// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void ChangeResolution::preflight()
{
  setInPreflight(true);
  emit preflightAboutToExecute();
  emit updateFilterParameters(this);
  dataCheck();

  if (getErrorCondition() < 0)
  {
    emit preflightExecuted();
    setInPreflight(false);
    return;
  }

  DataContainer::Pointer m;
  if (m_SaveAsNewDataContainer == false)
  {
    m = getDataContainerArray()->getDataContainer(getCellAttributeMatrixPath().getDataContainerName());
  }
  else
  {
    m = getDataContainerArray()->getDataContainer(getNewDataContainerName());
  }

  size_t dims[3] = { 0, 0, 0 };
  m->getGeometryAs<ImageGeom>()->getDimensions(dims);

  float sizex = (dims[0]) * m->getGeometryAs<ImageGeom>()->getXRes();
  float sizey = (dims[1]) * m->getGeometryAs<ImageGeom>()->getYRes();
  float sizez = (dims[2]) * m->getGeometryAs<ImageGeom>()->getZRes();
  size_t m_XP = size_t(sizex / m_Resolution.x);
  size_t m_YP = size_t(sizey / m_Resolution.y);
  size_t m_ZP = size_t(sizez / m_Resolution.z);
  if (m_XP == 0) { m_XP = 1; }
  if (m_YP == 0) { m_YP = 1; }
  if (m_ZP == 0) { m_ZP = 1; }

  m->getGeometryAs<ImageGeom>()->setDimensions(m_XP, m_YP, m_ZP);
  m->getGeometryAs<ImageGeom>()->setResolution(m_Resolution.x, m_Resolution.y, m_Resolution.z);

  QVector<size_t> tDims(3, 0);
  tDims[0] = m_XP;
  tDims[1] = m_YP;
  tDims[2] = m_ZP;
  m->getAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName())->setTupleDimensions(tDims);

  if (m_RenumberFeatures == true)
  {
    AttributeMatrix::Pointer cellFeatureAttrMat = m->getAttributeMatrix(getCellFeatureAttributeMatrixPath().getAttributeMatrixName());
    QVector<bool> activeObjects(cellFeatureAttrMat->getNumTuples(), true);
    cellFeatureAttrMat->removeInactiveObjects(activeObjects, m_FeatureIdsPtr.lock());
  }
  emit preflightExecuted();
  setInPreflight(false);
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void CombineAttributeMatrices::execute()
{
  setErrorCondition(0);
  dataCheck();
  if (getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getFirstAttributeMatrixPath().getDataContainerName());
  AttributeMatrix::Pointer firstAttrMat = m->getAttributeMatrix(getFirstAttributeMatrixPath().getAttributeMatrixName());
  AttributeMatrix::Pointer secondAttrMat = m->getAttributeMatrix(getSecondAttributeMatrixPath().getAttributeMatrixName());
  AttributeMatrix::Pointer combinedAttrMat = m->getAttributeMatrix(getCombinedAttributeMatrixName());
  size_t firstAttrMatNumTuples = firstAttrMat->getNumTuples();

  size_t totalTuples1 = m_SecondIndexPtr.lock()->getNumberOfTuples();
  size_t totalTuples2 = m_SecondIndexPtr.lock()->getNumberOfTuples();
  for (size_t i = 0; i < totalTuples1; i++)
  {
    if (m_FirstIndex > 0) { m_NewIndex[i] = m_FirstIndex[i]; }
  }
  for (size_t i = 0; i < totalTuples2; i++)
  {
    //subtract 1 from the index plus numTuples because the second index should be shifted to account for the zeroth tuple (all AMs above element start at tuple 1)
    if (m_SecondIndex[i] > 0 && m_NewIndex[i] == 0) m_NewIndex[i] = m_SecondIndex[i] + firstAttrMatNumTuples - 1;
    else if (m_SecondIndex[i] > 0 && m_NewIndex[i] != 0)
    {
      QString ss = QObject::tr("When copying the indices, the indices of the two attribute matrices overlapped.  The index of the first attribute matrix was kept.");
      notifyWarningMessage(getHumanLabel(), ss, -111);
    }
  }

  QList<QString> arrayNames = firstAttrMat->getAttributeArrayNames();
  size_t location = 0;
  for (QList<QString>::iterator iter = arrayNames.begin(); iter != arrayNames.end(); ++iter)
  {
    IDataArray::Pointer fromDataArray = firstAttrMat->getAttributeArray(*iter);
    IDataArray::Pointer toDataArray = combinedAttrMat->getAttributeArray(*iter);
    EXECUTE_FUNCTION_TEMPLATE(this, copyData, fromDataArray, fromDataArray, toDataArray, location);
  }

  arrayNames.clear();
  arrayNames = secondAttrMat->getAttributeArrayNames();
  location = firstAttrMatNumTuples;
  for (QList<QString>::iterator iter = arrayNames.begin(); iter != arrayNames.end(); ++iter)
  {
    IDataArray::Pointer fromDataArray = secondAttrMat->getAttributeArray(*iter);
    IDataArray::Pointer toDataArray = combinedAttrMat->getAttributeArray(*iter);
    EXECUTE_FUNCTION_TEMPLATE(this, copyData, fromDataArray, fromDataArray, toDataArray, location);
  }

  notifyStatusMessage(getHumanLabel(), "Complete");
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void SineParamsSegmentFeatures::execute()
{
  setErrorCondition(0);

  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());

  QVector<size_t> tDims(1, 1);
  m->getAttributeMatrix(getCellFeatureAttributeMatrixName())->resizeAttributeArrays(tDims);

  // This runs a subfilter
  int64_t totalPoints = m_FeatureIdsPtr.lock()->getNumberOfTuples();

  // Tell the user we are starting the filter
  notifyStatusMessage(getMessagePrefix(), getHumanLabel(), "Starting");

  //Convert user defined tolerance to radians.
  //angleTolerance = m_AngleTolerance * SIMPLib::Constants::k_Pi / 180.0f;
  for(int64_t i = 0; i < totalPoints; i++)
  {
    m_FeatureIds[i] = 0;
  }

  // Generate the random voxel indices that will be used for the seed points to start a new grain growth/agglomeration
  const size_t rangeMin = 0;
  const size_t rangeMax = totalPoints - 1;
  initializeVoxelSeedGenerator(rangeMin, rangeMax);

  SegmentFeatures::execute();

  size_t totalFeatures = m->getAttributeMatrix(getCellFeatureAttributeMatrixName())->getNumTuples();
  if (totalFeatures < 2)
  {
    setErrorCondition(-87000);
    notifyErrorMessage(getHumanLabel(), "The number of Features was 0 or 1 which means no features were detected. Is a threshold value set to high?", getErrorCondition());
    return;
  }

  // By default we randomize grains
  if (true == m_RandomizeFeatureIds)
  {
    randomizeFeatureIds(totalPoints, totalFeatures);
  }

  // If there is an error set this to something negative and also set a message
  notifyStatusMessage(getHumanLabel(), "Completed");
}
示例#4
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void ConvertData::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(m_SelectedCellArrayPath.getDataContainerName());

  IDataArray::Pointer iArray = m->getAttributeMatrix(m_SelectedCellArrayPath.getAttributeMatrixName())->getAttributeArray(m_SelectedCellArrayPath.getDataArrayName());
  bool completed = false;

  CHECK_AND_CONVERT(UInt8ArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)
  CHECK_AND_CONVERT(Int8ArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)
  CHECK_AND_CONVERT(UInt16ArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)
  CHECK_AND_CONVERT(Int16ArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)
  CHECK_AND_CONVERT(UInt32ArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)
  CHECK_AND_CONVERT(Int32ArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)
  CHECK_AND_CONVERT(UInt64ArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)
  CHECK_AND_CONVERT(Int64ArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)
  CHECK_AND_CONVERT(FloatArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)
  CHECK_AND_CONVERT(DoubleArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)
  CHECK_AND_CONVERT(BoolArrayType, m, m_ScalarType, iArray, m_SelectedCellArrayPath.getAttributeMatrixName(), m_OutputArrayName)

