StreamCryptState == ECS_PENDING){ CSafeMemFile fileRequest(29); const uint8_t bySemiRandomNotProtocolMarker = GetSemiRandomNotProtocolMarker(); fileRequest.WriteUInt8(bySemiRandomNotProtocolMarker); fileRequest.WriteUInt32(m_nRandomKeyPart); fileRequest.WriteUInt32(MAGICVALUE_SYNC); const uint8_t bySupportedEncryptionMethod = ENM_OBFUSCATION; // we do not support any further encryption in this version fileRequest.WriteUInt8(bySupportedEncryptionMethod); fileRequest.WriteUInt8(bySupportedEncryptionMethod); // so we also prefer this one uint8_t byPadding = (uint8_t)(cryptRandomGen.GenerateByte() % (thePrefs.GetCryptTCPPaddingLength() + 1)); fileRequest.WriteUInt8(byPadding); for (int i = 0; i < byPadding; i++) fileRequest.WriteUInt8(cryptRandomGen.GenerateByte()); m_NegotiatingState = ONS_BASIC_CLIENTB_MAGICVALUE; m_StreamCryptState = ECS_NEGOTIATING; m_nReceiveBytesWanted = 4; SendNegotiatingData(fileRequest.GetBuffer(), (uint32_t)fileRequest.GetLength(), 5); } else if (m_StreamCryptState == ECS_PENDING_SERVER){ CSafeMemFile fileRequest(113); const uint8_t bySemiRandomNotProtocolMarker = GetSemiRandomNotProtocolMarker(); fileRequest.WriteUInt8(bySemiRandomNotProtocolMarker); m_cryptDHA.Randomize(cryptRandomGen, DHAGREEMENT_A_BITS); // our random a ASSERT( m_cryptDHA.MinEncodedSize() <= DHAGREEMENT_A_BITS / 8 ); CryptoPP::Integer cryptDHPrime((byte*)dh768_p, PRIMESIZE_BYTES); // our fixed prime // calculate g^a % p CryptoPP::Integer cryptDHGexpAmodP = CryptoPP::a_exp_b_mod_c(CryptoPP::Integer(2), m_cryptDHA, cryptDHPrime); ASSERT( m_cryptDHA.MinEncodedSize() <= PRIMESIZE_BYTES ); // put the result into a buffer uchar aBuffer[PRIMESIZE_BYTES]; cryptDHGexpAmodP.Encode(aBuffer, PRIMESIZE_BYTES); fileRequest.Write(aBuffer, PRIMESIZE_BYTES); uint8_t byPadding = (uint8_t)(cryptRandomGen.GenerateByte() % 16); // add random padding fileRequest.WriteUInt8(byPadding); for (int i = 0; i < byPadding; i++) fileRequest.WriteUInt8(cryptRandomGen.GenerateByte()); m_NegotiatingState = ONS_BASIC_SERVER_DHANSWER; m_StreamCryptState = ECS_NEGOTIATING; m_nReceiveBytesWanted = 96; SendNegotiatingData(fileRequest.GetBuffer(), (uint32_t)fileRequest.GetLength(), (uint32_t)fileRequest.GetLength()); } else{ ASSERT( false ); m_StreamCryptState = ECS_NONE; return; } }
void Send(SOCKET s, CryptoPP::Integer item){ byte output[128]; item.Encode(output, 128); send(s, (char *)output, 128, 0); }
int CEncryptedStreamSocket::Negotiate(const uint8* pBuffer, uint32 nLen) { uint32_t nRead = 0; wxASSERT( m_nReceiveBytesWanted > 0 ); //DumpMem(pBuffer, nLen, wxT("Negotiate buffer: ")); try { while (m_NegotiatingState != ONS_COMPLETE && m_nReceiveBytesWanted > 0) { if (m_nReceiveBytesWanted > 512) { wxFAIL; return 0; } const uint32_t nToRead = std::min(nLen - nRead, m_nReceiveBytesWanted); //printf("Reading %i bytes, add from %i position on %i position\n",nToRead, nRead, (int)m_pfiReceiveBuffer.GetPosition()); //DumpMem(pBuffer + nRead, nToRead, wxT("Recv Buffer: ")); m_pfiReceiveBuffer.Write(pBuffer + nRead, nToRead); nRead += nToRead; m_nReceiveBytesWanted -= nToRead; if (m_nReceiveBytesWanted > 0) { return nRead; } if (m_NegotiatingState != ONS_BASIC_CLIENTA_RANDOMPART && m_NegotiatingState != ONS_BASIC_SERVER_DHANSWER) { // We have the keys, decrypt //printf("We have the keys, so decrypt away on %s\n", (const char*) unicode2char(DbgGetIPString())); m_pfiReceiveBuffer.Encrypt(); } m_pfiReceiveBuffer.Seek(0); switch (m_NegotiatingState) { case ONS_NONE: // would be a bug wxFAIL; return 0; case ONS_BASIC_CLIENTA_RANDOMPART: { //printf("We are on ONS_BASIC_CLIENTA_RANDOMPART, create the keys on %s\n", (const char*) unicode2char(DbgGetIPString())); // This creates the send/receive keys. uint8_t achKeyData[21]; md4cpy(achKeyData, thePrefs::GetUserHash().GetHash()); m_pfiReceiveBuffer.Read(achKeyData + 17, 4); achKeyData[16] = MAGICVALUE_REQUESTER; //DumpMem(achKeyData, sizeof(achKeyData), wxT("ach:")); MD5Sum md5(achKeyData, sizeof(achKeyData)); //DumpMem(md5.GetRawHash(), 16, wxT("Md5:")); m_pfiReceiveBuffer.SetKey(md5); achKeyData[16] = MAGICVALUE_SERVER; md5.Calculate(achKeyData, sizeof(achKeyData)); m_pfiSendBuffer.SetKey(md5); m_NegotiatingState = ONS_BASIC_CLIENTA_MAGICVALUE; m_nReceiveBytesWanted = 4; break; } case ONS_BASIC_CLIENTA_MAGICVALUE: { // Check the magic value to confirm encryption works. //printf("Creating magic value on negotiate on %s\n", (const char*) unicode2char(DbgGetIPString())); uint32_t dwValue = m_pfiReceiveBuffer.ReadUInt32(); if (dwValue == MAGICVALUE_SYNC) { // yup, the one or the other way it worked, this is an encrypted stream //DEBUG_ONLY( DebugLog(_T("Received proper magic value, clientIP: %s"), DbgGetIPString()) ); // set the receiver key //printf("Magic value works on %s\n", (const char*) unicode2char(DbgGetIPString())); m_NegotiatingState = ONS_BASIC_CLIENTA_METHODTAGSPADLEN; m_nReceiveBytesWanted = 3; } else { //printf("Wrong magic value: 0x%x != 0x%x on %s\n",dwValue, MAGICVALUE_SYNC, (const char*)unicode2char(DbgGetIPString())); //DebugLogError(_T("CEncryptedStreamSocket: Received wrong magic value from clientIP %s on a supposly encrytped stream / Wrong Header"), DbgGetIPString()); OnError(ERR_ENCRYPTION); return (-1); } break; } case ONS_BASIC_CLIENTA_METHODTAGSPADLEN: { // Get encryption method and padding. // Might fall back to padding process, but the bytes will be ignored. //printf("Getting encryption method on negotiation\n"); m_dbgbyEncryptionSupported = m_pfiReceiveBuffer.ReadUInt8(); m_dbgbyEncryptionRequested = m_pfiReceiveBuffer.ReadUInt8(); if (m_dbgbyEncryptionRequested != ENM_OBFUSCATION) { //printf("Unsupported encryption method!