int NeroAll::analyze(const edm::Event&iEvent) { if(isMc_ <0 ) { isMc_ = ( iEvent.isRealData() ) ? 0 : 1; isRealData = ( iEvent.isRealData() ) ? 1 : 0; } if( isSkim() == 0) { //TODO FILL all_ isRealData = ( iEvent.isRealData() ) ? 1 : 0; runNum = iEvent.id().run(); lumiNum = iEvent.luminosityBlock(); eventNum = iEvent.id().event(); iEvent.getByLabel(edm::InputTag("generator"), info_handle); // USE TOKEN AND INPUT TAG ? iEvent.getByLabel(edm::InputTag("addPileupInfo"), pu_handle); mcWeight = info_handle->weight(); //PU puTrueInt = 0; for(const auto & pu : *pu_handle) { //Intime if (pu.getBunchCrossing() == 0) puTrueInt += pu.getTrueNumInteractions(); //Out-of-time } } return 0; }
void UAHiggsTree::GetGenMET(const edm::Event& iEvent , const edm::EventSetup& iSetup, const string GenMETCollection_ , vector<MyGenMET>& METVector ) { using namespace std; using namespace edm; using namespace reco; METVector.clear(); Handle<GenMETCollection> met; iEvent.getByLabel(GenMETCollection_, met); for(reco::GenMETCollection::const_iterator met_iter=met->begin(); met_iter != met->end(); met_iter++) { MyGenMET mymet; mymet.pt=met_iter->pt(); mymet.phi=met_iter->phi(); mymet.eta=met_iter->eta(); METVector.push_back(mymet); } }
void ChPartTree::GetL1Trig(const edm::Event& iEvent, const edm::EventSetup& iSetup) { using namespace std; // Tests /* if (L1TrigDebug) { edm::ESHandle<L1GtTriggerMenu> menuRcd; iSetup.get<L1GtTriggerMenuRcd>().get(menuRcd) ; const L1GtTriggerMenu* menu = menuRcd.product(); for (CItAlgo algo = menu->gtAlgorithmMap().begin(); algo!=menu->gtAlgorithmMap().end(); ++algo) { cout << "Name: " << (algo->second).algoName() << " Alias: " << (algo->second).algoAlias() << " Bit: " << (algo->second).algoBitNumber() << " Result: " << l1AlgorithmResult(iEvent, iSetup, (algo->second).algoName() ) << std::endl; } } */ edm::Handle<L1GlobalTriggerReadoutRecord> L1GTRR; iEvent.getByLabel("gtDigis",L1GTRR); for (int i=0 ; i <128 ; i++) { if (L1TrigDebug) cout << "PhysicsTriggerWord :" << i << " " << L1GTRR->decisionWord()[i] << endl; L1Trig.PhysTrigWord[i] = L1GTRR->decisionWord()[i]; } for (int i=0 ; i <64 ; i++) { if (L1TrigDebug) cout << "technicalTriggerWord :" << i << " " << L1GTRR->technicalTriggerWord()[i] << endl; L1Trig.TechTrigWord[i] = L1GTRR->technicalTriggerWord()[i]; } }
void UAHiggsTree::GetGenPart(const edm::Event& iEvent, const edm::EventSetup& iSetup) { using namespace std; using namespace edm; using namespace reco; // Clear GenPart List // (evt->GenPart).clear(); GenPart.clear(); GenElec.clear(); GenMu.clear(); GenNu.clear(); // Handle to access PDG data from iSetup ESHandle <ParticleDataTable> pdt; iSetup.getData( pdt ); // Handle to access GenParticleCollection Handle<GenParticleCollection> genParticles; iEvent.getByLabel(genPartColl_, genParticles); if (!genParticles.isValid()) { cerr << "[UAHiggsTree::GetGenPart] Error: non valid GenParticleCollection " << endl; return; } // List for Daugther/Mother Search vector<const reco::Candidate *> cands; vector<const Candidate *>::const_iterator found = cands.begin(); for(GenParticleCollection::const_iterator p = genParticles->begin(); p != genParticles->end(); ++ p) { cands.push_back(&*p); } // Loop on generated particle and store if status=3 if ( GenPartDebug ) cout << "GenPart # : " << genParticles->size() << endl; for(GenParticleCollection::const_iterator p = genParticles->begin(); p != genParticles->end(); ++ p) { int st = p->status(); MyGenPart genpart; if ( GenPartDebug ) { if(( fabs(p->pdgId())==11 || fabs(p->pdgId())== 13) && st==1) cout << p-genParticles->begin() << " " << st << " " << p->pdgId() << " " << (pdt->particle(p->pdgId()))->name() << " " << p->pt() << " " << p->eta() << " " << p->phi() << " " << p->charge() << endl ; if(( fabs(p->pdgId())==11 || fabs(p->pdgId())== 13) && st==3) cout << p-genParticles->begin() << " " << st << " " << p->pdgId() << " " << (pdt->particle(p->pdgId()))->name() << " " << p->pt() << " " << p->eta() << " " << p->phi() << " " << p->charge() << endl ; } // Four vector genpart.pt = p->pt(); genpart.eta = p->eta(); genpart.phi = p->phi(); genpart.e = p->energy(); genpart.px = p->px(); genpart.py = p->py(); genpart.pz = p->pz(); genpart.m = p->mass(); //genpart.v.SetPxPyPzE( p->px() , p->py() , p->pz() , p->energy() ); genpart.Part.v.SetPxPyPzE( p->px() , p->py() , p->pz() , p->energy() ); // Extra properties genpart.Part.charge = p->charge(); genpart.charge = p->charge(); genpart.pdgId = p->pdgId(); genpart.name = (pdt->particle(p->pdgId()))->name(); genpart.status = p->status(); // Mother Daughter relations int nMo = p->numberOfMothers(); int nDa = p->numberOfDaughters(); int iMo1 = -1 , iMo2 = -1 ; int iDa1 = -1 , iDa2 = -1 ; found = find(cands.begin(), cands.end(), p->mother(0)); if(found != cands.end()) iMo1 = found - cands.begin() ; found = find(cands.begin(), cands.end(), p->mother(nMo-1)); if(found != cands.end()) iMo2 = found - cands.begin() ; found = find(cands.begin(), cands.end(), p->daughter(0)); if(found != cands.end()) iDa1 = found - cands.begin() ; found = find(cands.begin(), cands.end(), p->daughter(nDa-1)); if(found != cands.end()) iDa2 = found - cands.begin() ; if ( GenPartDebug ) { cout << "Mother : " << iMo1 << " " << iMo2 << endl; cout << "Daugther: " << iDa1 << " " << iDa2 << endl; } genpart.mo1 = iMo1 ; genpart.mo2 = iMo2 ; genpart.da1 = iDa1 ; genpart.da2 = iDa2 ; // Store if(st==3) GenPart.push_back(genpart); if(fabs(genpart.pdgId)==11 && st==1) GenElec.push_back(genpart); if(fabs(genpart.pdgId)==13 && st==1) GenMu.push_back(genpart); if((fabs(genpart.pdgId)==12 && st==1)||(fabs(genpart.pdgId)==14 && st==1)) GenNu.push_back(genpart); } }
// ------------ method called for each event ------------ void ThreePointCorrelatorEtaTest::analyze(const edm::Event& iEvent, const edm::EventSetup& iSetup) { using namespace edm; using namespace std; edm::Handle<reco::VertexCollection> vertices; iEvent.getByLabel(vertexSrc_,vertices); double bestvz=-999.9, bestvx=-999.9, bestvy=-999.9; double bestvzError=-999.9, bestvxError=-999.9, bestvyError=-999.9; const reco::Vertex & vtx = (*vertices)[0]; bestvz = vtx.z(); bestvx = vtx.x(); bestvy = vtx.y(); bestvzError = vtx.zError(); bestvxError = vtx.xError(); bestvyError = vtx.yError(); //first selection; vertices if(bestvz < vzLow_ || bestvz > vzHigh_ ) return; Handle<CaloTowerCollection> towers; iEvent.getByLabel(towerSrc_, towers); Handle<reco::TrackCollection> tracks; iEvent.getByLabel(trackSrc_, tracks); if( useCentrality_ ){ CentralityProvider * centProvider = 0; if (!centProvider) centProvider = new CentralityProvider(iSetup); centProvider->newEvent(iEvent,iSetup); int hiBin = centProvider->getBin(); cbinHist->Fill( hiBin ); if( hiBin < Nmin_ || hiBin >= Nmax_ ) return; } const int NetaBins = etaBins_.size() - 1 ; // initialize Qcos and Qsin double QcosTRK = 0.; double QsinTRK = 0.; double QcountsTrk = 0; double Q1[NetaBins][2][2]; double Q1_count[NetaBins][2]; double Q2[NetaBins][2][2]; double Q2_count[NetaBins][2]; for(int i = 0; i < NetaBins; i++){ for(int j = 0; j < 2; j++){ Q1_count[i][j] = 0.0; Q2_count[i][j] = 0.0; for(int k = 0; k < 2; k++){ Q1[i][j][k] = 0.0; Q2[i][j][k] = 0.0; } } } int nTracks = 0; for(unsigned it = 0; it < tracks->size(); it++){ const reco::Track & trk = (*tracks)[it]; math::XYZPoint bestvtx(bestvx,bestvy,bestvz); double dzvtx = trk.dz(bestvtx); double dxyvtx = trk.dxy(bestvtx); double dzerror = sqrt(trk.dzError()*trk.dzError()+bestvzError*bestvzError); double dxyerror = sqrt(trk.d0Error()*trk.d0Error()+bestvxError*bestvyError); double nhits = trk.numberOfValidHits(); double chi2n = trk.normalizedChi2(); double nlayers = trk.hitPattern().trackerLayersWithMeasurement(); chi2n = chi2n/nlayers; double weight = 1.0; if(!trk.quality(reco::TrackBase::highPurity)) continue; if(fabs(trk.ptError())/trk.pt() > offlineptErr_ ) continue; if(fabs(dzvtx/dzerror) > offlineDCA_) continue; if(fabs(dxyvtx/dxyerror) > offlineDCA_) continue; if(fabs(trk.eta()) < 2.4 && trk.pt() > 0.4 ){nTracks++;}// NtrkOffline if(fabs(trk.eta()) > 2.4 || trk.pt() < ptLow_ || trk.pt() > ptHigh_) continue; if(chi2n > offlineChi2_) continue; if(nhits < offlinenhits_) continue; if( messAcceptance_ ) { if( trk.phi() < holeRight_ && trk.phi() > holeLeft_ ) continue;} if( doEffCorrection_ ){ weight = 1.0/effTable->GetBinContent( effTable->FindBin(trk.eta(), trk.pt()) );} else{ weight = 1.0; } trkPhi->Fill( trk.phi() );//make sure if messAcceptance is on or off QcosTRK += weight*cos( 2*trk.phi() ); QsinTRK += weight*sin( 2*trk.phi() ); QcountsTrk += weight; for(int eta = 0; eta < NetaBins; eta++){ if( trk.eta() > etaBins_[eta] && trk.eta() < etaBins_[eta+1] ){ if( trk.charge() == 1){ Q1[eta][0][0] += weight*cos( trk.phi() ); Q1[eta][0][1] += weight*sin( trk.phi() ); Q1_count[eta][0] += weight; Q2[eta][0][0] += weight*weight*cos( 2*trk.phi() ); Q2[eta][0][1] += weight*weight*sin( 2*trk.phi() ); Q2_count[eta][0] += weight*weight; } else if( trk.charge() == -1){ Q1[eta][1][0] += weight*cos( trk.phi() ); Q1[eta][1][1] += weight*sin( trk.phi() ); Q1_count[eta][1] += weight; Q2[eta][1][0] += weight*weight*cos( 2*trk.phi() ); Q2[eta][1][1] += weight*weight*sin( 2*trk.phi() ); Q2_count[eta][1] += weight*weight; } } } } if( !useCentrality_ ) if( nTracks < Nmin_ || nTracks >= Nmax_ ) return; Ntrk->Fill(nTracks); //loop over calo towers (HF) double Q3[2][2]; double ETT[2]; for(int i = 0; i < 2; i++){ ETT[i] = 0.; for(int j = 0; j < 2; j++){ Q3[i][j] = 0.; } } int HFside = 2; if( useBothSide_ ) HFside = 1; for(unsigned i = 0; i < towers->size(); ++i){ const CaloTower & hit= (*towers)[i]; double caloEta = hit.eta(); double caloPhi = hit.phi(); double w = hit.hadEt( vtx.z() ) + hit.emEt( vtx.z() ); if( reverseBeam_ ) caloEta = -hit.eta(); if( messAcceptance_ ){if( caloPhi < holeRight_ && caloPhi > holeLeft_ ) continue;} hfPhi->Fill( caloPhi );//make sure if messAcceptance is on or off if( caloEta < etaHighHF_ && caloEta > etaLowHF_ ){ Q3[0][0] += w*cos( -2*caloPhi ); Q3[0][1] += w*sin( -2*caloPhi ); ETT[0] += w; } else if( caloEta < -etaLowHF_ && caloEta > -etaHighHF_ ){ Q3[1][0] += w*cos( -2*caloPhi ); Q3[1][1] += w*sin( -2*caloPhi ); ETT[1] += w; } else{continue;} } for(int ieta = 0; ieta < NetaBins; ieta++){ for(int HF = 0; HF < HFside; HF++){ for(int sign = 0; sign < 2; sign++){ if( Q1_count[ieta][sign] == 0.0 || ETT[HF] == 0.0 ) continue; double Q_real = get3RealOverlap(Q1[ieta][sign][0], Q2[ieta][sign][0], Q3[HF][0], Q1[ieta][sign][1], Q2[ieta][sign][1], Q3[HF][1], Q1_count[ieta][sign], Q2_count[ieta][sign], ETT[HF] ); QvsdEta[ieta][sign][HF]->Fill( Q_real, (Q1_count[ieta][sign]*Q1_count[ieta][sign] - Q2_count[ieta][sign])*ETT[HF] ); } if( Q1_count[ieta][0] == 0.0 || Q1_count[ieta][1] == 0.0 || ETT[HF] == 0.0 ) continue; double Q_real = get3Real(Q1[ieta][0][0]/Q1_count[ieta][0],Q1[ieta][1][0]/Q1_count[ieta][1],Q3[HF][0]/ETT[HF], Q1[ieta][0][1]/Q1_count[ieta][0], Q1[ieta][1][1]/Q1_count[ieta][1], Q3[HF][1]/ETT[HF]); QvsdEta[ieta][2][HF]->Fill( Q_real, Q1_count[ieta][0]*Q1_count[ieta][1]*ETT[HF] ); } } /* calculate v2 using 3 sub-events method: */ aveQ3[0][0]->Fill( Q3[0][0]/ETT[0], ETT[0] );//HF+ cos aveQ3[0][1]->Fill( Q3[0][1]/ETT[0], ETT[0] );//HF+ sin aveQ3[1][0]->Fill( Q3[1][0]/ETT[1], ETT[1] );//HF- cos aveQ3[1][1]->Fill( Q3[1][1]/ETT[1], ETT[1] );//HF- sin QcosTRK = QcosTRK/QcountsTrk; QsinTRK = QsinTRK/QcountsTrk; double QaQc = get2Real(Q3[1][0]/ETT[1], QcosTRK/QcountsTrk, Q3[1][1]/ETT[1], QsinTRK/QcountsTrk ); double QaQb = get2Real(Q3[1][0]/ETT[1], Q3[0][0]/ETT[0], Q3[1][1]/ETT[1], -Q3[0][1]/ETT[0]);//an extra minus sign double QcQb = get2Real(QcosTRK/QcountsTrk, Q3[0][0]/ETT[0], QsinTRK/QcountsTrk, Q3[0][1]/ETT[0]); c2_ac->Fill( QaQc, ETT[1]*QcountsTrk ); c2_cb->Fill( QcQb, ETT[1]*ETT[0] ); c2_ab->Fill( QaQb, ETT[0]*QcountsTrk ); }
// ------------ method called to skim the data ------------ bool MCBarrelEndcapFilter::filter(edm::Event& iEvent, const edm::EventSetup& iSetup) { using namespace edm; bool accepted = false; Handle<HepMCProduct> evt; iEvent.getByLabel(label_, evt); vector<HepMC::GenParticle*> barrel_passed; vector<HepMC::GenParticle*> endcap_passed; const HepMC::GenEvent * myGenEvent = evt->GetEvent(); if(verbose) cout << "Start Event\n"; for ( HepMC::GenEvent::particle_const_iterator p = myGenEvent->particles_begin(); p != myGenEvent->particles_end(); ++p ) { if(verbose) cout << abs((*p)->pdg_id()) << ' ' << (*p)->momentum().perp() << ' ' << (*p)->momentum().eta() << ' ' << (*p)->status() << endl; // check for barrel conditions if ((abs((*p)->pdg_id()) == abs(barrelID) || barrelID == 0) && (*p)->momentum().perp() > ptMinBarrel && (*p)->momentum().eta() > etaMinBarrel && (*p)->momentum().eta() < etaMaxBarrel && ((*p)->status() == statusBarrel || statusBarrel == 0)) { if(verbose) cout << "Found Barrel\n"; // passed barrel conditions ... // ... now check pair-conditions with endcap passed particles // unsigned int i=0; double invmass =0.; while(!accepted && i<endcap_passed.size()) { invmass = ( math::PtEtaPhiMLorentzVector((*p)->momentum()) + math::PtEtaPhiMLorentzVector(endcap_passed[i]->momentum())).mass(); if(verbose) cout << "Invariant Mass is" << invmass << endl; if(invmass > minInvMass && invmass < maxInvMass) { accepted = true; } i++; } // if we found a matching pair quit the loop if(accepted) break; else{ barrel_passed.push_back(*p); // else remember the particle to have passed barrel conditions } } // check for endcap conditions if ((abs((*p)->pdg_id()) == abs(endcapID) || endcapID == 0) && (*p)->momentum().perp() > ptMinEndcap && (*p)->momentum().eta() > etaMinEndcap && (*p)->momentum().eta() < etaMaxEndcap && ((*p)->status() == statusEndcap || statusEndcap == 0)) { if(verbose) cout << "Found Endcap\n"; // passed endcap conditions ... // ... now check pair-conditions with barrel passed particles vector unsigned int i=0; double invmass =0.; while(!accepted && i<barrel_passed.size()) { if((*p) != barrel_passed[i]) { if(verbose) cout << "Checking to match Barrel\n"; invmass = ( math::PtEtaPhiMLorentzVector((*p)->momentum()) + math::PtEtaPhiMLorentzVector(barrel_passed[i]->momentum())).mass(); if(verbose) cout << "Invariant Mass is" << invmass << endl; if(invmass > minInvMass && invmass < maxInvMass) { accepted = true; } i++; } } // if we found a matching pair quit the loop if(accepted) break; else { endcap_passed.push_back(*p); // else remember the particle to have passed endcap conditions } } } if(verbose) { cout << "This event "; if (accepted){ cout << "passed "; } else {cout << "failed ";} cout << "the filter\n"; } return accepted; }
