示例#1
0
ON_2dPoint
FittingSurface::inverseMapping (const ON_NurbsSurface &nurbs, const ON_3dPoint &pt, const ON_2dPoint &hint, double &error,
				ON_3dPoint &p, ON_3dVector &tu, ON_3dVector &tv, int maxSteps, double accuracy, bool quiet)
{

  double pointAndTangents[9];

  ON_2dVector current, delta;
  ON_Matrix A(2,2);
  ON_2dVector b;
  ON_3dVector r;
  std::vector<double> elementsU = getElementVector (nurbs, 0);
  std::vector<double> elementsV = getElementVector (nurbs, 1);
  double minU = elementsU[0];
  double minV = elementsV[0];
  double maxU = elementsU[elementsU.size () - 1];
  double maxV = elementsV[elementsV.size () - 1];

  current = hint;

  for (int k = 0; k < maxSteps; k++)
  {

    nurbs.Evaluate (current[0], current[1], 1, 3, pointAndTangents);
    p[0] = pointAndTangents[0];
    p[1] = pointAndTangents[1];
    p[2] = pointAndTangents[2];
    tu[0] = pointAndTangents[3];
    tu[1] = pointAndTangents[4];
    tu[2] = pointAndTangents[5];
    tv[0] = pointAndTangents[6];
    tv[1] = pointAndTangents[7];
    tv[2] = pointAndTangents[8];

    r = p - pt;

    b[0] = -ON_DotProduct(r,tu);
    b[1] = -ON_DotProduct(r,tv);

    A[0][0] = ON_DotProduct(tu,tu);
    A[0][1] = ON_DotProduct(tu,tv);
    A[1][0] = A[0][1];
    A[1][1] = ON_DotProduct(tv,tv);

    Eigen::Vector2d eb(b[0],b[1]);
    Eigen::Vector2d edelta;
    Eigen::Matrix2d eA;

    eA (0, 0) = A[0][0];
    eA (0, 1) = A[0][1];
    eA (1, 0) = A[1][0];
    eA (1, 1) = A[1][1];

    edelta = eA.ldlt ().solve (eb);

    delta[0] = edelta (0);
    delta[1] = edelta (1);

    if (sqrt(ON_DotProduct(delta,delta)) < accuracy)
    {

      error = sqrt(ON_DotProduct(r,r));
      return current;

    }
    else
    {
      current = current + delta;

      if (current[0] < minU)
	current[0] = minU;
      else if (current[0] > maxU)
	current[0] = maxU;

      if (current[1] < minV)
	current[1] = minV;
      else if (current[1] > maxV)
	current[1] = maxV;

    }

  }

  error = sqrt(ON_DotProduct(r,r));
  if (!quiet)
  {
    printf ("[FittingSurface::inverseMapping] Warning: Method did not converge (%e %d)\n", accuracy, maxSteps);
    printf ("  %f %f ... %f %f\n", hint[0], hint[1], current[0], current[1]);
  }

  return current;

}
void ProbabilisticStereoTriangulator<CAMERA_GEOMETRY_T>::getUncertainty(
    size_t keypointIdxA, size_t keypointIdxB,
    const Eigen::Vector4d& homogeneousPoint_A,
    Eigen::Matrix3d& outPointUOplus_A, bool& outCanBeInitialized) const {
  OKVIS_ASSERT_TRUE_DBG(Exception,frameA_&&frameB_,"initialize with frames before use!");

  // also get the point in the other coordinate representation
  //Eigen::Vector4d& homogeneousPoint_B=_T_BA*homogeneousPoint_A;
  Eigen::Vector4d hPA = homogeneousPoint_A;

  // calculate point uncertainty by constructing the lhs of the Gauss-Newton equation system.
  // note: the transformation T_WA is assumed constant and identity w.l.o.g.
  Eigen::Matrix<double, 9, 9> H = H_;

  //	keypointA_t& kptA = _frameA_ptr->keypoint(keypointIdxA);
  //	keypointB_t& kptB = _frameB_ptr->keypoint(keypointIdxB);
  Eigen::Vector2d kptA, kptB;
  frameA_->getKeypoint(camIdA_, keypointIdxA, kptA);
  frameB_->getKeypoint(camIdB_, keypointIdxB, kptB);