\n"); // AddDebugLogLine(DLP_LOW, false, _T("CEncryptedStreamSocket: Client %s preffered unsupported encryption method (%i)"), DbgGetIPString(), m_dbgbyEncryptionRequested); } m_nReceiveBytesWanted = m_pfiReceiveBuffer.ReadUInt8(); m_NegotiatingState = ONS_BASIC_CLIENTA_PADDING; if (m_nReceiveBytesWanted > 0) { // No padding break; } } case ONS_BASIC_CLIENTA_PADDING: { //printf("Negotiating on padding, completing\n"); // ignore the random bytes, send the response, set status complete CMemFile fileResponse(26); fileResponse.WriteUInt32(MAGICVALUE_SYNC); const uint8_t bySelectedEncryptionMethod = ENM_OBFUSCATION; // we do not support any further encryption in this version, so no need to look which the other client preferred fileResponse.WriteUInt8(bySelectedEncryptionMethod); amuleIPV4Address address; GetPeer(address); const uint8_t byPaddingLen = theApp->serverconnect->AwaitingTestFromIP(StringIPtoUint32(address.IPAddress())) ? 16 : (thePrefs::GetCryptTCPPaddingLength() + 1); uint8_t byPadding = (uint8_t)(GetRandomUint8() % byPaddingLen); fileResponse.WriteUInt8(byPadding); for (int i = 0; i < byPadding; i++) { fileResponse.WriteUInt8((uint8_t)rand()); } SendNegotiatingData(fileResponse.GetRawBuffer(), (uint32_t)fileResponse.GetLength()); m_NegotiatingState = ONS_COMPLETE; m_StreamCryptState = ECS_ENCRYPTING; //DEBUG_ONLY( DebugLog(_T("CEncryptedStreamSocket: Finished Obufscation handshake with client %s (incoming)"), DbgGetIPString()) ); break; } case ONS_BASIC_CLIENTB_MAGICVALUE: { //printf("Negotiating on magic value\n"); if (m_pfiReceiveBuffer.ReadUInt32() != MAGICVALUE_SYNC) { //DebugLogError(_T("CEncryptedStreamSocket: EncryptedstreamSyncError: Client sent wrong Magic Value as answer, cannot complete handshake (%s)"), DbgGetIPString()); OnError(ERR_ENCRYPTION); return (-1); } m_NegotiatingState = ONS_BASIC_CLIENTB_METHODTAGSPADLEN; m_nReceiveBytesWanted = 2; break; } case ONS_BASIC_CLIENTB_METHODTAGSPADLEN: { //printf("Negotiating on client B pad length\n"); m_dbgbyEncryptionMethodSet = m_pfiReceiveBuffer.ReadUInt8(); if (m_dbgbyEncryptionMethodSet != ENM_OBFUSCATION) { //DebugLogError( _T("CEncryptedStreamSocket: Client %s set unsupported encryption method (%i), handshake failed"), DbgGetIPString(), m_dbgbyEncryptionMethodSet); OnError(ERR_ENCRYPTION); return (-1); } m_nReceiveBytesWanted = m_pfiReceiveBuffer.ReadUInt8(); m_NegotiatingState = ONS_BASIC_CLIENTB_PADDING; if (m_nReceiveBytesWanted > 0) { break; } } case ONS_BASIC_CLIENTB_PADDING: //printf("Negotiating on client B padding, handshake complete\n"); // ignore the random bytes, the handshake is complete m_NegotiatingState = ONS_COMPLETE; m_StreamCryptState = ECS_ENCRYPTING; //DEBUG_ONLY( DebugLog(_T("CEncryptedStreamSocket: Finished Obufscation handshake with client %s (outgoing)"), DbgGetIPString()) ); break; case ONS_BASIC_SERVER_DHANSWER: { wxASSERT( !m_cryptDHA.IsZero() ); uint8_t aBuffer[PRIMESIZE_BYTES + 1]; m_pfiReceiveBuffer.Read(aBuffer, PRIMESIZE_BYTES); CryptoPP::Integer cryptDHAnswer((byte*)aBuffer, PRIMESIZE_BYTES); CryptoPP::Integer cryptDHPrime((byte*)dh768_p, PRIMESIZE_BYTES); // our