  /* Let the GUI know we are done with this filter */
  notifyStatusMessage(getHumanLabel(), "Complete");
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
int64_t EBSDSegmentFeatures::getSeed(int32_t gnum, int64_t nextSeed)
{
  setErrorCondition(0);
  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());

  size_t totalPoints = m_FeatureIdsPtr.lock()->getNumberOfTuples();
  int64_t seed = -1;
  // start with the next voxel after the last seed
  size_t randpoint = static_cast<size_t>(nextSeed);
  while (seed == -1 && randpoint < totalPoints)
  {
    if (m_FeatureIds[randpoint] == 0) // If the GrainId of the voxel is ZERO then we can use this as a seed point
    {
      if ((m_UseGoodVoxels == false || m_GoodVoxels[randpoint] == true) && m_CellPhases[randpoint] > 0)
      {
        seed = randpoint;
      }
      else { randpoint += 1; }
    }
    else { randpoint += 1; }
  }
  if (seed >= 0)
  {
    m_FeatureIds[seed] = gnum;
    QVector<size_t> tDims(1, gnum + 1);
    m->getAttributeMatrix(getCellFeatureAttributeMatrixName())->resizeAttributeArrays(tDims);
    updateFeatureInstancePointers();
  }
  return seed;
}
void writePointScalarData(DataContainer::Pointer dc, const QString& vertexAttributeMatrixName, const QString& dataName, const QString& dataType,
                          bool writeBinaryData, FILE* vtkFile, int nT)
{
  IDataArray::Pointer data = dc->getAttributeMatrix(vertexAttributeMatrixName)->getAttributeArray(dataName);
  QString ss;
  if (NULL != data.get())
  {
    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "SCALARS %s %s\n", dataName.toLatin1().data(), dataType.toLatin1().data());
    fprintf(vtkFile, "LOOKUP_TABLE default\n");
    for(int i = 0; i < nT; ++i)
    {
      T swapped = 0x00;
      if(writeBinaryData == true)
      {
        swapped = static_cast<T>(m[i]);
        SIMPLib::Endian::FromSystemToBig::convert(swapped);
        fwrite(&swapped, sizeof(T), 1, vtkFile);
      }
      else
      {

        ss = QString::number(m[i]) + " ";
        fprintf(vtkFile, "%s ", ss.toLatin1().data());
        //if (i%50 == 0)
        { fprintf(vtkFile, "\n"); }
      }

    }
  }
}
示例#7
0
/**
 *
 * @param FileName
 * @param data
 * @param nx X Dimension
 * @param ny Y Dimension
 * @param nz Z Dimension
 */
int  ReadPHFile(QString FileName, QVector<int>& data, int& nx, int& ny, int& nz)
{
  DataContainerArray::Pointer dca = DataContainerArray::New();
  DataContainer::Pointer m = DataContainer::New(); /* FIXME: What Geometry do we need? */
  dca->pushBack(m);

  FilterManager::Pointer fm = FilterManager::Instance();
  AbstractFilter::Pointer reader = fm->getFactoryForFilter("PhReader")->create();
  reader->setDataContainerArray(dca);
  bool propWasSet = reader->setProperty("InputFile", FileName);
  if(propWasSet == false)
  {

  }
  reader->execute();
  if (reader->getErrorCondition() < 0)
  {
    qDebug() << "Error Reading the Ph File '" << FileName << "' Error Code:" << reader->getErrorCondition();
    return -1;
  }

  Int32ArrayType* featureIds = Int32ArrayType::SafePointerDownCast(m->getAttributeMatrix(DREAM3D::Defaults::CellAttributeMatrixName)->getAttributeArray(DREAM3D::CellData::FeatureIds).get());
  size_t count = featureIds->getNumberOfTuples();

  data.resize(count);
  for(size_t i = 0; i < count; ++i)
  {
    data[i] = featureIds->getValue(i);
  }


  return 0;
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void LinkFeatureMapToElementArray::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getSelectedCellArrayPath().getDataContainerName());
  size_t totalPoints = m_SelectedCellDataPtr.lock()->getNumberOfTuples();

  int32_t maxIndex = 0;
  std::vector<bool> active;
  for (size_t i = 0; i < totalPoints; i++)
  {
    int32_t index = m_SelectedCellData[i];
    if ((index + 1) > maxIndex)
    {
      active.resize(index + 1);
      active[index] = true;
      maxIndex = index + 1;
    }
  }

  QVector<size_t> tDims(1, maxIndex);
  m->getAttributeMatrix(getCellFeatureAttributeMatrixName())->resizeAttributeArrays(tDims);
  updateFeatureInstancePointers();

  for (int32_t i = 0; i < maxIndex; i++)
  {
    m_Active[i] = active[i];
  }

  notifyStatusMessage(getHumanLabel(), "Complete");
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
int64_t EBSDSegmentFeatures::getSeed(int32_t gnum)
{
  setErrorCondition(0);

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());

  size_t totalPoints = m_FeatureIdsPtr.lock()->getNumberOfTuples();
  int64_t seed = -1;
  Generator& numberGenerator = *m_NumberGenerator;
  while (seed == -1 && m_TotalRandomNumbersGenerated < totalPoints)
  {
    // Get the next voxel index in the precomputed list of voxel seeds
    int64_t randpoint = numberGenerator();
    m_TotalRandomNumbersGenerated++; // Increment this counter
    if (m_FeatureIds[randpoint] == 0) // If the GrainId of the voxel is ZERO then we can use this as a seed point
    {
      if ((m_UseGoodVoxels == false || m_GoodVoxels[randpoint] == true) && m_CellPhases[randpoint] > 0)
      {
        seed = randpoint;
      }
    }
  }
  if (seed >= 0)
  {
    m_FeatureIds[seed] = gnum;
    QVector<size_t> tDims(1, gnum + 1);
    m->getAttributeMatrix(getCellFeatureAttributeMatrixName())->resizeAttributeArrays(tDims);
    updateFeatureInstancePointers();
  }
  return seed;
}
void writeCellScalarData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType,
                         bool writeBinaryData, FILE* vtkFile, QMap<int32_t, int32_t>& featureIds, int32_t* m_SurfaceMeshFaceLabels)
{
  TriangleGeom::Pointer triangleGeom = dc->getGeometryAs<TriangleGeom>();

  int64_t numTriangles = triangleGeom->getNumberOfTris();
  IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName);

  QString ss;
  if (NULL != data.get())
  {
    int32_t totalCellsWritten = 0;

    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "SCALARS %s %s 1\n", dataName.toLatin1().data(), dataType.toLatin1().data());
    fprintf(vtkFile, "LOOKUP_TABLE default\n");
    // Loop over all the features
    for(QMap<int32_t, int32_t>::iterator featureIter = featureIds.begin(); featureIter != featureIds.end(); ++featureIter)
    {
      int32_t gid = featureIter.key(); // The current Feature Id
      size_t size = featureIter.value(); // The number of triangles for this feature id
      std::vector<T> buffer(size, 0);
      totalCellsWritten += size;
      size_t index = 0;

      for (int j = 0; j < numTriangles; j++)
      {
        if (m_SurfaceMeshFaceLabels[j * 2] != gid && m_SurfaceMeshFaceLabels[j * 2 + 1] != gid) { continue; }
        // Get the data
        T s0 = static_cast<T>(m[j]);
        if (m_SurfaceMeshFaceLabels[j * 2 + 1] == gid)
        { s0 = s0 * -1; }


        // Write the values to the buffer after an Endian swap.
        if(writeBinaryData == true)
        {
          SIMPLib::Endian::FromSystemToBig::convert(s0);
          buffer[index] = s0;
          ++index;
        }
        else
        {

          ss = QString::number(s0);
          fprintf(vtkFile, "%s\n", ss.toLatin1().data());
        }
      }

      // Write the Buffer
      if(writeBinaryData == true)
      {
        fwrite(&(buffer.front()), sizeof(T), size, vtkFile);
      }
    }
  }

}
示例#11
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void VectorSegmentFeatures::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());

  QVector<size_t> tDims(1, 1);
  m->getAttributeMatrix(getCellFeatureAttributeMatrixName())->resizeAttributeArrays(tDims);
  updateFeatureInstancePointers();

  int64_t totalPoints = static_cast<int64_t>(m_FeatureIdsPtr.lock()->getNumberOfTuples());

  m_BeenPickedPtr = BoolArrayType::CreateArray(totalPoints, "BeenPicked INTERNAL ARRAY ONLY");
  m_BeenPickedPtr->initializeWithValue(0);
  m_BeenPicked = m_BeenPickedPtr->getPointer(0);

  // Convert user defined tolerance to radians.
  angleTolerance = m_AngleTolerance * SIMPLib::Constants::k_Pi / 180.0f;

  // Generate the random voxel indices that will be used for the seed points to start a new grain growth/agglomeration
  const int64_t rangeMin = 0;
  const int64_t rangeMax = totalPoints - 1;
  initializeVoxelSeedGenerator(rangeMin, rangeMax);

  SegmentFeatures::execute();

  int32_t totalFeatures = static_cast<int32_t>(m->getAttributeMatrix(getCellFeatureAttributeMatrixName())->getNumTuples());
  if (totalFeatures < 2)
  {
    setErrorCondition(-87000);
    notifyErrorMessage(getHumanLabel(), "The number of Features was 0 or 1 which means no Features were detected. A threshold value may be set too high", getErrorCondition());
    return;
  }

