void QmitkPreprocessingView::DoAdcCalculation() { if (m_DiffusionImage.IsNull()) return; typedef mitk::DiffusionImage< DiffusionPixelType > DiffusionImageType; typedef itk::AdcImageFilter< DiffusionPixelType, double > FilterType; for (unsigned int i=0; i<m_SelectedDiffusionNodes.size(); i++) { DiffusionImageType::Pointer inImage = dynamic_cast< DiffusionImageType* >(m_SelectedDiffusionNodes.at(i)->GetData()); FilterType::Pointer filter = FilterType::New(); filter->SetInput(inImage->GetVectorImage()); filter->SetGradientDirections(inImage->GetDirections()); filter->SetB_value(inImage->GetReferenceBValue()); filter->Update(); mitk::Image::Pointer image = mitk::Image::New(); image->InitializeByItk( filter->GetOutput() ); image->SetVolume( filter->GetOutput()->GetBufferPointer() ); mitk::DataNode::Pointer imageNode = mitk::DataNode::New(); imageNode->SetData( image ); QString name = m_SelectedDiffusionNodes.at(i)->GetName().c_str(); imageNode->SetName((name+"_ADC").toStdString().c_str()); GetDefaultDataStorage()->Add(imageNode); } }
/** * Denoises DWI using the Nonlocal - Means algorithm */ int DwiDenoising(int argc, char* argv[]) { ctkCommandLineParser parser; parser.setArgumentPrefix("--", "-"); parser.addArgument("input", "i", ctkCommandLineParser::String, "input image (DWI)", us::Any(), false); parser.addArgument("variance", "v", ctkCommandLineParser::Float, "noise variance", us::Any(), false); parser.addArgument("mask", "m", ctkCommandLineParser::String, "brainmask for input image", us::Any(), true); parser.addArgument("search", "s", ctkCommandLineParser::Int, "search radius", us::Any(), true); parser.addArgument("compare", "c", ctkCommandLineParser::Int, "compare radius", us::Any(), true); parser.addArgument("joint", "j", ctkCommandLineParser::Bool, "use joint information"); parser.addArgument("rician", "r", ctkCommandLineParser::Bool, "use rician adaption"); map<string, us::Any> parsedArgs = parser.parseArguments(argc, argv); if (parsedArgs.size()==0) return EXIT_FAILURE; string inFileName = us::any_cast<string>(parsedArgs["input"]); double variance = static_cast<double>(us::any_cast<float>(parsedArgs["variance"])); string maskName; if (parsedArgs.count("mask")) maskName = us::any_cast<string>(parsedArgs["mask"]); string outFileName = inFileName; boost::algorithm::erase_all(outFileName, ".dwi"); int search = 4; if (parsedArgs.count("search")) search = us::any_cast<int>(parsedArgs["search"]); int compare = 1; if (parsedArgs.count("compare")) compare = us::any_cast<int>(parsedArgs["compare"]); bool joint = false; if (parsedArgs.count("joint")) joint = true; bool rician = false; if (parsedArgs.count("rician")) rician = true; try { if( boost::algorithm::ends_with(inFileName, ".dwi")) { DiffusionImageType::Pointer dwi = dynamic_cast<DiffusionImageType*>(LoadFile(inFileName).GetPointer()); itk::NonLocalMeansDenoisingFilter<short>::Pointer filter = itk::NonLocalMeansDenoisingFilter<short>::New(); filter->SetNumberOfThreads(12); filter->SetInputImage(dwi->GetVectorImage()); if (!maskName.empty()) { mitk::Image::Pointer mask = dynamic_cast<mitk::Image*>(LoadFile(maskName).GetPointer()); ImageType::Pointer itkMask = ImageType::New(); mitk::CastToItkImage(mask, itkMask); filter->SetInputMask(itkMask); } filter->SetUseJointInformation(joint); filter->SetUseRicianAdaption(rician); filter->SetSearchRadius(search); filter->SetComparisonRadius(compare); filter->SetVariance(variance); filter->Update(); DiffusionImageType::Pointer output = DiffusionImageType::New(); output->SetVectorImage(filter->GetOutput()); output->SetReferenceBValue(dwi->GetReferenceBValue()); output->SetDirections(dwi->GetDirections()); output->InitializeFromVectorImage(); std::stringstream name; name << outFileName << "_NLM_" << search << "-" << compare << "-" << variance << ".dwi"; MITK_INFO << "Writing: " << name.str(); mitk::NrrdDiffusionImageWriter<short>::Pointer writer = mitk::NrrdDiffusionImageWriter<short>::New(); writer->SetInput(output); writer->SetFileName(name.str()); writer->Update(); MITK_INFO << "Finish!"; } else { MITK_INFO << "Only supported for .dwi!"; } } catch (itk::ExceptionObject e) { MITK_INFO << e; return EXIT_FAILURE; } catch (std::exception e) { MITK_INFO << e.what(); return EXIT_FAILURE; } catch (...) { MITK_INFO << "ERROR!?!"; return EXIT_FAILURE; } return EXIT_SUCCESS; }