fixed prime CryptoPP::Integer cryptResult = a_exp_b_mod_c(cryptDHAnswer, m_cryptDHA, cryptDHPrime); m_cryptDHA = 0; //DEBUG_ONLY( ZeroMemory(aBuffer, sizeof(aBuffer)) ); wxASSERT( cryptResult.MinEncodedSize() <= PRIMESIZE_BYTES ); // create the keys cryptResult.Encode(aBuffer, PRIMESIZE_BYTES); aBuffer[PRIMESIZE_BYTES] = MAGICVALUE_REQUESTER; MD5Sum md5(aBuffer, sizeof(aBuffer)); m_pfiSendBuffer.SetKey(md5); aBuffer[PRIMESIZE_BYTES] = MAGICVALUE_SERVER; md5.Calculate(aBuffer, sizeof(aBuffer)); m_pfiReceiveBuffer.SetKey(md5); m_NegotiatingState = ONS_BASIC_SERVER_MAGICVALUE; m_nReceiveBytesWanted = 4; break; } case ONS_BASIC_SERVER_MAGICVALUE: { uint32_t dwValue = m_pfiReceiveBuffer.ReadUInt32(); if (dwValue == MAGICVALUE_SYNC) { // yup, the one or the other way it worked, this is an encrypted stream //DebugLog(_T("Received proper magic value after DH-Agreement from Serverconnection IP: %s"), DbgGetIPString()); // set the receiver key m_NegotiatingState = ONS_BASIC_SERVER_METHODTAGSPADLEN; m_nReceiveBytesWanted = 3; } else { //DebugLogError(_T("CEncryptedStreamSocket: Received wrong magic value after DH-Agreement from Serverconnection"), DbgGetIPString()); OnError(ERR_ENCRYPTION); return (-1); } break; } case ONS_BASIC_SERVER_METHODTAGSPADLEN: m_dbgbyEncryptionSupported = m_pfiReceiveBuffer.ReadUInt8(); m_dbgbyEncryptionRequested = m_pfiReceiveBuffer.ReadUInt8(); if (m_dbgbyEncryptionRequested != ENM_OBFUSCATION) { // AddDebugLogLine(DLP_LOW, false, _T("CEncryptedStreamSocket: Server %s preffered unsupported encryption method (%i)"), DbgGetIPString(), m_dbgbyEncryptionRequested); } m_nReceiveBytesWanted = m_pfiReceiveBuffer.ReadUInt8(); m_NegotiatingState = ONS_BASIC_SERVER_PADDING; if (m_nReceiveBytesWanted > 0) { break; } case ONS_BASIC_SERVER_PADDING: { // ignore the random bytes (they are decrypted already), send the response, set status complete CMemFile fileResponse(26); fileResponse.WriteUInt32(MAGICVALUE_SYNC); const uint8_t bySelectedEncryptionMethod = ENM_OBFUSCATION; // we do not support any further encryption in this version, so no need to look which the other client preferred fileResponse.WriteUInt8(bySelectedEncryptionMethod); // Server callback connection only allows 16 bytes of padding. uint8_t byPadding = (uint8_t)(GetRandomUint8() % 16); fileResponse.WriteUInt8(byPadding); for (int i = 0; i < byPadding; i++) { fileResponse.WriteUInt8((uint8_t)rand()); } m_NegotiatingState = ONS_BASIC_SERVER_DELAYEDSENDING; SendNegotiatingData(fileResponse.GetRawBuffer(), (uint32_t)fileResponse.GetLength(), 0, true); // don't actually send it right now, store it in our sendbuffer m_StreamCryptState = ECS_ENCRYPTING; //DEBUG_ONLY( DebugLog(_T("CEncryptedStreamSocket: Finished DH Obufscation handshake with Server %s"), DbgGetIPString()) ); break; } default: wxFAIL; } m_pfiReceiveBuffer.ResetData(); } return nRead; } catch(...) { // can only be caused by a bug in negationhandling, not by the datastream //error->Delete(); //printf("Bug on negotiation?\n"); wxFAIL; OnError(ERR_ENCRYPTION); m_pfiReceiveBuffer.ResetData(); return (-1); } }