  // By default we randomize grains
  if (true == m_RandomizeFeatureIds)
  {
    randomizeFeatureIds(totalPoints, totalFeatures);
  }

  // If there is an error set this to something negative and also set a message
  notifyStatusMessage(getHumanLabel(), "Completed");
}
示例#12
0
void writeCellNormalData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType,
                         bool writeBinaryData, bool writeConformalMesh,
                         FILE* vtkFile, int nT)
{
  IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName);
  QString buf;
  QTextStream ss(&buf);
  if (NULL != data.get())
  {
    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "NORMALS %s %s\n", dataName.toLatin1().data(), dataType.toLatin1().data());
    for(int i = 0; i < nT; ++i)
    {
      T s0 = 0x00;
      T s1 = 0x00;
      T s2 = 0x00;
      if(writeBinaryData == true)
      {
        s0 = static_cast<T>(m[i * 3 + 0]);
        s1 = static_cast<T>(m[i * 3 + 1]);
        s2 = static_cast<T>(m[i * 3 + 2]);
        SIMPLib::Endian::FromSystemToBig::convert(s0);
        SIMPLib::Endian::FromSystemToBig::convert(s1);
        SIMPLib::Endian::FromSystemToBig::convert(s2);
        fwrite(&s0, sizeof(T), 1, vtkFile);
        fwrite(&s1, sizeof(T), 1, vtkFile);
        fwrite(&s2, sizeof(T), 1, vtkFile);
        if(false == writeConformalMesh)
        {
          s0 = static_cast<T>(m[i * 3 + 0]) * -1.0;
          s1 = static_cast<T>(m[i * 3 + 1]) * -1.0;
          s2 = static_cast<T>(m[i * 3 + 2]) * -1.0;
          SIMPLib::Endian::FromSystemToBig::convert(s0);
          SIMPLib::Endian::FromSystemToBig::convert(s1);
          SIMPLib::Endian::FromSystemToBig::convert(s2);
          fwrite(&s0, sizeof(T), 1, vtkFile);
          fwrite(&s1, sizeof(T), 1, vtkFile);
          fwrite(&s2, sizeof(T), 1, vtkFile);
        }
      }
      else
      {

        ss << m[i * 3 + 0] << " " << m[i * 3 + 1] << " " << m[i * 3 + 2] << " ";
        if(false == writeConformalMesh)
        {
          ss << -1.0 * m[i * 3 + 0] << " " << -1.0 * m[i * 3 + 1] << " " << -1.0 * m[i * 3 + 2] << " ";
        }
        fprintf(vtkFile, "%s ", buf.toLatin1().data());
        buf.clear();
        if (i % 50 == 0) { fprintf(vtkFile, "\n"); }
      }
    }
  }
}
示例#13
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void InitializeData::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(m_CellAttributeMatrixPath.getDataContainerName());

  size_t udims[3] =
  { 0, 0, 0 };
  m->getGeometryAs<ImageGeom>()->getDimensions(udims);
#if (CMP_SIZEOF_SIZE_T == 4)
  typedef int32_t DimType;
#else
  typedef int64_t DimType;
#endif
  DimType dims[3] =
  { static_cast<DimType>(udims[0]), static_cast<DimType>(udims[1]), static_cast<DimType>(udims[2]), };

  int index;
  QString attrMatName = m_CellAttributeMatrixPath.getAttributeMatrixName();
  QList<QString> voxelArrayNames = m->getAttributeMatrix(attrMatName)->getAttributeArrayNames();
  for (int32_t k = m_ZMin; k < m_ZMax + 1; k++)
  {
    for (int32_t j = m_YMin; j < m_YMax + 1; j++)
    {
      for (int32_t i = m_XMin; i < m_XMax + 1; i++)
      {
        index = (k * dims[0] * dims[1]) + (j * dims[0]) + i;
        for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter)
        {
          IDataArray::Pointer p = m->getAttributeMatrix(attrMatName)->getAttributeArray(*iter);
          p->initializeTuple(index, 0);
        }
      }
    }
  }

  notifyStatusMessage(getHumanLabel(), "Complete");
}
示例#14
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void  AddBadData::add_noise()
{
  notifyStatusMessage(getHumanLabel(), "Adding Noise");
  DREAM3D_RANDOMNG_NEW()

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getGBEuclideanDistancesArrayPath().getDataContainerName());

  QString attMatName = getGBEuclideanDistancesArrayPath().getAttributeMatrixName();
  QList<QString> voxelArrayNames = m->getAttributeMatrix(attMatName)->getAttributeArrayNames();

  float random = 0.0f;
  size_t totalPoints = m->getGeometryAs<ImageGeom>()->getNumberOfElements();
  for (size_t i = 0; i < totalPoints; ++i)
  {
    if (m_BoundaryNoise == true && m_GBEuclideanDistances[i] < 1)
    {
      random = static_cast<float>( rg.genrand_res53() );
      if (random < m_BoundaryVolFraction)
      {
        for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter)
        {
          IDataArray::Pointer p = m->getAttributeMatrix(attMatName)->getAttributeArray(*iter);
          p->initializeTuple(i, 0);
        }
      }
    }
    if (m_PoissonNoise == true)
    {
      random = static_cast<float>( rg.genrand_res53() );
      if (random < m_PoissonVolFraction)
      {
        for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter)
        {
          IDataArray::Pointer p = m->getAttributeMatrix(attMatName)->getAttributeArray(*iter);
          p->initializeTuple(i, 0);
        }
      }
    }
  }
}
示例#15
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void ClearDataMask::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(m_MaskArrayPath.getDataContainerName());
  size_t totalPoints = m_MaskPtr.lock()->getNumberOfTuples();

  // get list of array names
  QString attrMatName = m_MaskArrayPath.getAttributeMatrixName();
  QList<QString> voxelArrayNames = m->getAttributeMatrix(attrMatName)->getAttributeArrayNames();

  // convert to list of pointers
  std::vector<IDataArray::Pointer> arrayList;
  for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter)
  {
    IDataArray::Pointer p = m->getAttributeMatrix(attrMatName)->getAttributeArray(*iter);
    arrayList.push_back(p);
  }

  int32_t numArrays = arrayList.size();

  for (size_t i = 0; i < totalPoints; i++)
  {
    if (!m_Mask[i])
    {
      for (int32_t j = 0; j < numArrays; j++)
      {
        arrayList[j]->initializeTuple(i, 0);
      }
    }
  }

  notifyStatusMessage(getHumanLabel(), "Complete");
}
示例#16
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void MinNeighbors::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  // If running on a single phase, validate that the user has not entered a phase number
  // that is not in the system ; the filter would not crash otherwise, but the user should
  // be notified of unanticipated behavior ; this cannot be done in the dataCheck since
  // we don't have acces to the data yet
  if (m_ApplyToSinglePhase == true)
  {
    AttributeMatrix::Pointer featAttrMat = getDataContainerArray()->getDataContainer(getFeaturePhasesArrayPath().getDataContainerName())->getAttributeMatrix(getFeaturePhasesArrayPath().getAttributeMatrixName());
    size_t numFeatures = featAttrMat->getNumTuples();
    bool unavailablePhase = true;
    for (size_t i = 0; i < numFeatures; i++)
    {
      if (m_FeaturePhases[i] == m_PhaseNumber)
      {
        unavailablePhase = false;
        break;
      }
    }

    if (unavailablePhase == true)
    {
      QString ss = QObject::tr("The phase number (%1) is not available in the supplied Feature phases array with path (%2)").arg(m_PhaseNumber).arg(m_FeaturePhasesArrayPath.serialize());
      setErrorCondition(-5555);
      notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
      return;
    }
  }

  QVector<bool> activeObjects = merge_containedfeatures();
  if(getErrorCondition() < 0) { return; }
  assign_badpoints();

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(m_NumNeighborsArrayPath.getDataContainerName());
  AttributeMatrix::Pointer cellFeatureAttrMat = m->getAttributeMatrix(m_NumNeighborsArrayPath.getAttributeMatrixName());
  cellFeatureAttrMat->removeInactiveObjects(activeObjects, m_FeatureIdsPtr.lock());

  // If there is an error set this to something negative and also set a message
  notifyStatusMessage(getHumanLabel(), "Complete");
}
void writeCellVectorData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType,
                         bool writeBinaryData, const QString& vtkAttributeType,
                         FILE* vtkFile, QMap<int32_t, int32_t>& featureIds)
{
  TriangleGeom::Pointer triangleGeom = dc->getGeometryAs<TriangleGeom>();

  int64_t numTriangles = triangleGeom->getNumberOfTris();

  IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName);
  QString ss;
  if (NULL != data.get())
  {
    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "%s %s %s\n", vtkAttributeType.toLatin1().data(), dataName.toLatin1().data(), dataType.toLatin1().data());
    for(int i = 0; i < numTriangles; ++i)
    {
      T s0 = 0x00;
      T s1 = 0x00;
      T s2 = 0x00;
      if(writeBinaryData == true)
      {
        s0 = static_cast<T>(m[i * 3 + 0]);
        s1 = static_cast<T>(m[i * 3 + 1]);
        s2 = static_cast<T>(m[i * 3 + 2]);
        SIMPLib::Endian::FromSystemToBig::convert(s0);
        SIMPLib::Endian::FromSystemToBig::convert(s1);
        SIMPLib::Endian::FromSystemToBig::convert(s2);
        fwrite(&s0, sizeof(T), 1, vtkFile);
        fwrite(&s1, sizeof(T), 1, vtkFile);
        fwrite(&s2, sizeof(T), 1, vtkFile);

      }
      else
      {

        ss << m[i * 3 + 0] << " " << m[i * 3 + 1] << " " << m[i * 3 + 2] << " ";

        fprintf(vtkFile, "%s ", ss.toLatin1().data());
        if (i % 25 == 0) { fprintf(vtkFile, "\n"); }
      }
    }
  }
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void InitializeSyntheticVolume::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());
  AttributeMatrix::Pointer cellAttrMat = m->getAttributeMatrix(getCellAttributeMatrixName());

  // Resize the Cell AttributeMatrix to have the correct Tuple Dimensions.
  QVector<size_t> tDims(3, 0);
  tDims[0] = m->getGeometryAs<ImageGeom>()->getXPoints();
  tDims[1] = m->getGeometryAs<ImageGeom>()->getYPoints();
  tDims[2] = m->getGeometryAs<ImageGeom>()->getZPoints();
  cellAttrMat->resizeAttributeArrays(tDims);

  // If there is an error set this to something negative and also set a message
  notifyStatusMessage(getHumanLabel(), "Complete");
}
示例#19
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void InsertAtoms::assign_points(QVector<VertexGeom::Pointer> points, QVector<BoolArrayType::Pointer> inFeature)
{
  size_t count = 0;
  int32_t numFeatures = points.size();
  for (int32_t i = 0; i < numFeatures; i++)
  {
    int64_t numPoints = points[i]->getNumberOfVertices();
    bool* inside = inFeature[i]->getPointer(0);
    for (int64_t j = 0; j < numPoints; j++)
    {
      if (inside[j] == true) { count++; }
    }
  }

  DataContainer::Pointer v = getDataContainerArray()->getDataContainer(getVertexDataContainerName());
  VertexGeom::Pointer vertices = VertexGeom::CreateGeometry(count, DREAM3D::VertexData::SurfaceMeshNodes);

  AttributeMatrix::Pointer vertexAttrMat = v->getAttributeMatrix(getVertexAttributeMatrixName());
  QVector<size_t> tDims(1, count);
  vertexAttrMat->resizeAttributeArrays(tDims);
  updateVertexInstancePointers();

  count = 0;
  float coords[3] = { 0.0f, 0.0f, 0.0f };
  for (int32_t i = 0; i < numFeatures; i++)
  {
    int64_t numPoints = points[i]->getNumberOfVertices();
    bool* inside = inFeature[i]->getPointer(0);
    for (int64_t j = 0; j < numPoints; j++)
    {
      if (inside[j] == true)
      {
        coords[0] = points[i]->getVertexPointer(j)[0];
        coords[1] = points[i]->getVertexPointer(j)[1];
        coords[2] = points[i]->getVertexPointer(j)[2];
        vertices->setCoords(count, coords);
        m_AtomFeatureLabels[count] = i;
        count++;
      }
    }
  }
  v->setGeometry(vertices);
}
示例#20
0
void writeCellScalarData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType,
                         bool writeBinaryData, bool writeConformalMesh, FILE* vtkFile, int nT)
{
  // Write the Feature Face ID Data to the file
  IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName);
  QString buf;
  QTextStream ss(&buf);
  if (NULL != data.get())
  {
    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "SCALARS %s %s 1\n", dataName.toLatin1().data(), dataType.toLatin1().data());
    fprintf(vtkFile, "LOOKUP_TABLE default\n");
    for(int i = 0; i < nT; ++i)
    {
      T swapped = 0x00;
      if(writeBinaryData == true)
      {
        swapped = static_cast<T>(m[i]);
        SIMPLib::Endian::FromSystemToBig::convert(swapped);
        fwrite(&swapped, sizeof(T), 1, vtkFile);
        if(false == writeConformalMesh)
        {
          fwrite(&swapped, sizeof(T), 1, vtkFile);
        }
      }
      else
      {

        ss << m[i] << " ";
        if(false == writeConformalMesh)
        {
          ss << m[i] << " ";
        }
        fprintf(vtkFile, "%s", buf.toLatin1().data());
        buf.clear();
        if (i % 50 == 0) { fprintf(vtkFile, "\n"); }
      }
    }
  }
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void EBSDSegmentFeatures::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());
  int64_t totalPoints = static_cast<int64_t>(m_FeatureIdsPtr.lock()->getNumberOfTuples());

  QVector<size_t> tDims(1, 1);
  m->getAttributeMatrix(getCellFeatureAttributeMatrixName())->resizeAttributeArrays(tDims);
  updateFeatureInstancePointers();

  // Convert user defined tolerance to radians.
  misoTolerance = m_MisorientationTolerance * DREAM3D::Constants::k_Pi / 180.0f;

  // Generate the random voxel indices that will be used for the seed points to start a new grain growth/agglomeration
  const int64_t rangeMin = 0;
  const int64_t rangeMax = totalPoints - 1;
  initializeVoxelSeedGenerator(rangeMin, rangeMax);

  SegmentFeatures::execute();

  int64_t totalFeatures = static_cast<int64_t>(m_ActivePtr.lock()->getNumberOfTuples());
  if (totalFeatures < 2)
  {
    setErrorCondition(-87000);
    notifyErrorMessage(getHumanLabel(), "The number of Features was 0 or 1 which means no Features were detected. A threshold value may be set too high", getErrorCondition());
    return;
  }

  // By default we randomize grains
  if (true == getRandomizeFeatureIds())
  {
    totalPoints = static_cast<int64_t>(m->getGeometryAs<ImageGeom>()->getNumberOfElements());
    randomizeFeatureIds(totalPoints, totalFeatures);
  }

  // If there is an error set this to something negative and also set a message
  notifyStatusMessage(getHumanLabel(), "Complete");
}
示例#22
0
void writePointVectorData(DataContainer::Pointer dc, const QString& vertexAttributeMatrixName, const QString& dataName, const QString& dataType,
                          bool writeBinaryData, bool writeConformalMesh, const QString& vtkAttributeType,
                          FILE* vtkFile, int nT)
{
  IDataArray::Pointer data = dc->getAttributeMatrix(vertexAttributeMatrixName)->getAttributeArray(dataName);
  QString ss;
  if (NULL != data.get())
  {
    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "%s %s %s\n", vtkAttributeType.toLatin1().data(), dataName.toLatin1().data(), dataType.toLatin1().data());
    for(int i = 0; i < nT; ++i)
    {
      T s0 = 0x00;
      T s1 = 0x00;
      T s2 = 0x00;
      if(writeBinaryData == true)
      {
        s0 = static_cast<T>(m[i * 3 + 0]);
        s1 = static_cast<T>(m[i * 3 + 1]);
        s2 = static_cast<T>(m[i * 3 + 2]);
        SIMPLib::Endian::FromSystemToBig::convert(s0);
        SIMPLib::Endian::FromSystemToBig::convert(s1);
        SIMPLib::Endian::FromSystemToBig::convert(s2);
        fwrite(&s0, sizeof(T), 1, vtkFile);
        fwrite(&s1, sizeof(T), 1, vtkFile);
        fwrite(&s1, sizeof(T), 1, vtkFile);
      }
      else
      {

        ss = QString::number(m[i * 3 + 0]) + " " + QString::number(m[i * 3 + 1]) + " " + QString::number(m[i * 3 + 2]) + " ";
        fprintf(vtkFile, "%s ", ss.toLatin1().data());
        //if (i%50 == 0)
        { fprintf(vtkFile, "\n"); }
      }

    }
  }
}
示例#23
0
void YSChoiAbaqusReader::execute()
{
  dataCheck();