void mitk::RegistrationWrapper::ApplyTransformationToImage(mitk::Image::Pointer img, const mitk::RegistrationWrapper::RidgidTransformType &transformation,double* offset, mitk::Image* resampleReference, bool binary) { typedef mitk::DiffusionImage<short> DiffusionImageType; if (dynamic_cast<DiffusionImageType*> (img.GetPointer()) == NULL) { ItkImageType::Pointer itkImage = ItkImageType::New(); MITK_ERROR << "imgCopy 0 " << "/" << img->GetReferenceCount(); MITK_ERROR << "pixel type " << img->GetPixelType().GetComponentTypeAsString(); CastToItkImage(img, itkImage); typedef itk::Euler3DTransform< double > RigidTransformType; RigidTransformType::Pointer rtransform = RigidTransformType::New(); RigidTransformType::ParametersType parameters(RigidTransformType::ParametersDimension); for (int i = 0; i<6;++i) parameters[i] = transformation[i]; rtransform->SetParameters( parameters ); mitk::Point3D origin = itkImage->GetOrigin(); origin[0]-=offset[0]; origin[1]-=offset[1]; origin[2]-=offset[2]; mitk::Point3D newOrigin = rtransform->GetInverseTransform()->TransformPoint(origin); itk::Matrix<double,3,3> dir = itkImage->GetDirection(); itk::Matrix<double,3,3> transM ( vnl_inverse(rtransform->GetMatrix().GetVnlMatrix())); itk::Matrix<double,3,3> newDirection = transM * dir; itkImage->SetOrigin(newOrigin); itkImage->SetDirection(newDirection); // Perform Resampling if reference image is provided if (resampleReference != NULL) { typedef itk::ResampleImageFilter<ItkImageType, ItkImageType> ResampleFilterType; ItkImageType::Pointer itkReference = ItkImageType::New(); CastToItkImage(resampleReference,itkReference); typedef itk::WindowedSincInterpolateImageFunction< ItkImageType, 3> WindowedSincInterpolatorType; WindowedSincInterpolatorType::Pointer sinc_interpolator = WindowedSincInterpolatorType::New(); typedef itk::NearestNeighborInterpolateImageFunction< ItkImageType, double > NearestNeighborInterpolatorType; NearestNeighborInterpolatorType::Pointer nn_interpolator = NearestNeighborInterpolatorType::New(); ResampleFilterType::Pointer resampler = ResampleFilterType::New(); resampler->SetInput(itkImage); resampler->SetReferenceImage( itkReference ); resampler->UseReferenceImageOn(); if (binary) resampler->SetInterpolator(nn_interpolator); else resampler->SetInterpolator(sinc_interpolator); resampler->Update(); GrabItkImageMemory(resampler->GetOutput(), img); } else { // !! CastToItk behaves very differently depending on the original data type // if the target type is the same as the original, only a pointer to the data is set // and an additional GrabItkImageMemory will cause a segfault when the image is destroyed // GrabItkImageMemory - is not necessary in this case since we worked on the original data // See Bug 17538. if (img->GetPixelType().GetComponentTypeAsString() != "double") img = GrabItkImageMemory(itkImage); } } else { DiffusionImageType::Pointer diffImages = dynamic_cast<DiffusionImageType*>(img.GetPointer()); typedef itk::Euler3DTransform< double > RigidTransformType; RigidTransformType::Pointer rtransform = RigidTransformType::New(); RigidTransformType::ParametersType parameters(RigidTransformType::ParametersDimension); for (int i = 0; i<6;++i) { parameters[i] = transformation[i]; } rtransform->SetParameters( parameters ); mitk::Point3D b0origin = diffImages->GetVectorImage()->GetOrigin(); b0origin[0]-=offset[0]; b0origin[1]-=offset[1]; b0origin[2]-=offset[2]; mitk::Point3D newOrigin = rtransform->GetInverseTransform()->TransformPoint(b0origin); itk::Matrix<double,3,3> dir = diffImages->GetVectorImage()->GetDirection(); itk::Matrix<double,3,3> transM ( vnl_inverse(rtransform->GetMatrix().GetVnlMatrix())); itk::Matrix<double,3,3> newDirection = transM * dir; diffImages->GetVectorImage()->SetOrigin(newOrigin); diffImages->GetVectorImage()->SetDirection(newDirection); diffImages->Modified(); mitk::DiffusionImageCorrectionFilter<short>::Pointer correctionFilter = mitk::DiffusionImageCorrectionFilter<short>::New(); // For Diff. Images: Need to rotate the gradients (works in-place) correctionFilter->SetImage(diffImages); correctionFilter->CorrectDirections(transM.GetVnlMatrix()); img = diffImages; } }