  // assemble the stuff from the reprojection errors
  double keypointStdDev;
  frameA_->getKeypointSize(camIdA_, keypointIdxA, keypointStdDev);
  keypointStdDev = 0.8 * keypointStdDev / 12.0;
  Eigen::Matrix2d inverseMeasurementCovariance = Eigen::Matrix2d::Identity()
      * (1.0 / (keypointStdDev * keypointStdDev));
  ::okvis::ceres::ReprojectionError<CAMERA_GEOMETRY_T> reprojectionErrorA(
      frameA_->geometryAs<CAMERA_GEOMETRY_T>(camIdA_), 0, kptA,
      inverseMeasurementCovariance);
  //typename keypointA_t::measurement_t residualA;
  Eigen::Matrix<double, 2, 1> residualA;
  Eigen::Matrix<double, 2, 4, Eigen::RowMajor> J_hpA;
  Eigen::Matrix<double, 2, 3, Eigen::RowMajor> J_hpA_min;
  double* jacobiansA[3];
  jacobiansA[0] = 0;  // do not calculate, T_WA is fixed identity transform
  jacobiansA[1] = J_hpA.data();
  jacobiansA[2] = 0;  // fixed extrinsics
  double* jacobiansA_min[3];
  jacobiansA_min[0] = 0;  // do not calculate, T_WA is fixed identity transform
  jacobiansA_min[1] = J_hpA_min.data();
  jacobiansA_min[2] = 0;  // fixed extrinsics
  const double* parametersA[3];
  //const double* test = _poseA.parameters();
  parametersA[0] = poseA_.parameters();
  parametersA[1] = hPA.data();
  parametersA[2] = extrinsics_.parameters();
  reprojectionErrorA.EvaluateWithMinimalJacobians(parametersA, residualA.data(),
                                                  jacobiansA, jacobiansA_min);

  inverseMeasurementCovariance.setIdentity();
  frameB_->getKeypointSize(camIdB_, keypointIdxB, keypointStdDev);
  keypointStdDev = 0.8 * keypointStdDev / 12.0;
  inverseMeasurementCovariance *= 1.0 / (keypointStdDev * keypointStdDev);

  ::okvis::ceres::ReprojectionError<CAMERA_GEOMETRY_T> reprojectionErrorB(
      frameB_->geometryAs<CAMERA_GEOMETRY_T>(camIdB_), 0, kptB,
      inverseMeasurementCovariance);
  Eigen::Matrix<double, 2, 1> residualB;
  Eigen::Matrix<double, 2, 7, Eigen::RowMajor> J_TB;
  Eigen::Matrix<double, 2, 6, Eigen::RowMajor> J_TB_min;
  Eigen::Matrix<double, 2, 4, Eigen::RowMajor> J_hpB;
  Eigen::Matrix<double, 2, 3, Eigen::RowMajor> J_hpB_min;
  double* jacobiansB[3];
  jacobiansB[0] = J_TB.data();
  jacobiansB[1] = J_hpB.data();
  jacobiansB[2] = 0;  // fixed extrinsics
  double* jacobiansB_min[3];
  jacobiansB_min[0] = J_TB_min.data();
  jacobiansB_min[1] = J_hpB_min.data();
  jacobiansB_min[2] = 0;  // fixed extrinsics
  const double* parametersB[3];
  parametersB[0] = poseB_.parameters();
  parametersB[1] = hPA.data();
  parametersB[2] = extrinsics_.parameters();
  reprojectionErrorB.EvaluateWithMinimalJacobians(parametersB, residualB.data(),
                                                  jacobiansB, jacobiansB_min);

  // evaluate again closer:
  hPA.head<3>() = 0.8 * (hPA.head<3>() - T_AB_.r() / 2.0 * hPA[3])
      + T_AB_.r() / 2.0 * hPA[3];
  reprojectionErrorB.EvaluateWithMinimalJacobians(parametersB, residualB.data(),
                                                  jacobiansB, jacobiansB_min);
  if (residualB.transpose() * residualB < 4.0)
    outCanBeInitialized = false;
  else
    outCanBeInitialized = true;

