void transformOrientationToGroundFrame(const VirtualRobot::RobotPtr& robot, const Eigen::Matrix6Xf& leftFootTrajectory, const VirtualRobot::RobotNodePtr& leftFoot, const VirtualRobot::RobotNodePtr& rightFoot, const VirtualRobot::RobotNodeSetPtr& bodyJoints, const Eigen::MatrixXf& bodyTrajectory, const Eigen::Matrix3Xf& trajectory, const std::vector<SupportInterval>& intervals, Eigen::Matrix3Xf& relativeTrajectory) { Eigen::Matrix4f leftInitialPose = bodyJoints->getKinematicRoot()->getGlobalPose(); int N = trajectory.cols(); int M = trajectory.rows(); relativeTrajectory.resize(M, N); BOOST_ASSERT(M > 0 && M <= 3); auto intervalIter = intervals.begin(); for (int i = 0; i < N; i++) { while (i >= intervalIter->endIdx) { intervalIter = std::next(intervalIter); } // Move basis along with the left foot Eigen::Matrix4f leftFootPose = Eigen::Matrix4f::Identity(); VirtualRobot::MathTools::posrpy2eigen4f(1000 * leftFootTrajectory.block(0, i, 3, 1), leftFootTrajectory.block(3, i, 3, 1), leftFootPose); robot->setGlobalPose(leftFootPose); bodyJoints->setJointValues(bodyTrajectory.col(i)); Eigen::Matrix3f worldToRef = computeGroundFrame(leftFoot->getGlobalPose(), rightFoot->getGlobalPose(), intervalIter->phase).block(0, 0, 3, 3); relativeTrajectory.block(0, i, M, 1) = worldToRef.colPivHouseholderQr().solve(trajectory.col(i)).block(0, 0, M, 1); } }
{ Eigen::Matrix3f mM3; Eigen::Vector3f x3NL; x3NL(0) = dMt.x03(0,1); x3NL(1) = dMt.x03(1,1); x3NL(2) = dMt.x03(2,1); // c0 + c1*nl + c2*nl^2 mM3 << 1, 0, 0, 1, 2, 4, 1, 4, 16; Eigen::Vector3f ci3 = pow(4,-3)*mM3.colPivHouseholderQr().solve(x3NL); // NL^0 REQUIRE( ci3(0) == Approx( -198.7068 ) ); // NL^1 REQUIRE( ci3(1) == Approx( 26.9239 ) ); // NL^2 REQUIRE( ci3(2) == Approx( -0.65269 ) ); } SECTION( "Four-loop zm4 = c0 + c1*L + c2*L^2 + c3*L^3 + c4*L^4" ) { //// /// 4-loop //
int main(int argc, char** argv) { ros::init(argc, argv, "eigen_test"); ros::NodeHandle nh_jntPub; // node handle for joint command publisher // ros::Publisher pub_joint_commands; // // pub_joint_commands = nh_jntPub.advertise<atlas_msgs::AtlasCommand>("/atlas/atlas_command", 1, true); ROS_INFO("test eigen program"); Eigen::Matrix3f A; Eigen::Vector3f b; A << 1,2,3, 4,5,6, 7,8,10; A(1,2)=0; // how to access one element of matrix; start from 0; no warning out of range... b << 3,3,4; std::cout <<"b = "<<b <<std::endl; // column operaton: replace first column of A with vector b: A.col(0)= b; // could copy columns of matrices w/ A.col(0) = B.col(0); std::cout <<"A = "<<A <<std::endl; Eigen::MatrixXd mat1 = Eigen::MatrixXd::Zero(6, 6); //6x6 matrix full of zeros Eigen::MatrixXd mat2 = Eigen::MatrixXd::Identity(6, 6); //6x6 identity matrix std::cout<<mat1<<std::endl; std::cout<<mat2<<std::endl; Eigen::Vector3f xtest = A.colPivHouseholderQr().solve(b); std::cout<<"soln xtest = "<<xtest<<std::endl; Eigen::Vector3f x = A.partialPivLu().solve(b); //dec.solve(b); //A.colPivHouseholderQr().solve(b); std::cout<<"soln x = "<<x<<std::endl; Eigen::Vector3f btest = A*x; std::cout<<"test soln: A*x = " <<btest<<std::endl; //extend to 6x6 test: v = M*z, find z using 2 methods // use double-precision