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());

  int xpoints, ypoints, zpoints, totalpoints = 0;
  float resx, resy, resz;
  float** *mat = NULL;
  //const unsigned int size(1024);
  // Read header from data file to figure out how many points there are
  QFile in(getInputFile());
  if (!in.open(QIODevice::ReadOnly | QIODevice::Text))
  {
    QString msg = QObject::tr("Abaqus file could not be opened: %1").arg(getInputFile());
    setErrorCondition(-100);
    notifyErrorMessage(getHumanLabel(), "", getErrorCondition());
    return;
  }

  QString word;
  bool ok = false;
  bool headerdone = false;
  while (headerdone == false)
  {
    QByteArray buf = in.readLine();

    if (buf.startsWith(DIMS))
    {
      QList<QByteArray> tokens = buf.split(' ');
      xpoints = tokens[1].toInt(&ok, 10);
      ypoints = tokens[2].toInt(&ok, 10);
      zpoints = tokens[3].toInt(&ok, 10);
      totalpoints = xpoints * ypoints * zpoints;
      size_t dims[3] = { static_cast<size_t>(xpoints), static_cast<size_t>(ypoints), static_cast<size_t>(zpoints) };
      m->getGeometryAs<ImageGeom>()->setDimensions(dims);
      m->getGeometryAs<ImageGeom>()->setOrigin(0, 0, 0);

    }
    if (buf.startsWith(RES))
    {
      QList<QByteArray> tokens = buf.split(' ');
      resx = tokens[1].toInt(&ok, 10);
      resy = tokens[2].toInt(&ok, 10);
      resz = tokens[3].toInt(&ok, 10);
      float res[3] = {resx, resy, resz};
      m->getGeometryAs<ImageGeom>()->setResolution(res);
    }
    if (buf.startsWith(LOOKUP))
    {
      headerdone = true;
      word = QString(buf);
    }
  }
  // Read header from grain info file to figure out how many features there are

  QFile in2(getInputFeatureInfoFile());
  if (!in2.open(QIODevice::ReadOnly | QIODevice::Text))
  {
    QString msg = QObject::tr("Abaqus Feature Info file could not be opened: %1").arg(getInputFeatureInfoFile());
    setErrorCondition(-100);
    notifyErrorMessage(getHumanLabel(), "", getErrorCondition());
    return;
  }

  int numfeatures;

  QByteArray buf = in2.readLine();
  numfeatures = buf.toInt(&ok, 10);
  buf = in2.readLine();
  QList<QByteArray> tokens = buf.split(' ');
//  in2 >> word >> word >> word >> word >> word >> word;
  QVector<size_t> tDims(3, 0);
  tDims[0] = xpoints;
  tDims[1] = ypoints;
  tDims[2] = zpoints;
  m->getAttributeMatrix(getCellAttributeMatrixName())->resizeAttributeArrays(tDims);
  tDims.resize(1);
  tDims[0] = numfeatures + 1;
  m->getAttributeMatrix(getCellFeatureAttributeMatrixName())->resizeAttributeArrays(tDims);
  tDims[0] = 2;
  m->getAttributeMatrix(getCellEnsembleAttributeMatrixName())->resizeAttributeArrays(tDims);
  updateCellInstancePointers();
  updateFeatureInstancePointers();
  updateEnsembleInstancePointers();
  //Read data file
  int gnum = 0;
  bool onedge = false;
  int col, row, plane;
  float value;
  for (int i = 0; i < totalpoints; i++)
  {
    mat[i] = new float *[3];
    for(int j = 0; j < 3; j++)
    {
      mat[i][j] = new float [3];
    }
    onedge = false;
    gnum = tokens[6].toInt(&ok, 10);
    col = i % xpoints;
    row = (i / xpoints) % ypoints;
    plane = i / (xpoints * ypoints);
    if (col == 0 || col == (xpoints - 1) || row == 0 || row == (ypoints - 1) || plane == 0 || plane == (zpoints - 1)) { onedge = true; }
    m_FeatureIds[i] = gnum;
    m_SurfaceFeatures[gnum] = onedge;
  }
  for (int iter1 = 0; iter1 < 3; iter1++)
  {
    for (int iter2 = 0; iter2 < 3; iter2++)
    {
      headerdone = false;
      while (headerdone == false)
      {
        buf = in2.readLine();

        if (buf.startsWith(LOOKUP))
        {
          headerdone = true;
          //in >> word;
        }
      }
      for (int i = 0; i < totalpoints; i++)
      {
        onedge = 0;
        value = buf.toInt(&ok, 10);
        mat[i][iter1][iter2] = value;
      }
    }
  }
  //Read feature info
  QuatF* avgQuats = reinterpret_cast<QuatF*>(m_AvgQuats);
  avgQuats[0].x = 0.0;
  avgQuats[0].y = 0.0;
  avgQuats[0].z = 0.0;
  avgQuats[0].w = 0.0;

  for (int i = 1; i < numfeatures + 1; i++)
  {
    buf = in2.readLine();
    tokens = buf.split(' ');
    gnum = tokens[0].toInt(&ok, 10);
    avgQuats[i].x = tokens[2].toFloat(&ok);
    avgQuats[i].y = tokens[3].toFloat(&ok);
    avgQuats[i].z = tokens[4].toFloat(&ok);
    avgQuats[i].w = tokens[5].toFloat(&ok);
  }
  QuatF q;
  QuatF* quats = reinterpret_cast<QuatF*>(m_Quats);
  float g[3][3];
  for(int i = 0; i < (xpoints * ypoints * zpoints); i++)
  {
    for(int j = 0; j < 3; j++)
    {
      for(int k = 0; k < 3; k++)
      {
        g[j][k] = mat[i][j][k];
      }
    }
    MatrixMath::Normalize3x3(g);
    q.w = static_cast<float>( sqrt((1.0 + g[0][0] + g[1][1] + g[2][2])) / 2.0 );
    q.x = static_cast<float>( (g[1][2] - g[2][1]) / (4.0 * q.w) );
    q.y = static_cast<float>( (g[2][0] - g[0][2]) / (4.0 * q.w) );
    q.z = static_cast<float>( (g[0][1] - g[1][0]) / (4.0 * q.w) );
    QuaternionMathF::Copy(q, quats[i]);
    FOrientArrayType eu(m_CellEulerAngles + (3 * i), 3);
    FOrientTransformsType::qu2eu(FOrientArrayType(q), eu);

    delete[] mat[i];
  }
  delete[] mat;
}
示例#24
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void GrayToRGB::execute()
{
    QString ss;
    dataCheck();
    if(getErrorCondition() < 0)
    {
        setErrorCondition(-10000);
        ss = QObject::tr("DataCheck did not pass during execute");
        notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
        return;
    }

    //get volume container
    DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getRedArrayPath().getDataContainerName());
    QString attrMatName = getRedArrayPath().getAttributeMatrixName();

    //get input and output data
    IDataArray::Pointer redData = m_RedPtr.lock();
    IDataArray::Pointer greenData = m_GreenPtr.lock();
    IDataArray::Pointer blueData = m_BluePtr.lock();
    IDataArray::Pointer outputData = m_NewCellArrayPtr.lock();

    //execute type dependant portion using a Private Implementation that takes care of figuring out if
    // we can work on the correct type and actually handling the algorithm execution. We pass in "this" so
    // that the private implementation can get access to the current object to pass up status notifications,
    // progress or handle "cancel" if needed.
    if(GrayToRGBPrivate<int8_t>()(redData))
    {
        GrayToRGBPrivate<int8_t>::Execute(this, redData, greenData, blueData, outputData, m, attrMatName);
    }
    else if(GrayToRGBPrivate<uint8_t>()(redData) )
    {
        GrayToRGBPrivate<uint8_t>::Execute(this, redData, greenData, blueData, outputData, m, attrMatName);
    }
    else if(GrayToRGBPrivate<int16_t>()(redData) )
    {
        GrayToRGBPrivate<int16_t>::Execute(this, redData, greenData, blueData, outputData, m, attrMatName);
    }
    else if(GrayToRGBPrivate<uint16_t>()(redData) )
    {
        GrayToRGBPrivate<uint16_t>::Execute(this, redData, greenData, blueData, outputData, m, attrMatName);
    }
    else if(GrayToRGBPrivate<int32_t>()(redData) )
    {
        GrayToRGBPrivate<int32_t>::Execute(this, redData, greenData, blueData, outputData, m, attrMatName);
    }
    else if(GrayToRGBPrivate<uint32_t>()(redData) )
    {
        GrayToRGBPrivate<uint32_t>::Execute(this, redData, greenData, blueData, outputData, m, attrMatName);
    }
    else if(GrayToRGBPrivate<int64_t>()(redData) )
    {
        GrayToRGBPrivate<int64_t>::Execute(this, redData, greenData, blueData, outputData, m, attrMatName);
    }
    else if(GrayToRGBPrivate<uint64_t>()(redData) )
    {
        GrayToRGBPrivate<uint64_t>::Execute(this, redData, greenData, blueData, outputData, m, attrMatName);
    }
    else if(GrayToRGBPrivate<float>()(redData) )
    {
        GrayToRGBPrivate<float>::Execute(this, redData, greenData, blueData, outputData, m, attrMatName);
    }
    else if(GrayToRGBPrivate<double>()(redData) )
    {
        GrayToRGBPrivate<double>::Execute(this, redData, greenData, blueData, outputData, m, attrMatName);
    }
    else
    {
        setErrorCondition(-10001);
        ss = QObject::tr("A Supported DataArray type was not used for an input array.");
        notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
        return;
    }