  // now add to H:
  H.bottomRightCorner<3, 3>() += J_hpA_min.transpose() * J_hpA_min;
  H.topLeftCorner<6, 6>() += J_TB_min.transpose() * J_TB_min;
  H.topRightCorner<6, 3>() += J_TB_min.transpose() * J_hpB_min;
  H.bottomLeftCorner<3, 6>() += J_hpB_min.transpose() * J_TB_min;
  H.bottomRightCorner<3, 3>() += J_hpB_min.transpose() * J_hpB_min;

  // invert (if invertible) to get covariance:
  Eigen::Matrix<double, 9, 9> cov;
  if (H.colPivHouseholderQr().rank() < 9) {
    outCanBeInitialized = false;
    return;
  }
  cov = H.inverse();  // FIXME: use the QR decomposition for this...
  outPointUOplus_A = cov.bottomRightCorner<3, 3>();
}
示例#3
0
	void Triangle::setJac(){
	    Eigen::Matrix2d J;
	    J.col(0) = (M_points[1]-M_points[0]).toEig();
	    J.col(1) = (M_points[2]-M_points[0]).toEig();
	    M_jac = J;
	}
示例#4
0
double covToSDPixels(const Eigen::Matrix2d & S)
{
    const double dProductOfEigenvectors = S.determinant();
    if(IS_DEBUG) CHECK(dProductOfEigenvectors < 0, "cov matrix not positive definite");
    return pow(dProductOfEigenvectors, 0.25); //Approx. sigma in pixels
}
void Deformable::projectPositionsCluster(std::vector<int> cluster, int cluster_indx)
{
    int numVertices =  cluster.size();
    if (numVertices <= 1) return;
    int i;//,j,k;
    double beta_cluster =params.lbeta.at(cluster_indx);
    
    // center of mass
    Eigen::Vector2d cm, originalCm;
    cm.setZero(); originalCm.setZero();
    double mass = 0.0;
    int indx;
    for (i = 0; i < numVertices; i++) {
        indx= cluster.at(i);
        double m = mMasses(indx,0);
        if (mFixed(indx,0)) m *= 100.0;
        mass += m;
        cm += mNewPos.row(indx) * m;
        originalCm += mOriginalPos.row(indx) * m;
        //std::cout<<"before: "<<mNewPos.row(indx)<<std::endl;
    }
    
    cm /= mass;
    originalCm /= mass;
    
    Eigen::Matrix2d Apq;
    Eigen::Matrix2d Aqq;
    Eigen::Vector2d p;
    Eigen::Vector2d q;
    Apq.setZero();
    Aqq.setZero();
    
    for (i = 0; i < numVertices; i++) {
        indx= cluster.at(i);
        p(0) = mNewPos(indx,0) - cm(0);
        p(1) = mNewPos(indx,1) - cm(1);
        
        q(0) = mOriginalPos(indx,0) - originalCm(0);
        q(1) = mOriginalPos(indx,1) - originalCm(1);
        double m = mMasses(indx,0);
        Apq += m*p*q.transpose();
        Aqq += m*q*q.transpose();
    }
    

    
    if (!params.allowFlip && Apq.determinant() < 0.0f)
    {  	// prevent from flipping
        Apq(0,1) = -Apq(0,1);
        Apq(1,1) = -Apq(1,1);
    }
    
    Eigen::Matrix2d R;
    Eigen::JacobiSVD<Eigen::MatrixXd> svd(Apq, Eigen::ComputeThinU | Eigen::ComputeThinV);
    Eigen::MatrixXd U = svd.matrixU();
    Eigen::MatrixXd V = svd.matrixV();
    R = U*V.transpose();
    
    if (!params.quadraticMatch) {	// --------- linear match
        Eigen::Matrix2d A = Aqq;
        A = Apq*A.inverse();
        
        if (params.volumeConservation) {
            
            double det = A.determinant();
            if (det != 0.0) {
                det = 1.0 / sqrt(fabs(det));
                if (det > 2.0) det = 2.0;
                