void UAHiggsTree::GetGenKin(const edm::Event& iEvent) { using namespace std; using namespace edm; using namespace reco; /* // MC Process Id and PtHat for AOD Handle< int > genProcessID; iEvent.getByLabel( "genEventProcID", genProcessID ); int processId = *genProcessID; cout<<"Process ID : "<<processId<<endl; */ //K Factor For Signal edm::Handle<double> KFactor; try { iEvent.getByLabel("KFactorProducer",KFactor); double kfactor = *KFactor; GenKin.kfactor=kfactor; } catch (...){;} /* // MC Process Id and PtHat for RECO Handle<HepMCProduct> hepMCHandle; iEvent.getByLabel(hepMCColl_, hepMCHandle ) ; const HepMC::GenEvent* GenEvt = hepMCHandle->GetEvent() ; int processId = GenEvt->signal_process_id(); if (GenKinDebug) cout<<"Process ID2: "<<processId<<endl; double ptHat = GenEvt->event_scale(); if (GenKinDebug) cout<<"PtHat MC : "<<ptHat<<endl; GenKin.MCProcId = processId ; GenKin.Scale = ptHat ; // PDF Info -> x,Q, parton id's -> see HepMC manual const HepMC::PdfInfo* PdfInfo = GenEvt->pdf_info(); double x1 = PdfInfo->x1(); double x2 = PdfInfo->x2(); double Q = PdfInfo->scalePDF(); int id1 = PdfInfo->id1(); int id2 = PdfInfo->id2(); GenKin.x1 = x1 ; GenKin.x2 = x2 ; GenKin.Q = Q ; GenKin.Part1Id = id1 ; GenKin.Part2Id = id2 ; */ // Gen MET: From GenMETCollection Handle<GenMETCollection> genmet; // iEvent.getByLabel(GenMetColl_ , genmet); iEvent.getByLabel("genMetTrue" , genmet); if (GenKinDebug) { cout << "GenMET et() = " << (genmet->front()).et() << endl ; cout << "GenMET px() = " << (genmet->front()).px() << endl ; cout << "GenMET py() = " << (genmet->front()).py() << endl ; cout << "GenMET phi() = " << (genmet->front()).phi() << endl; } GenKin.Met = (genmet->front()).et() ; GenKin.MetX = (genmet->front()).px() ; GenKin.MetY = (genmet->front()).py() ; GenKin.MetPhi = (genmet->front()).phi() ; // Gen MET: From GenPart Neutrinos ( no SUSY !!! ) // ... Handle to access GenParticleCollection Handle<GenParticleCollection> genParticles; iEvent.getByLabel(genPartColl_, genParticles); if (!genParticles.isValid()) { cerr << "[UAHiggsTree::GetGenKin] Error: non valid GenParticleCollection " << endl; return; } double met1Px = 0 ; double met1Py = 0 ; double met1Pz = 0 ; double met1E = 0 ; double met3Px = 0 ; double met3Py = 0 ; double met3Pz = 0 ; double met3E = 0 ; // ... Loop on stable (final) particles for(GenParticleCollection::const_iterator p = genParticles->begin(); p != genParticles->end(); ++ p) { int st = p->status(); int pid = p->pdgId(); if ( st == 1 && ( abs(pid)==12 || abs(pid)==14 || abs(pid)==16 ) ) { met1Px += p->px(); met1Py += p->py(); met1Pz += p->pz(); met1E += p->energy(); } else if ( st == 3 && ( abs(pid)==12 || abs(pid)==14 || abs(pid)==16 ) ) { met3Px += p->px(); met3Py += p->py(); met3Pz += p->pz(); met3E += p->energy(); } } // ... Set Missing Et 4-Vector GenKin.MetGP1.SetPxPyPzE( met1Px , met1Py , met1Pz , met1E ) ; GenKin.MetGP3.SetPxPyPzE( met3Px , met3Py , met3Pz , met3E ) ; }
void UAHiggsTree::GetRecoMuon(const edm::Event& iEvent, const edm::EventSetup& iSetup, const string globalMuonCollection_, vector<MyMuon>& MuonVector ) { using namespace std; using namespace edm; using namespace reco; // BORIS 3D IP stuff: Declaration ESHandle<TransientTrackBuilder> theTTBuilder; iSetup.get<TransientTrackRecord>().get("TransientTrackBuilder",theTTBuilder); MuonVector.clear(); Handle<MuonCollection> muonsHandle; try { iEvent.getByLabel(globalMuonCollection_,muonsHandle); } catch ( cms::Exception& ex ) { printf("Error! can't get globalMuon collection\n"); } const MuonCollection & muons = *(muonsHandle.product()); for (reco::MuonCollection::const_iterator iMuon = muons.begin(); iMuon != muons.end(); iMuon++) { MyMuon muon; // Global Muon muon.pt = iMuon->pt(); muon.px = iMuon->px(); muon.py = iMuon->py(); muon.pz = iMuon->pz(); muon.e = sqrt(iMuon->momentum().mag2()+MASS_MU*MASS_MU); muon.eta = iMuon->eta(); muon.phi = iMuon->phi(); muon.Part.v.SetPxPyPzE(iMuon->px(), iMuon->py(), iMuon->pz(), sqrt(iMuon->momentum().mag2()+MASS_MU*MASS_MU)); muon.Part.charge = iMuon->charge(); // Global Properties muon.nChambers = iMuon -> numberOfChambers(); muon.nChambersMatched = iMuon -> numberOfMatches(); muon.AllGlobalMuons = muon::isGoodMuon(*iMuon,muon::AllGlobalMuons); muon.AllStandAloneMuons = muon::isGoodMuon(*iMuon,muon::AllStandAloneMuons); muon.AllTrackerMuons = muon::isGoodMuon(*iMuon,muon::AllTrackerMuons); muon.TrackerMuonArbitrated = muon::isGoodMuon(*iMuon,muon::TrackerMuonArbitrated); muon.AllArbitrated = muon::isGoodMuon(*iMuon,muon::AllArbitrated); muon.GlobalMuonPromptTight = muon::isGoodMuon(*iMuon,muon::GlobalMuonPromptTight); muon.TMLastStationLoose = muon::isGoodMuon(*iMuon,muon::TMLastStationLoose); muon.TMLastStationTight = muon::isGoodMuon(*iMuon,muon::TMLastStationTight); muon.TM2DCompatibilityLoose = muon::isGoodMuon(*iMuon,muon::TM2DCompatibilityLoose); muon.TM2DCompatibilityTight = muon::isGoodMuon(*iMuon,muon::TM2DCompatibilityTight); muon.TMOneStationLoose = muon::isGoodMuon(*iMuon,muon::TMOneStationLoose); muon.TMOneStationTight = muon::isGoodMuon(*iMuon,muon::TMOneStationTight); muon.TMLastStationOptimizedLowPtLoose = muon::isGoodMuon(*iMuon,muon::TMLastStationOptimizedLowPtLoose); muon.TMLastStationOptimizedLowPtTight = muon::isGoodMuon(*iMuon,muon::TMLastStationOptimizedLowPtTight); muon.GMTkChiCompatibility = muon::isGoodMuon(*iMuon,muon::GMTkChiCompatibility); muon.GMStaChiCompatibility = muon::isGoodMuon(*iMuon,muon::GMStaChiCompatibility); muon.GMTkKinkTight = muon::isGoodMuon(*iMuon,muon::GMTkKinkTight); muon.TMLastStationAngLoose = muon::isGoodMuon(*iMuon,muon::TMLastStationAngLoose); muon.TMLastStationAngTight = muon::isGoodMuon(*iMuon,muon::TMLastStationAngTight); muon.TMOneStationAngLoose = muon::isGoodMuon(*iMuon,muon::TMOneStationAngLoose); muon.TMOneStationAngTight = muon::isGoodMuon(*iMuon,muon::TMOneStationAngTight); muon.TMLastStationOptimizedBarrelLowPtLoose = muon::isGoodMuon(*iMuon,muon::TMLastStationOptimizedBarrelLowPtLoose); muon.TMLastStationOptimizedBarrelLowPtTight = muon::isGoodMuon(*iMuon,muon::TMLastStationOptimizedBarrelLowPtTight); muon.isoR03sumPt = iMuon->isolationR03().sumPt ; muon.isoR03emEt = iMuon->isolationR03().emEt ; muon.isoR03hadEt = iMuon->isolationR03().hadEt ; muon.isoR03hoEt = iMuon->isolationR03().hoEt ; muon.isoR03nTracks = iMuon->isolationR03().nTracks ; muon.isoR03nJets = iMuon->isolationR03().nJets ; muon.isoR05sumPt = iMuon->isolationR05().sumPt ; muon.isoR05emEt = iMuon->isolationR05().emEt ; muon.isoR05hadEt = iMuon->isolationR05().hadEt ; muon.isoR05hoEt = iMuon->isolationR05().hoEt ; muon.isoR05nTracks = iMuon->isolationR05().nTracks ; muon.isoR05nJets = iMuon->isolationR05().nJets ; muon.calEnergyEm = iMuon->calEnergy().em ; muon.calEnergyHad = iMuon->calEnergy().had ; muon.calEnergyHo = iMuon->calEnergy().ho ; muon.calEnergyEmS9 = iMuon->calEnergy().emS9 ; muon.calEnergyHadS9= iMuon->calEnergy().hadS9; muon.calEnergyHoS9 = iMuon->calEnergy().hoS9 ; muon.IsGlobalMuon = iMuon->isGlobalMuon() ; muon.IsTrackerMuon = iMuon->isTrackerMuon() ; muon.IsStandaloneMuon = iMuon->isStandAloneMuon() ; muon.IsCaloMuon = iMuon->isCaloMuon() ; // Global Muon Track if(iMuon->globalTrack().isAvailable()){ reco::TrackRef glTrack = iMuon->globalTrack(); muon.globalTrack.Part.v.SetPxPyPzE(glTrack->momentum().x(), glTrack->momentum().y(), glTrack->momentum().z(), sqrt(glTrack->momentum().mag2()+MASS_MU*MASS_MU)); muon.globalTrack.Part.charge = glTrack->charge(); muon.globalTrack.numberOfValidTkHits = glTrack->hitPattern().numberOfValidTrackerHits(); muon.globalTrack.numberOfValidMuonHits = glTrack->hitPattern().numberOfValidMuonHits(); // cout<<glTrack->hitPattern().numberOfValidTrackerHits()<<endl; // cout<<glTrack->hitPattern().numberOfValidMuonHits()<<endl; muon.globalTrack.numberOfValidStripHits = glTrack->hitPattern().numberOfValidStripHits(); muon.globalTrack.numberOfValidPixelHits = glTrack->hitPattern().numberOfValidPixelHits(); muon.globalTrack.numberOfValidMuonRPCHits = glTrack->hitPattern().numberOfValidMuonRPCHits(); muon.globalTrack.numberOfValidMuonCSCHits = glTrack->hitPattern().numberOfValidMuonCSCHits(); muon.globalTrack.numberOfValidMuonDTHits = glTrack->hitPattern().numberOfValidMuonDTHits(); muon.globalTrack.nhit = glTrack->hitPattern().numberOfValidHits(); muon.globalTrack.chi2n = glTrack->normalizedChi2(); muon.globalTrack.dz = glTrack->dz(); muon.globalTrack.d0 = glTrack->d0(); muon.globalTrack.edz = glTrack->dzError(); muon.globalTrack.ed0 = glTrack->d0Error(); muon.globalTrack.ept = glTrack->ptError(); muon.globalTrack.vx = glTrack->vertex().x(); muon.globalTrack.vy = glTrack->vertex().y(); muon.globalTrack.vz = glTrack->vertex().z(); muon.globalTrack.quality[0] = glTrack->quality(reco::TrackBase::qualityByName("loose")); muon.globalTrack.quality[1] = glTrack->quality(reco::TrackBase::qualityByName("tight")); muon.globalTrack.quality[2] = glTrack->quality(reco::TrackBase::qualityByName("highPurity")); muon.globalTrack.vtxid.clear(); muon.globalTrack.vtxdxy.clear(); muon.globalTrack.vtxdz.clear(); for ( int i = 0 ; i != vtxid ; i++ ) { muon.globalTrack.vtxid.push_back( i ); muon.globalTrack.vtxdxy.push_back( glTrack->dxy( vtxid_xyz[i] ) ); muon.globalTrack.vtxdz.push_back( glTrack->dz( vtxid_xyz[i] ) ); } } else { muon.globalTrack.d0 = -999; for ( int i = 0 ; i != vtxid ; i++ ) { muon.globalTrack.vtxid.push_back( i ); muon.globalTrack.vtxdxy.push_back( -999 ); muon.globalTrack.vtxdz.push_back( -999 ); } } // Inner Muon Track if(iMuon->innerTrack().isAvailable()){ reco::TrackRef inTrack = iMuon->innerTrack(); muon.innerTrack.Part.v.SetPxPyPzE(inTrack->momentum().x(), inTrack->momentum().y(), inTrack->momentum().z(), sqrt(inTrack->momentum().mag2()+MASS_MU*MASS_MU)); muon.innerTrack.Part.charge = inTrack->charge(); muon.innerTrack.numberOfValidTkHits = inTrack->hitPattern().numberOfValidTrackerHits(); muon.innerTrack.numberOfValidMuonHits = inTrack->hitPattern().numberOfValidMuonHits(); muon.innerTrack.numberOfValidStripHits = inTrack->hitPattern().numberOfValidStripHits(); muon.innerTrack.numberOfValidPixelHits = inTrack->hitPattern().numberOfValidPixelHits(); muon.innerTrack.numberOfValidMuonRPCHits = inTrack->hitPattern().numberOfValidMuonRPCHits(); muon.innerTrack.numberOfValidMuonCSCHits = inTrack->hitPattern().numberOfValidMuonCSCHits(); muon.innerTrack.numberOfValidMuonDTHits = inTrack->hitPattern().numberOfValidMuonDTHits(); muon.innerTrack.nhit = inTrack->hitPattern().numberOfValidHits(); muon.innerTrack.chi2n = inTrack->normalizedChi2(); muon.innerTrack.dz = inTrack->dz(); muon.innerTrack.d0 = inTrack->d0(); muon.innerTrack.edz = inTrack->dzError(); muon.innerTrack.ed0 = inTrack->d0Error(); muon.innerTrack.ept = inTrack->ptError(); muon.innerTrack.vx = inTrack->vertex().x(); muon.innerTrack.vy = inTrack->vertex().y(); muon.innerTrack.vz = inTrack->vertex().z(); muon.innerTrack.quality[0] = inTrack->quality(reco::TrackBase::qualityByName("loose")); muon.innerTrack.quality[1] = inTrack->quality(reco::TrackBase::qualityByName("tight")); muon.innerTrack.quality[2] = inTrack->quality(reco::TrackBase::qualityByName("highPurity")); muon.innerTrack.vtxid.clear(); muon.innerTrack.vtxdxy.clear(); muon.innerTrack.vtxdz.clear(); for ( int i = 0 ; i != vtxid ; i++ ) { muon.innerTrack.vtxid.push_back( i ); muon.innerTrack.vtxdxy.push_back( inTrack->dxy( vtxid_xyz[i] ) ); muon.innerTrack.vtxdz.push_back( inTrack->dz( vtxid_xyz[i] ) ); } // Boris 3D IP Stuff int iVtx = 0; muon.vtxid.clear(); muon.tip.clear(); muon.tipErr.clear(); muon.ip.clear(); muon.ipErr.clear(); muon.tip2.clear(); muon.tip2Err.clear(); muon.ip2.clear(); muon.ip2Err.clear(); // ... redo muon trajectory reco::TransientTrack tt = theTTBuilder->build(iMuon->innerTrack()); // ... get beamspot + first entry in IP respecting BS edm::Handle<reco::BeamSpot> bs; iEvent.getByLabel(edm::InputTag("offlineBeamSpot"),bs); reco::Vertex bsvtx = reco::Vertex(reco::Vertex::Point(bs->position().x(),bs->position().y(),bs->position().z()),reco::Vertex::Error()); Measurement1D ip = IPTools::absoluteTransverseImpactParameter(tt,bsvtx).second; Measurement1D ip3D = IPTools::absoluteImpactParameter3D(tt,bsvtx).second; muon.vtxid.push_back( iVtx ); ++iVtx; muon.tip.push_back( ip.value() ); muon.tipErr.push_back( ip.error() ); muon.ip.push_back( ip3D.value() ); muon.ipErr.push_back( ip3D.error() ); muon.tip2.push_back( ip.value() ); muon.tip2Err.push_back( ip.error() ); muon.ip2.push_back( ip3D.value() ); muon.ip2Err.push_back( ip3D.error() ); // ... Loop on vtx collections for (unsigned int ivc=0; ivc!= vertexs.size(); ivc++){ // ... get vertex collection edm::Handle<reco::VertexCollection> vertices; iEvent.getByLabel(vertexs.at(ivc),vertices); //cout << vertexs.at(ivc) << " -> size = " << vertices->end()-vertices->begin() << endl; // ... prepare refitting VertexReProducer revertex(vertices, iEvent); Handle<reco::BeamSpot> pvbeamspot; iEvent.getByLabel(revertex.inputBeamSpot(), pvbeamspot); // ... Loop on vtx in curent collection for(VertexCollection::const_iterator pvtx=vertices->begin(); pvtx!= vertices->end() ; ++pvtx) { reco::Vertex vertexYesB; reco::Vertex vertexNoB; reco::TrackCollection newTkCollection; vertexYesB = *pvtx ; // ... Remove lepton track bool foundMatch(false); for (reco::Vertex::trackRef_iterator itk = pvtx->tracks_begin(); itk!=pvtx->tracks_end(); ++itk) { bool refMatching = (itk->get() == &*(iMuon->innerTrack()) ); if(refMatching){ foundMatch = true; }else{ newTkCollection.push_back(*itk->get()); } }//track collection for vertexNoB is set //cout << "checking mu matching" << endl; if(!foundMatch) { //cout << "WARNING: no muon matching found" << endl; vertexNoB = vertexYesB; }else{ vector<TransientVertex> pvs = revertex.makeVertices(newTkCollection, *pvbeamspot, iSetup) ; //cout << pvs.size() << endl; if(pvs.empty()) { vertexNoB = reco::Vertex(reco::Vertex::Point(bs->position().x(),bs->position().y(),bs->position().z()), reco::Vertex::Error()); } else { //vertexNoB = findClosestVertex<TransientVertex>(zPos,pvs); vertexNoB = pvs.front(); //take the first in the list } } // ... Compute 3D IP Measurement1D ip = IPTools::absoluteTransverseImpactParameter(tt,vertexYesB).second; Measurement1D ip3D = IPTools::absoluteImpactParameter3D(tt,vertexYesB).second; Measurement1D ip_2 = IPTools::absoluteTransverseImpactParameter(tt,vertexNoB).second; Measurement1D ip3D_2 = IPTools::absoluteImpactParameter3D(tt,vertexNoB).second; muon.vtxid.push_back( iVtx ); ++iVtx; muon.tip.push_back( ip.value() ); muon.tipErr.push_back( ip.error() ); muon.ip.push_back( ip3D.value() ); muon.ipErr.push_back( ip3D.error() ); muon.tip2.push_back( ip_2.value() ); muon.tip2Err.push_back( ip_2.error() ); muon.ip2.push_back( ip3D_2.value() ); muon.ip2Err.push_back( ip3D_2.error() ); /* if (foundMatch){ cout << ip3D.value() << " " << ip3D_2.value() << endl; } */ } // END ... Loop on vtx in curent collection } // END ... Loop on vtx collections } else { muon.innerTrack.d0 = -999; for ( int i = 0 ; i != vtxid ; i++ ) { muon.innerTrack.vtxid.push_back( i ); muon.innerTrack.vtxdxy.push_back( -999 ) ; muon.innerTrack.vtxdz.push_back( -999 ); muon.vtxid.push_back( i ) ; muon.tip.push_back( -999 ) ; muon.tipErr.push_back( -999 ) ; muon.ip.push_back( -999 ) ; muon.ipErr.push_back( -999 ) ; muon.tip2.push_back( -999 ) ; muon.tip2Err.push_back(-999 ) ; muon.ip2.push_back( -999 ) ; muon.ip2Err.push_back( -999 ) ; } } // Outer Muon Track if(iMuon->outerTrack().isAvailable()){ reco::TrackRef outTrack = iMuon->outerTrack(); muon.outerTrack.Part.v.SetPxPyPzE(outTrack->momentum().x(), outTrack->momentum().y(), outTrack->momentum().z(), sqrt(outTrack->momentum().mag2()+MASS_MU*MASS_MU)); muon.outerTrack.Part.charge = outTrack->charge(); muon.outerTrack.numberOfValidTkHits = outTrack->hitPattern().numberOfValidTrackerHits(); muon.outerTrack.numberOfValidMuonHits = outTrack->hitPattern().numberOfValidMuonHits(); muon.outerTrack.numberOfValidStripHits = outTrack->hitPattern().numberOfValidStripHits(); muon.outerTrack.numberOfValidPixelHits = outTrack->hitPattern().numberOfValidPixelHits(); muon.outerTrack.numberOfValidMuonRPCHits = outTrack->hitPattern().numberOfValidMuonRPCHits(); muon.outerTrack.numberOfValidMuonCSCHits = outTrack->hitPattern().numberOfValidMuonCSCHits(); muon.outerTrack.numberOfValidMuonDTHits = outTrack->hitPattern().numberOfValidMuonDTHits(); muon.outerTrack.nhit = outTrack->hitPattern().numberOfValidHits(); muon.outerTrack.chi2n = outTrack->normalizedChi2(); muon.outerTrack.dz = outTrack->dz(); muon.outerTrack.d0 = outTrack->d0(); muon.outerTrack.edz = outTrack->dzError(); muon.outerTrack.ed0 = outTrack->d0Error(); muon.outerTrack.ept = outTrack->ptError(); muon.outerTrack.vx = outTrack->vertex().x(); muon.outerTrack.vy = outTrack->vertex().y(); muon.outerTrack.vz = outTrack->vertex().z(); muon.outerTrack.quality[0] = outTrack->quality(reco::TrackBase::qualityByName("loose")); muon.outerTrack.quality[1] = outTrack->quality(reco::TrackBase::qualityByName("tight")); muon.outerTrack.quality[2] = outTrack->quality(reco::TrackBase::qualityByName("highPurity")); muon.outerTrack.vtxid.clear(); muon.outerTrack.vtxdxy.clear(); muon.outerTrack.vtxdz.clear(); for ( int i = 0 ; i != vtxid ; i++ ) { muon.outerTrack.vtxid.push_back( i ); muon.outerTrack.vtxdxy.push_back( outTrack->dxy( vtxid_xyz[i] ) ); muon.outerTrack.vtxdz.push_back( outTrack->dz( vtxid_xyz[i] ) ); } } else { muon.outerTrack.d0 = -999; for ( int i = 0 ; i != vtxid ; i++ ) { muon.outerTrack.vtxid.push_back( i ); muon.outerTrack.vtxdxy.push_back( -999 ); muon.outerTrack.vtxdz.push_back( -999 ); } } MuonVector.push_back(muon); } // end for MuonCollection }
void ChPartTree::GetFwdGap(const edm::Event& iEvent , const edm::EventSetup& iSetup ) { using namespace std; int nTowersHF_plus = 0; int nTowersHF_minus = 0; int nTowersHE_plus = 0; int nTowersHE_minus = 0; int nTowersHB_plus = 0; int nTowersHB_minus = 0; int nTowersEE_plus = 0; int nTowersEE_minus = 0; int nTowersEB_plus = 0; int nTowersEB_minus = 0; //Sum(E) double sumEHF_plus = 0.; double sumEHF_minus = 0.; double sumEHE_plus = 0.; double sumEHE_minus = 0.; double sumEHB_plus = 0.; double sumEHB_minus = 0.; double sumEEE_plus = 0.; double sumEEE_minus = 0.; double sumEEB_plus = 0.; double sumEEB_minus = 0.; // Sum(ET) double sumETHF_plus = 0.; double sumETHF_minus = 0.; double sumETHE_plus = 0.; double sumETHE_minus = 0.; double sumETHB_plus = 0.; double sumETHB_minus = 0.; double sumETEE_plus = 0.; double sumETEE_minus = 0.; double sumETEB_plus = 0.; double sumETEB_minus = 0.; FwdGap.Reset(); // Calo tower collection from event edm::Handle<CaloTowerCollection> towerCollectionH; iEvent.getByLabel(caloTowerTag_,towerCollectionH); const CaloTowerCollection& towerCollection = *towerCollectionH; // Loop over calo towers CaloTowerCollection::const_iterator calotower = towerCollection.begin(); CaloTowerCollection::const_iterator calotowers_end = towerCollection.end(); for(; calotower != calotowers_end; ++calotower) { bool hasHCAL = false; bool hasHF = false; bool hasHE = false; bool hasHB = false; bool hasHO = false; bool hasECAL = false; bool hasEE = false; bool hasEB = false; for(size_t iconst = 0; iconst < calotower->constituentsSize(); iconst++){ DetId detId = calotower->constituent(iconst); if(detId.det()==DetId::Hcal){ hasHCAL = true; HcalDetId hcalDetId(detId); if(hcalDetId.subdet()==HcalForward) hasHF = true; else if(hcalDetId.subdet()==HcalEndcap) hasHE = true; else if(hcalDetId.subdet()==HcalBarrel) hasHB = true; else if(hcalDetId.subdet()==HcalOuter) hasHO = true; } else if(detId.det()==DetId::Ecal){ hasECAL = true; EcalSubdetector ecalSubDet = (EcalSubdetector)detId.subdetId(); if(ecalSubDet == EcalEndcap) hasEE = true; else if(ecalSubDet == EcalBarrel) hasEB = true; } } int zside = calotower->zside(); double caloTowerEnergy = calotower->energy(); // FIXME //double caloTowerET = calotower->et(primVtx.position()); //double caloTowerET = calotower->et(primVtx.z()); double caloTowerET = calotower->et(); // HCAL: Towers made of at least one component from HB,HE,HF if( hasHF && !hasHE ){ if( caloTowerEnergy >= energyThresholdHF_ ){ if(zside >= 0){ ++nTowersHF_plus; sumEHF_plus += caloTowerEnergy; sumETHF_plus += caloTowerET; } else{ ++nTowersHF_minus; sumEHF_minus += caloTowerEnergy; sumETHF_minus += caloTowerET; } } } else if( hasHE && !hasHF && !hasHB ){ if( caloTowerEnergy >= energyThresholdHE_ ){ if(zside >= 0){ ++nTowersHE_plus; sumEHE_plus += caloTowerEnergy; sumETHE_plus += caloTowerET; } else{ ++nTowersHE_minus; sumEHE_minus += caloTowerEnergy; sumETHE_minus += caloTowerET; } } } else if( hasHB && !hasHE ){ if( caloTowerEnergy >= energyThresholdHB_ ){ if(zside >= 0){ ++nTowersHB_plus; sumEHB_plus += caloTowerEnergy; sumETHB_plus += caloTowerET; } else{ ++nTowersHB_minus; sumEHB_minus += caloTowerEnergy; sumETHB_minus += caloTowerET; } } } // ECAL: Towers made of at least one component from EB,EE if( hasEE && !hasEB ){ if( caloTowerEnergy >= energyThresholdEE_ ){ if(zside >= 0){ ++nTowersEE_plus; sumEEE_plus += caloTowerEnergy; sumETEE_plus += caloTowerET; } else{ ++nTowersEE_minus; sumEEE_minus += caloTowerEnergy; sumETEE_minus += caloTowerET; } } } else if( hasEB && !hasEE ){ if( caloTowerEnergy >= energyThresholdEB_ ){ if(zside >= 0){ ++nTowersEB_plus; sumEEB_plus += caloTowerEnergy; sumETEB_plus += caloTowerET; } else{ ++nTowersEB_minus; sumEEB_minus += caloTowerEnergy; sumETEB_minus += caloTowerET; } } } } FwdGap.nTowersHF_plus = nTowersHF_plus ; FwdGap.nTowersHF_minus = nTowersHF_minus ; FwdGap.nTowersHE_plus = nTowersHE_plus ; FwdGap.nTowersHE_minus = nTowersHE_minus ; FwdGap.nTowersHB_plus = nTowersHB_plus ; FwdGap.nTowersHB_minus = nTowersHB_minus ; FwdGap.nTowersEE_plus = nTowersEE_plus ; FwdGap.nTowersEE_minus = nTowersEE_minus ; FwdGap.nTowersEB_plus = nTowersEB_plus ; FwdGap.nTowersEB_minus = nTowersEB_minus ; FwdGap.sumEHF_plus = sumEHF_plus ; FwdGap.sumEHF_minus = sumEHF_minus ; FwdGap.sumEHE_plus = sumEHE_plus ; FwdGap.sumEHE_minus = sumEHE_minus ; FwdGap.sumEHB_plus = sumEHB_plus ; FwdGap.sumEHB_minus = sumEHB_minus ; FwdGap.sumEEE_plus = sumEEE_plus ; FwdGap.sumEEE_minus = sumEEE_minus ; FwdGap.sumEEB_plus = sumEEB_plus ; FwdGap.sumEEB_minus = sumEEB_minus ; FwdGap.sumETHF_plus = sumETHF_plus ; FwdGap.sumETHF_minus = sumETHF_minus ; FwdGap.sumETHE_plus = sumETHE_plus ; FwdGap.sumETHE_minus = sumETHE_minus ; FwdGap.sumETHB_plus = sumETHB_plus ; FwdGap.sumETHB_minus = sumETHB_minus ; FwdGap.sumETEE_plus = sumETEE_plus ; FwdGap.sumETEE_minus = sumETEE_minus ; FwdGap.sumETEB_plus = sumETEB_plus ; FwdGap.sumETEB_minus = sumETEB_minus ; /* cout << "[FwdGap]: " << sumEHF_plus << " " << sumEHF_minus << " " << sumEHE_plus << " " << sumEHE_minus << " " << sumEHB_plus << " " << sumEHB_minus << " " << sumEEE_plus << " " << sumEEE_minus << " " << sumEEB_plus << " " << sumEEB_minus << " " << endl ; */ }
void UAHiggsTree::GetGenJet(const edm::Event& iEvent , const edm::EventSetup& iSetup, const string GenJetCollection_ , vector<MyGenJet>& JetVector ) { using namespace std; using namespace edm; using namespace reco; // Clear JetVector.clear(); // Handle to access PDG data from iSetup ESHandle <ParticleDataTable> pdt; iSetup.getData( pdt ); // get gen jet collection Handle<GenJetCollection> genjets; iEvent.getByLabel(GenJetCollection_, genjets); for(GenJetCollection::const_iterator genjet=genjets->begin();genjet!=genjets->end();genjet++){ MyGenJet Jet; Jet.et = genjet->et(); Jet.pt = genjet->pt(); Jet.eta = genjet->eta(); Jet.phi = genjet->phi(); Jet.e = genjet->energy(); Jet.px = genjet->px(); Jet.py = genjet->py(); Jet.pz = genjet->pz(); Jet.npart = genjet->nConstituents(); Jet.JetPart.clear(); if (GenJetDebug) cout << genjet->nConstituents() << endl; std::vector <const reco::GenParticle*> mcparts = genjet->getGenConstituents(); for (unsigned i = 0; i < mcparts.size (); i++) { const reco::GenParticle* p = mcparts[i]; if (GenJetDebug) cout << i << " " << p->pdgId() << " " << (pdt->particle(p->pdgId()))->name() << " " << p->pt() << " " << p->eta() << " " << p->phi() << " " << p->charge() << endl ; MyGenPart genpart; // Four vector genpart.pt = p->pt(); genpart.eta = p->eta(); genpart.phi = p->phi(); genpart.e = p->energy(); genpart.px = p->px(); genpart.py = p->py(); genpart.pz = p->pz(); genpart.m = p->mass(); genpart.Part.v.SetPxPyPzE( p->px() , p->py() , p->pz() , p->energy() ); // Extra properties genpart.Part.charge = p->charge(); genpart.charge = p->charge(); genpart.pdgId = p->pdgId(); genpart.name = (pdt->particle(p->pdgId()))->name(); genpart.status = p->status(); Jet.JetPart.push_back(genpart); } vector<int> i; JetVector.push_back(Jet); } }