matrices/vectors Eigen::MatrixXd M = Eigen::MatrixXd::Random(6,6); std::cout<<"test 6x6: M = "<<M<<std::endl; Eigen::VectorXd v(6); v << 1,2,3,4,5,6; std::cout<<"v = "<<v<<std::endl; Eigen::VectorXd z(6); Eigen::VectorXd ztest(6); ztest = M.colPivHouseholderQr().solve(v); std::cout<<"soln ztest = "<<ztest<<std::endl; z = M.partialPivLu().solve(v); std::cout<<"soln 6x6: z = "<<z<<std::endl; Eigen::VectorXd vtest(6); vtest = M*z; std::cout<<"test soln: M*z = "<<vtest<<std::endl; // .norm() operator... double relative_error = (M*z - v).norm() / v.norm(); // norm() is L2 norm std::cout << "The relative error is:\n" << relative_error << std::endl; std::cout<<"dot prod, v, z: "<< v.dot(z)<<std::endl; std::cout<<"cross prod, b-cross-x: " << b.cross(x)<<std::endl; return 0; }
template <typename PointInT, typename PointNT, typename PointOutT, typename IntensitySelectorT> void pcl::IntensityGradientEstimation <PointInT, PointNT, PointOutT, IntensitySelectorT>::computePointIntensityGradient ( const pcl::PointCloud <PointInT> &cloud, const std::vector <int> &indices, const Eigen::Vector3f &point, float mean_intensity, const Eigen::Vector3f &normal, Eigen::Vector3f &gradient) { if (indices.size () < 3) { gradient[0] = gradient[1] = gradient[2] = std::numeric_limits<float>::quiet_NaN (); return; } Eigen::Matrix3f A = Eigen::Matrix3f::Zero (); Eigen::Vector3f b = Eigen::Vector3f::Zero (); for (size_t i_point = 0; i_point < indices.size (); ++i_point) { PointInT p = cloud.points[indices[i_point]]; if (!pcl_isfinite (p.x) || !pcl_isfinite (p.y) || !pcl_isfinite (p.z) || !pcl_isfinite (intensity_ (p))) continue; p.x -= point[0]; p.y -= point[1]; p.z -= point[2]; intensity_.demean (p, mean_intensity); A (0, 0) += p.x * p.x; A (0, 1) += p.x * p.y; A (0, 2) += p.x * p.z; A (1, 1) += p.y * p.y; A (1, 2) += p.y * p.z; A (2, 2) += p.z * p.z; b[0] += p.x * intensity_ (p); b[1] += p.y * intensity_ (p); b[2] += p.z * intensity_ (p); } // Fill in the lower triangle of A A (1, 0) = A (0, 1); A (2, 0) = A (0, 2); A (2, 1) = A (1, 2); //* Eigen::Vector3f x = A.colPivHouseholderQr ().solve (b); /*/ Eigen::Vector3f eigen_values; Eigen::Matrix3f eigen_vectors; eigen33 (A, eigen_vectors, eigen_values); b = eigen_vectors.transpose () * b; if ( eigen_values (0) != 0) b (0) /= eigen_values (0); else b (0) = 0; if ( eigen_values (1) != 0) b (1) /= eigen_values (1); else b (1) = 0; if ( eigen_values (2) != 0) b (2) /= eigen_values (2); else b (2) = 0; Eigen::Vector3f x = eigen_vectors * b; // if (A.col (0).squaredNorm () != 0) // x [0] /= A.col (0).squaredNorm (); // b -= x [0] * A.col (0); // // // if (A.col (1).squaredNorm () != 0) // x [1] /= A.col (1).squaredNorm (); // b -= x[1] * A.col (1); // // x [2] = b.dot (A.col (2)); // if (A.col (2).squaredNorm () != 0) // x[2] /= A.col (2).squaredNorm (); // Fit a hyperplane to the data //*/ // std::cout << A << "\n*\n" << bb << "\n=\n" << x << "\nvs.\n" << x2 << "\n\n"; // std::cout << A * x << "\nvs.\n" << A * x2 << "\n\n------\n"; // Project the gradient vector, x, onto the tangent plane gradient = (Eigen::Matrix3f::Identity () - normal*normal.transpose ()) * x; }