    //array name changing/cleanup
    AttributeMatrix::Pointer attrMat = m->getAttributeMatrix(m_RedArrayPath.getAttributeMatrixName());
    attrMat->addAttributeArray(getNewCellArrayName(), outputData);


    /* Let the GUI know we are done with this filter */
    notifyStatusMessage(getHumanLabel(), "Complete");
}
示例#25
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void RemoveFlaggedFeatures::assign_badpoints()
{
  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(m_FeatureIdsArrayPath.getDataContainerName());

  size_t totalPoints = m_FeatureIdsPtr.lock()->getNumberOfTuples();
  size_t udims[3] = {0, 0, 0};
  m->getGeometryAs<ImageGeom>()->getDimensions(udims);
#if (CMP_SIZEOF_SIZE_T == 4)
  typedef int32_t DimType;
#else
  typedef int64_t DimType;
#endif
  DimType dims[3] =
  {
    static_cast<DimType>(udims[0]),
    static_cast<DimType>(udims[1]),
    static_cast<DimType>(udims[2]),
  };

  Int32ArrayType::Pointer neighborsPtr = Int32ArrayType::CreateArray(totalPoints, "_INTERNAL_USE_ONLY_Neighbors");
  m_Neighbors = neighborsPtr->getPointer(0);
  neighborsPtr->initializeWithValue(-1);

  int32_t good = 1;
  int32_t current = 0;
  int32_t most = 0;
  int64_t neighpoint = 0;

  DimType neighpoints[6];
  neighpoints[0] = -dims[0] * dims[1];
  neighpoints[1] = -dims[0];
  neighpoints[2] = -1;
  neighpoints[3] = 1;
  neighpoints[4] = dims[0];
  neighpoints[5] = dims[0] * dims[1];

  size_t counter = 1;
  int64_t count = 0;
  int64_t kstride = 0, jstride = 0;
  int32_t featurename, feature;
  int32_t neighbor;
  QVector<int32_t> n(m_FlaggedFeaturesPtr.lock()->getNumberOfTuples(), 0);
  while (counter != 0)
  {
    counter = 0;
    for (DimType k = 0; k < dims[2]; k++)
    {
      kstride = dims[0] * dims[1] * k;
      for (DimType j = 0; j < dims[1]; j++)
      {
        jstride = dims[0] * j;
        for (DimType i = 0; i < dims[0]; i++)
        {
          count = kstride + jstride + i;
          featurename = m_FeatureIds[count];
          if (featurename < 0)
          {
            counter++;
            current = 0;
            most = 0;
            for (int32_t l = 0; l < 6; l++)
            {
              good = 1;
              neighpoint = count + neighpoints[l];
              if (l == 0 && k == 0) { good = 0; }
              if (l == 5 && k == (dims[2] - 1)) { good = 0; }
              if (l == 1 && j == 0) { good = 0; }
              if (l == 4 && j == (dims[1] - 1)) { good = 0; }
              if (l == 2 && i == 0) { good = 0; }
              if (l == 3 && i == (dims[0] - 1)) { good = 0; }
              if (good == 1)
              {
                feature = m_FeatureIds[neighpoint];
                if (feature >= 0)
                {
                  n[feature]++;
                  current = n[feature];
                  if (current > most)
                  {
                    most = current;
                    m_Neighbors[count] = neighpoint;
                  }
                }
              }
            }
            for (int32_t l = 0; l < 6; l++)
            {
              good = 1;
              neighpoint = count + neighpoints[l];
              if (l == 0 && k == 0) { good = 0; }
              if (l == 5 && k == (dims[2] - 1)) { good = 0; }
              if (l == 1 && j == 0) { good = 0; }
              if (l == 4 && j == (dims[1] - 1)) { good = 0; }
              if (l == 2 && i == 0) { good = 0; }
              if (l == 3 && i == (dims[0] - 1)) { good = 0; }
              if (good == 1)
              {
                feature = m_FeatureIds[neighpoint];
                if (feature >= 0) { n[feature] = 0; }
              }
            }
          }
        }
      }
    }
    QString attrMatName = m_FeatureIdsArrayPath.getAttributeMatrixName();
    QList<QString> voxelArrayNames = m->getAttributeMatrix(attrMatName)->getAttributeArrayNames();
    for (size_t j = 0; j < totalPoints; j++)
    {
      featurename = m_FeatureIds[j];
      neighbor = m_Neighbors[j];
      if (neighbor >= 0)
      {
        if (featurename < 0 && m_FeatureIds[neighbor] >= 0)
        {

          for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter)
          {
            IDataArray::Pointer p = m->getAttributeMatrix(attrMatName)->getAttributeArray(*iter);
            p->copyTuple(neighbor, j);
          }
        }
      }
    }
  }
}
示例#26
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void ErodeDilateBadData::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getFeatureIdsArrayPath().getDataContainerName());
  size_t totalPoints = m_FeatureIdsPtr.lock()->getNumberOfTuples();

  Int32ArrayType::Pointer neighborsPtr = Int32ArrayType::CreateArray(totalPoints, "_INTERNAL_USE_ONLY_Neighbors");
  m_Neighbors = neighborsPtr->getPointer(0);
  neighborsPtr->initializeWithValue(-1);

  size_t udims[3] = {0, 0, 0};
  m->getGeometryAs<ImageGeom>()->getDimensions(udims);
#if (CMP_SIZEOF_SIZE_T == 4)
  typedef int32_t DimType;
#else
  typedef int64_t DimType;
#endif
  DimType dims[3] =
  {
    static_cast<DimType>(udims[0]),
    static_cast<DimType>(udims[1]),
    static_cast<DimType>(udims[2]),
  };

  int32_t good = 1;
  int64_t count = 0;
  int64_t kstride = 0, jstride = 0;
  int32_t featurename = 0, feature = 0;
  int32_t current = 0;
  int32_t most = 0;
  int64_t neighpoint = 0;
  size_t numfeatures = 0;

  for (size_t i = 0; i < totalPoints; i++)
  {
    featurename = m_FeatureIds[i];
    if (featurename > numfeatures) { numfeatures = featurename; }
  }

  DimType neighpoints[6] = { 0, 0, 0, 0, 0, 0 };
  neighpoints[0] = -dims[0] * dims[1];
  neighpoints[1] = -dims[0];
  neighpoints[2] = -1;
  neighpoints[3] = 1;
  neighpoints[4] = dims[0];
  neighpoints[5] = dims[0] * dims[1];

  QVector<int32_t> n(numfeatures + 1, 0);

  for (int32_t iteration = 0; iteration < m_NumIterations; iteration++)
  {
    for (DimType k = 0; k < dims[2]; k++)
    {
      kstride = dims[0] * dims[1] * k;
      for (DimType j = 0; j < dims[1]; j++)
      {
        jstride = dims[0] * j;
        for (DimType i = 0; i < dims[0]; i++)
        {
          count = kstride + jstride + i;
          featurename = m_FeatureIds[count];
          if (featurename == 0)
          {
            current = 0;
            most = 0;
            for (int32_t l = 0; l < 6; l++)
            {
              good = 1;
              neighpoint = count + neighpoints[l];
              if (l == 0 && (k == 0 || m_ZDirOn == false)) { good = 0; }
              else if (l == 5 && (k == (dims[2] - 1) || m_ZDirOn == false)) { good = 0; }
              else if (l == 1 && (j == 0 || m_YDirOn == false)) { good = 0; }
              else if (l == 4 && (j == (dims[1] - 1) || m_YDirOn == false)) { good = 0; }
              else if (l == 2 && (i == 0 || m_XDirOn == false)) { good = 0; }
              else if (l == 3 && (i == (dims[0] - 1) || m_XDirOn == false)) { good = 0; }
              if (good == 1)
              {
                feature = m_FeatureIds[neighpoint];
                if (m_Direction == 0 && feature > 0)
                {
                  m_Neighbors[neighpoint] = count;
                }
                if (feature > 0 && m_Direction == 1)
                {
                  n[feature]++;
                  current = n[feature];
                  if (current > most)
                  {
                    most = current;
                    m_Neighbors[count] = neighpoint;
                  }
                }
              }
            }
            if (m_Direction == 1)
            {
              for (int32_t l = 0; l < 6; l++)
              {
                good = 1;
                neighpoint = count + neighpoints[l];
                if (l == 0 && k == 0) { good = 0; }
                if (l == 5 && k == (dims[2] - 1)) { good = 0; }
                if (l == 1 && j == 0) { good = 0; }
                if (l == 4 && j == (dims[1] - 1)) { good = 0; }
                if (l == 2 && i == 0) { good = 0; }
                if (l == 3 && i == (dims[0] - 1)) { good = 0; }
                if (good == 1)
                {
                  feature = m_FeatureIds[neighpoint];
                  n[feature] = 0;
                }
              }
            }
          }
        }
      }
    }