void CEncryptedStreamSocket::StartNegotiation(bool bOutgoing) { //printf("Starting socket negotiation\n"); if (!bOutgoing) { //printf("Incoming connection negotiation on %s\n", (const char*) unicode2char(DbgGetIPString())); m_NegotiatingState = ONS_BASIC_CLIENTA_RANDOMPART; m_StreamCryptState = ECS_NEGOTIATING; m_nReceiveBytesWanted = 4; } else if (m_StreamCryptState == ECS_PENDING) { //printf("Socket is client.pending on negotiation\n"); CMemFile fileRequest(29); const uint8_t bySemiRandomNotProtocolMarker = GetSemiRandomNotProtocolMarker(); fileRequest.WriteUInt8(bySemiRandomNotProtocolMarker); fileRequest.WriteUInt32(m_nRandomKeyPart); fileRequest.WriteUInt32(MAGICVALUE_SYNC); const uint8_t bySupportedEncryptionMethod = ENM_OBFUSCATION; // we do not support any further encryption in this version fileRequest.WriteUInt8(bySupportedEncryptionMethod); fileRequest.WriteUInt8(bySupportedEncryptionMethod); // so we also prefer this one uint8_t byPadding = (uint8_t)(GetRandomUint8() % (thePrefs::GetCryptTCPPaddingLength() + 1)); fileRequest.WriteUInt8(byPadding); for (int i = 0; i < byPadding; i++) { fileRequest.WriteUInt8(GetRandomUint8()); } m_NegotiatingState = ONS_BASIC_CLIENTB_MAGICVALUE; m_StreamCryptState = ECS_NEGOTIATING; m_nReceiveBytesWanted = 4; SendNegotiatingData(fileRequest.GetRawBuffer(), (uint32_t)fileRequest.GetLength(), 5); } else if (m_StreamCryptState == ECS_PENDING_SERVER) { //printf("Socket is server.pending on negotiation\n"); CMemFile fileRequest(113); const uint8_t bySemiRandomNotProtocolMarker = GetSemiRandomNotProtocolMarker(); fileRequest.WriteUInt8(bySemiRandomNotProtocolMarker); m_cryptDHA.Randomize((CryptoPP::AutoSeededRandomPool&)GetRandomPool(), DHAGREEMENT_A_BITS); // our random a wxASSERT( m_cryptDHA.MinEncodedSize() <= DHAGREEMENT_A_BITS / 8 ); CryptoPP::Integer cryptDHPrime((byte*)dh768_p, PRIMESIZE_BYTES); // our fixed prime // calculate g^a % p CryptoPP::Integer cryptDHGexpAmodP = a_exp_b_mod_c(CryptoPP::Integer(2), m_cryptDHA, cryptDHPrime); wxASSERT( m_cryptDHA.MinEncodedSize() <= PRIMESIZE_BYTES ); // put the result into a buffer uint8_t aBuffer[PRIMESIZE_BYTES]; cryptDHGexpAmodP.Encode(aBuffer, PRIMESIZE_BYTES); fileRequest.Write(aBuffer, PRIMESIZE_BYTES); uint8 byPadding = (uint8)(GetRandomUint8() % 16); // add random padding fileRequest.WriteUInt8(byPadding); for (int i = 0; i < byPadding; i++) { fileRequest.WriteUInt8(GetRandomUint8()); } m_NegotiatingState = ONS_BASIC_SERVER_DHANSWER; m_StreamCryptState = ECS_NEGOTIATING; m_nReceiveBytesWanted = 96; SendNegotiatingData(fileRequest.GetRawBuffer(), (uint32_t)fileRequest.GetLength(), (uint32_t)fileRequest.GetLength()); } else { wxFAIL; m_StreamCryptState = ECS_NONE; return; } }