                A = A*det;
            }
        }
        
        Eigen::Matrix2d T = R * (1.0 - beta_cluster) + A * beta_cluster;
        std::cout<<"cluster's beta "<<beta_cluster<<std::endl;
        
        for (i = 0; i < numVertices; i++) {
            int indx= cluster.at(i);
            indxCount.at(indx) +=1;
            
            if (mFixed(indx)) continue;
            q(0) = mOriginalPos(indx,0) - originalCm(0);
            q(1) = mOriginalPos(indx,1) - originalCm(1);
            Eigen::Vector2d Tq = T*q;
            
            mGoalPos(indx,0) = Tq(0)+cm(0);
            mGoalPos(indx,1) = Tq(1)+cm(1);
            mNewPos.row(indx) += (mGoalPos.row(indx) - mNewPos.row(indx)) * params.alpha;
            
            mGoalPos_sum.row(indx) += mNewPos.row(indx);
        }
    }
}
void Deformable::projectPositions()
{
    if (mNumVertices <= 1) return;
    int i;//,j,k;
    
    // center of mass
    Eigen::Vector2d cm, originalCm;
    cm.setZero(); originalCm.setZero();
    double mass = 0.0;
    
    for (i = 0; i < mNumVertices; i++) {
        double m = mMasses(i,0);
        if (mFixed(i,0)) m *= 1000.0;
        mass += m;
        cm += mNewPos.row(i) * m;
        originalCm += mOriginalPos.row(i) * m;
        
    }
    //std::cout<<std::endl;
    cm /= mass;
    
    originalCm /= mass;
    
    Eigen::Matrix2d Apq;
    Eigen::Matrix2d Aqq;
    Eigen::Vector2d p;
    Eigen::Vector2d q;
    Apq.setZero();
    Aqq.setZero();
    
    for (i = 0; i < mNumVertices; i++) {
        p(0) = mNewPos(i,0) - cm(0);
        p(1) = mNewPos(i,1) - cm(1);
        
        q(0) = mOriginalPos(i,0) - originalCm(0);
        q(1) = mOriginalPos(i,1) - originalCm(1);
        double m = mMasses(i,0);
        Apq += m*p*q.transpose();
        Aqq += m*q*q.transpose();
    }
  
    /*if (!params.allowFlip && Apq.determinant() < 0.0f) {  	// prevent from flipping
        Apq(0,1) = -Apq(0,1);
        Apq(1,1) = -Apq(1,1);
    }*/
    
    //std::cout<<Apq<<std::endl;
    
    Eigen::Matrix2d R;
    Eigen::JacobiSVD<Eigen::MatrixXd> svd(Apq, Eigen::ComputeThinU | Eigen::ComputeThinV);
    Eigen::MatrixXd U = svd.matrixU();
    Eigen::MatrixXd V = svd.matrixV();
    R = U*V.transpose();
    if (!params.quadraticMatch) {	// --------- linear match
        
        
        Eigen::Matrix2d A = Aqq;
        

        Eigen::Matrix2d A_=A.inverse();
        /*std::cout<<A_.row(0)<<std::endl;
        std::cout<<A_.row(1)<<std::endl;*/
        A = Apq*A_;
        
        if (params.volumeConservation) {
            double det = A.determinant();
            if(det<0) det=-det;
            if (det != 0.0) {
                det = 1.0 / sqrt(fabs(det));
                if (det > 2.0) det = 2.0;
                A *= det;
            }
        }
        float one_beta =1.0 - params.beta;
        Eigen::Matrix2d T = R * one_beta;
        
        
        A=A*params.beta;
        T = T + A;
        
        
        for (i = 0; i < mNumVertices; i++) {
            if (mFixed(i)) continue;
            q(0) = mOriginalPos(i,0) - originalCm(0);
            q(1) = mOriginalPos(i,1) - originalCm(1);
            Eigen::Vector2d Tq = T*q;
            mGoalPos(i,0) = Tq(0)+cm(0);
            mGoalPos(i,1) = Tq(1)+cm(1);
            //mGoalPos.row(i)=(R * (1.0f - params.beta) + A * params.beta)*q+cm;
            mNewPos.row(i) += (mGoalPos.row(i) - mNewPos.row(i)) * params.alpha;
            
            //std::cout<<T.row(0)<<std::endl;
            //std::cout<<T.row(1)<<std::endl;
        }
    }
}