    QString attrMatName = m_FeatureIdsArrayPath.getAttributeMatrixName();
    QList<QString> voxelArrayNames = m->getAttributeMatrix(attrMatName)->getAttributeArrayNames();

    for (size_t j = 0; j < totalPoints; j++)
    {
      featurename = m_FeatureIds[j];
      int32_t neighbor = m_Neighbors[j];
      if (neighbor >= 0)
      {
        if ( (featurename == 0 && m_FeatureIds[neighbor] > 0 && m_Direction == 1)
             || (featurename > 0 && m_FeatureIds[neighbor] == 0 && m_Direction == 0))
        {
          for(QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter)
          {
            IDataArray::Pointer p = m->getAttributeMatrix(attrMatName)->getAttributeArray(*iter);
            p->copyTuple(neighbor, j);
          }
        }
      }
    }
  }

  // If there is an error set this to something negative and also set a message
  notifyStatusMessage(getHumanLabel(), "Complete");
}
示例#27
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
int32_t EnsembleInfoReader::readFile()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return getErrorCondition(); }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());
  AttributeMatrix::Pointer cellensembleAttrMat = m->getAttributeMatrix(getCellEnsembleAttributeMatrixName());

  int32_t numphases = 0;

  QSettings settings(getInputFile(), QSettings::IniFormat); // The .ini or .txt input file
  settings.beginGroup("EnsembleInfo");
  numphases = settings.value("Number_Phases").toInt(); // read number of phases from input file
  settings.endGroup();

  if (0 == numphases) // Either the group name "EnsembleInfo" is incorrect or 0 was entered as the Number_Phases
  {
    QString ss = QObject::tr("Check the group name EnsembleInfo and that Number_Phases > 0");
    setErrorCondition(-10003);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return -1;
  }

  // Figure out if we are reading contiguous groups
  std::vector<bool> visited(numphases + 1, false);
  visited[0] = true; //this is DREAM3D's internal, which is always visited.

  QVector<size_t> tDims(1, numphases + 1);
  cellensembleAttrMat->resizeAttributeArrays(tDims);
  updateEnsembleInstancePointers();
  for (int32_t index = 1; index < numphases + 1; index++)
  {
    QString group = QString::number(index);
    settings.beginGroup(group);

    QString xtalString = settings.value(DREAM3D::StringConstants::CrystalStructure, "MissingCrystalStructure").toString();
    QString phaseTypeString = settings.value(DREAM3D::StringConstants::PhaseType, "MissingPhaseType").toString();
    // Check to make sure the user has something for each of the Crystal Structure and Phase Type
    if (xtalString.compare("MissingCrystalStructure") == 0)
    {
      QString ss = QObject::tr("Missing crystal structure for phase '%1'").arg(group);
      setErrorCondition(-10008);
      notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
      return -1;
    }

    if (phaseTypeString.compare("MissingPhaseType") == 0)
    {
      QString ss = QObject::tr("Missing phase type for phase '%1'").arg(group);
      setErrorCondition(-10009);
      notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
      return -1;
    }

    // Past that sanity check, so we have values, lets parse them
    QStringList values;
    values << xtalString << phaseTypeString;

    ensembleLookup(values); // Lookup number for the crystal number string and the phase type string read from the file

    // Check to see if the Crystal Structure string was valid
    if (m_crystruct == Ebsd::CrystalStructure::UnknownCrystalStructure) // The crystal structure name read from the file was not found in the lookup table
    {
      QString ss = QObject::tr("Incorrect crystal structure name '%1'").arg(xtalString);
      setErrorCondition(-10006);
      notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
      return -1;
    }
    else
    {
      m_CrystalStructures[index] = m_crystruct;
    }

    // now check to see if the Phase type string was valid.
    if (m_ptype == DREAM3D::PhaseType::UnknownPhaseType)
    {
      QString ss = QObject::tr("Incorrect phase type name '%1'").arg(phaseTypeString); // The phase type name read from the file was not found in the lookup table
      setErrorCondition(-10007);
      notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
      return -1;
    }
    else
    {
      m_PhaseTypes[index] = m_ptype;
    }

    visited[index] = true;
    // Close up this group
    settings.endGroup();
  }

  //Make sure we visited all the groups.
  for(std::vector<bool>::size_type i = 0; i < visited.size(); i++)
  {
    if(visited[i] == false)
    {
      QString ss = QObject::tr("Phase '%1' did not have entries in the file. Phase numbering must start at 1 and no phases may be skipped").arg(i); // The phase type name read from the file was not found in the lookup table
      setErrorCondition(-10005);
      notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
      return -1;
    }
  }

  notifyStatusMessage(getHumanLabel(), "Complete");
  return 0;
}
示例#28
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void ChangeResolution::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m;
  if(m_SaveAsNewDataContainer == false)
  {
    m = getDataContainerArray()->getDataContainer(getCellAttributeMatrixPath().getDataContainerName());
  }
  else
  {
    m = getDataContainerArray()->getDataContainer(getNewDataContainerName());
  }

  if(m->getGeometryAs<ImageGeom>()->getXRes() == m_Resolution.x
      && m->getGeometryAs<ImageGeom>()->getYRes() == m_Resolution.y
      && m->getGeometryAs<ImageGeom>()->getZRes() == m_Resolution.z)
  {
    return;
  }

  AttributeMatrix::Pointer cellAttrMat = m->getAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName());

  size_t dims[3] = { 0, 0, 0 };
  m->getGeometryAs<ImageGeom>()->getDimensions(dims);

  float sizex = (dims[0]) * m->getGeometryAs<ImageGeom>()->getXRes();
  float sizey = (dims[1]) * m->getGeometryAs<ImageGeom>()->getYRes();
  float sizez = (dims[2]) * m->getGeometryAs<ImageGeom>()->getZRes();
  size_t m_XP = size_t(sizex / m_Resolution.x);
  size_t m_YP = size_t(sizey / m_Resolution.y);
  size_t m_ZP = size_t(sizez / m_Resolution.z);
  if (m_XP == 0) { m_XP = 1; }
  if (m_YP == 0) { m_YP = 1; }
  if (m_ZP == 0) { m_ZP = 1; }
  size_t totalPoints = m_XP * m_YP * m_ZP;

  float x = 0.0f, y = 0.0f, z = 0.0f;
  size_t col = 0, row = 0, plane = 0;
  size_t index;
  size_t index_old;
  std::vector<size_t> newindicies(totalPoints);

  for (size_t i = 0; i < m_ZP; i++)
  {
    QString ss = QObject::tr("Changing Resolution - %1 Percent Complete").arg(((float)i / m->getGeometryAs<ImageGeom>()->getZPoints()) * 100);
    notifyStatusMessage(getMessagePrefix(), getHumanLabel(), ss);
    for (size_t j = 0; j < m_YP; j++)
    {
      for (size_t k = 0; k < m_XP; k++)
      {
        x = (k * m_Resolution.x);
        y = (j * m_Resolution.y);
        z = (i * m_Resolution.z);
        col = size_t(x / m->getGeometryAs<ImageGeom>()->getXRes());
        row = size_t(y / m->getGeometryAs<ImageGeom>()->getYRes());
        plane = size_t(z / m->getGeometryAs<ImageGeom>()->getZRes());
        index_old = (plane * m->getGeometryAs<ImageGeom>()->getXPoints() * m->getGeometryAs<ImageGeom>()->getYPoints()) + (row * m->getGeometryAs<ImageGeom>()->getXPoints()) + col;
        index = (i * m_XP * m_YP) + (j * m_XP) + k;
        newindicies[index] = index_old;
      }
    }
  }

  QVector<size_t> tDims(3, 0);
  tDims[0] = m_XP;
  tDims[1] = m_YP;
  tDims[2] = m_ZP;
  AttributeMatrix::Pointer newCellAttrMat = AttributeMatrix::New(tDims, cellAttrMat->getName(), cellAttrMat->getType());

  QList<QString> voxelArrayNames = cellAttrMat->getAttributeArrayNames();
  for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter)
  {
    IDataArray::Pointer p = cellAttrMat->getAttributeArray(*iter);
    // Make a copy of the 'p' array that has the same name. When placed into
    // the data container this will over write the current array with
    // the same name. At least in theory.
    IDataArray::Pointer data = p->createNewArray(p->getNumberOfTuples(), p->getComponentDimensions(), p->getName());
    data->resize(totalPoints);
    void* source = NULL;
    void* destination = NULL;
    size_t newIndicies_I = 0;
    int nComp = data->getNumberOfComponents();
    for (size_t i = 0; i < static_cast<size_t>(totalPoints); i++)
    {
      newIndicies_I = newindicies[i];
      source = p->getVoidPointer((nComp * newIndicies_I));
      destination = data->getVoidPointer((data->getNumberOfComponents() * i));
      ::memcpy(destination, source, p->getTypeSize() * data->getNumberOfComponents());
    }
    cellAttrMat->removeAttributeArray(*iter);
    newCellAttrMat->addAttributeArray(*iter, data);
  }
  m->getGeometryAs<ImageGeom>()->setResolution(m_Resolution.x, m_Resolution.y, m_Resolution.z);
  m->getGeometryAs<ImageGeom>()->setDimensions(m_XP, m_YP, m_ZP);
  m->removeAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName());
  m->addAttributeMatrix(getCellAttributeMatrixPath().getAttributeMatrixName(), newCellAttrMat);

  // Feature Ids MUST already be renumbered.
  if (m_RenumberFeatures == true)
  {
    totalPoints = m->getGeometryAs<ImageGeom>()->getNumberOfElements();
    AttributeMatrix::Pointer cellFeatureAttrMat = m->getAttributeMatrix(getCellFeatureAttributeMatrixPath().getAttributeMatrixName());
    size_t totalFeatures = cellFeatureAttrMat->getNumTuples();
    QVector<bool> activeObjects(totalFeatures, false);
    if (0 == totalFeatures)
    {
      notifyErrorMessage(getHumanLabel(), "The number of Features is 0 and should be greater than 0", -600);
      return;
    }

    updateCellInstancePointers();

    // Find the unique set of feature ids
    for (size_t i = 0; i < totalPoints; ++i)
    {
      activeObjects[m_FeatureIds[i]] = true;
    }
    cellFeatureAttrMat->removeInactiveObjects(activeObjects, m_FeatureIdsPtr.lock());
  }

  notifyStatusMessage(getHumanLabel(), "Complete");
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void AlignSections::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer m = getDataContainerArray()->getDataContainer(getDataContainerName());

  size_t dims[3] = { 0, 0, 0 };
  m->getGeometryAs<ImageGeom>()->getDimensions(dims);

  int64_t xspot = 0, yspot = 0;
  int64_t newPosition = 0;
  int64_t currentPosition = 0;

  std::vector<int64_t> xshifts(dims[2], 0);
  std::vector<int64_t> yshifts(dims[2], 0);

  find_shifts(xshifts, yshifts);


  QList<QString> voxelArrayNames = m->getAttributeMatrix(getCellAttributeMatrixName())->getAttributeArrayNames();
  size_t progIncrement = dims[2] / 100;
  size_t prog = 1;
  size_t progressInt = 0;
  size_t slice = 0;

  for (size_t i = 1; i < dims[2]; i++)
  {
    if (i > prog)
    {

      progressInt = ((float)i / dims[2]) * 100.0f;
      QString ss = QObject::tr("Transferring Cell Data || %1% Complete").arg(progressInt);
      notifyStatusMessage(getMessagePrefix(), getHumanLabel(), ss);
      prog = prog + progIncrement;
    }
    if (getCancel() == true)
    {
      return;
    }
    slice = (dims[2] - 1) - i;
    for (size_t l = 0; l < dims[1]; l++)
    {
      for (size_t n = 0; n < dims[0]; n++)
      {
        if (yshifts[i] >= 0) { yspot = l; }
        else if (yshifts[i] < 0) { yspot = dims[1] - 1 - l; }
        if (xshifts[i] >= 0) { xspot = n; }
        else if (xshifts[i] < 0) { xspot = dims[0] - 1 - n; }
        newPosition = (slice * dims[0] * dims[1]) + (yspot * dims[0]) + xspot;
        currentPosition = (slice * dims[0] * dims[1]) + ((yspot + yshifts[i]) * dims[0]) + (xspot + xshifts[i]);
        if ((yspot + yshifts[i]) >= 0 && (yspot + yshifts[i]) <= static_cast<int64_t>(dims[1]) - 1 && (xspot + xshifts[i]) >= 0
            && (xspot + xshifts[i]) <= static_cast<int64_t>(dims[0]) - 1)
        {
          for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter)
          {
            IDataArray::Pointer p = m->getAttributeMatrix(getCellAttributeMatrixName())->getAttributeArray(*iter);
            p->copyTuple( static_cast<size_t>(currentPosition), static_cast<size_t>(newPosition));
          }
        }
        if ((yspot + yshifts[i]) < 0 || (yspot + yshifts[i]) > static_cast<int64_t>(dims[1] - 1) || (xspot + xshifts[i]) < 0
            || (xspot + xshifts[i]) > static_cast<int64_t>(dims[0]) - 1)
        {
          for (QList<QString>::iterator iter = voxelArrayNames.begin(); iter != voxelArrayNames.end(); ++iter)
          {
            IDataArray::Pointer p = m->getAttributeMatrix(getCellAttributeMatrixName())->getAttributeArray(*iter);
            EXECUTE_FUNCTION_TEMPLATE(this, initializeArrayValues, p, p, newPosition)
          }
        }
      }
    }
  }

  // If there is an error set this to something negative and also set a message
  notifyStatusMessage(getHumanLabel(), "Complete");
}
void writeCellNormalData(DataContainer::Pointer dc, const QString& faceAttributeMatrixName, const QString& dataName, const QString& dataType,
                         bool writeBinaryData, FILE* vtkFile, QMap<int32_t, int32_t>& featureIds, int32_t* m_SurfaceMeshFaceLabels)
{
  TriangleGeom::Pointer triangleGeom = dc->getGeometryAs<TriangleGeom>();

  int64_t numTriangles = triangleGeom->getNumberOfTris();
  IDataArray::Pointer data = dc->getAttributeMatrix(faceAttributeMatrixName)->getAttributeArray(dataName);
  QString buf;
  QTextStream ss(&buf);
  if (NULL != data.get())
  {
    int32_t totalCellsWritten = 0;

    T* m = reinterpret_cast<T*>(data->getVoidPointer(0));
    fprintf(vtkFile, "\n");
    fprintf(vtkFile, "NORMALS %s %s\n", dataName.toLatin1().data(), dataType.toLatin1().data());
    // Loop over all the features
    for(QMap<int32_t, int32_t>::iterator featureIter = featureIds.begin(); featureIter != featureIds.end(); ++featureIter)
    {
      int32_t gid = featureIter.key(); // The current Feature Id
      size_t size = featureIter.value(); // The number of triangles for this feature id
      std::vector<T> buffer(size * 3, 0);
      totalCellsWritten += size * 3;
      size_t index = 0;

      for (int j = 0; j < numTriangles; j++)
      {
        if (m_SurfaceMeshFaceLabels[j * 2] != gid && m_SurfaceMeshFaceLabels[j * 2 + 1] != gid) { continue; }
        // Get the data
        T s0 = static_cast<T>(m[j * 3 + 0]);
        T s1 = static_cast<T>(m[j * 3 + 1]);
        T s2 = static_cast<T>(m[j * 3 + 2]);
        // Flip the normal if needed because the current feature id is assigned to the triangle.labels[1]
        if (m_SurfaceMeshFaceLabels[j * 2 + 1] == gid )
        {
          s0 *= -1.0;
          s1 *= -1.0;
          s2 *= -1.0;
        }
        // Write the values to the buffer after an Endian swap.
        if(writeBinaryData == true)
        {
          SIMPLib::Endian::FromSystemToBig::convert(s0);
          buffer[index] = s0;
          ++index;

          SIMPLib::Endian::FromSystemToBig::convert(s1);
          buffer[index] = s1;
          ++index;

          SIMPLib::Endian::FromSystemToBig::convert(s2);
          buffer[index] = s2;
          ++index;
        }
        else
        {

          ss << s0 << " " << s1 << " " << s2;
          fprintf(vtkFile, "%s\n", buf.toLatin1().data());
          buf.clear();
        }
      }

      // Write the Buffer
      if(writeBinaryData == true)
      {
        fwrite(&(buffer.front()), sizeof(T), size * 3, vtkFile);
      }
    }
  }
}