int main(int argc, char *argv[]) {

  int status=0; // 0 = pass, failures are incremented
  int overall_status=0; // 0 = pass, failures are incremented over multiple tests
  bool success=true;

  // Initialize MPI 
  Teuchos::GlobalMPISession mpiSession(&argc,&argv);
  int Proc=mpiSession.getRank();
#ifdef HAVE_MPI
  MPI_Comm appComm = MPI_COMM_WORLD;
#else
  int appComm=0;
#endif

  using Teuchos::RCP;
  using Teuchos::rcp;
  std::string inputFile;

  bool doAll = (argc==1);
  if (argc>1) doAll = !strcmp(argv[1],"-v");

  for (int iTest=0; iTest<3; iTest++) {

    if (doAll) {
      switch (iTest) {
       case 0: inputFile="input_Solve_VV.xml"; break;
       case 1: inputFile="input_Solve_TR.xml"; break;
       case 2: inputFile="input_Solve_NB.xml"; break;
       default : std::cout << "iTest logic error " << std::endl; exit(-1);
      }
    }
     else {
      inputFile=argv[1];
      iTest = 999;
    }

    if (Proc==0)
     std::cout << "===================================================\n"
          << "======  Running input file: "<< inputFile <<"\n"
          << "===================================================\n"
          << std::endl;
    
    try {

      // Create (1) a Model Evaluator and (2) a ParameterList
      RCP<EpetraExt::ModelEvaluator> Model = rcp(new MockModelEval_B(appComm));

      RCP<Teuchos::ParameterList> piroParams =
         rcp(new Teuchos::ParameterList("Piro Parameters"));
      Teuchos::updateParametersFromXmlFile(inputFile, piroParams.ptr());

      // Use these two objects to construct a Piro solved application 
      //   EpetraExt::ModelEvaluator is  base class of all Piro::Epetra solvers
      RCP<EpetraExt::ModelEvaluator> piro;

      std::string& solver = piroParams->get("Solver Type","NOX");
      RCP<NOX::Epetra::Observer> observer = rcp(new ObserveSolution_Epetra());

      if (solver=="NOX") {
        piro = rcp(new Piro::Epetra::NOXSolver(piroParams, Model, observer));
      }
      else if (solver=="Velocity Verlet") {
        piro = rcp(new Piro::Epetra::VelocityVerletSolver(
                       piroParams, Model, observer));
      }
      else if (solver=="Trapezoid Rule") {
        piro = rcp(new Piro::Epetra::TrapezoidRuleSolver(
                       piroParams, Model, observer));
      }
      else if (solver=="Newmark") {
        piro = rcp(new Piro::Epetra::NewmarkSolver(
                       piroParams, Model, observer));
      }
      else
        TEUCHOS_TEST_FOR_EXCEPTION(true, std::logic_error,
          "Error: Unknown Piro Solver : " << solver);

      // Now the (somewhat cumbersome) setting of inputs and outputs
      EpetraExt::ModelEvaluator::InArgs inArgs = piro->createInArgs();
      TEUCHOS_ASSERT(inArgs.Np() > 0); // Number of *vectors* of parameters
      RCP<Epetra_Vector> p1 = rcp(new Epetra_Vector(*(piro->get_p_init(0))));
      inArgs.set_p(0,p1);

      // Set output arguments to evalModel call
      EpetraExt::ModelEvaluator::OutArgs outArgs = piro->createOutArgs();
      TEUCHOS_ASSERT(outArgs.Ng() >= 2); // Number of *vectors* of responses
      RCP<Epetra_Vector> g1 = rcp(new Epetra_Vector(*(piro->get_g_map(0))));
      outArgs.set_g(0,g1);
      // Solution vector is returned as extra respons vector
      RCP<Epetra_Vector> gx = rcp(new Epetra_Vector(*(piro->get_g_map(1))));
      outArgs.set_g(1,gx);

      // Now, solve the problem and return the responses
      piro->evalModel(inArgs, outArgs);

      // Print out everything
      if (Proc == 0)
        std::cout << "Finished Model Evaluation: Printing everything {Exact in brackets}" 
             << "\n-----------------------------------------------------------------"
             << std::setprecision(9) << std::endl;

      p1->Print(std::cout << "\nParameters! {1}\n");
      g1->Print(std::cout << "\nResponses! {0.0}\n");
      gx->Print(std::cout << "\nSolution! {0.0}\n");

      if (Proc == 0)
        std::cout <<
          "\n-----------------------------------------------------------------\n";
    }
    TEUCHOS_STANDARD_CATCH_STATEMENTS(true, std::cerr, success);
    if (!success) status=10; else status=0;

    overall_status += status;

  }

  if (Proc==0) {
    if (overall_status==0) std::cout << "\nTEST PASSED\n" << std::endl;
    else std::cout << "\nTEST Failed:  " << overall_status << std::endl;
  }

  return status;
}
示例#2
0
int main(int argc, char *argv[]) {

  int status=0; // 0 = pass, failures are incremented
  bool success = true;
  Teuchos::GlobalMPISession mpiSession(&argc,&argv);

  using Teuchos::RCP;
  using Teuchos::rcp;

  RCP<Teuchos::FancyOStream> out(Teuchos::VerboseObjectBase::getDefaultOStream());
  
  //***********************************************************
  // Command-line argument for input file
  //***********************************************************

  std::string xmlfilename_coupled;
  if(argc > 1){
    if(!strcmp(argv[1],"--help")){
      std::cout << "albany [inputfile.xml]" << std::endl;
      std::exit(1);
    }
    else
      xmlfilename_coupled = argv[1];
  }
  else
    xmlfilename_coupled = "input.xml";


  try {

    RCP<Teuchos::Time> totalTime = 
      Teuchos::TimeMonitor::getNewTimer("AlbanySG: ***Total Time***");
    RCP<Teuchos::Time> setupTime = 
      Teuchos::TimeMonitor::getNewTimer("AlbanySG: Setup Time");
    Teuchos::TimeMonitor totalTimer(*totalTime); //start timer

    //***********************************************************
    // Set up coupled solver first to setup comm's
    //***********************************************************
    Teuchos::RCP<Epetra_Comm> globalComm = 
      Albany::createEpetraCommFromMpiComm(Albany_MPI_COMM_WORLD);
    Albany::SolverFactory coupled_slvrfctry(xmlfilename_coupled, 
					    Albany_MPI_COMM_WORLD);
    Teuchos::ParameterList& coupledParams = coupled_slvrfctry.getParameters();
    Teuchos::ParameterList& coupledSystemParams = 
      coupledParams.sublist("Coupled System");
    Teuchos::Array<std::string> model_filenames =
      coupledSystemParams.get<Teuchos::Array<std::string> >("Model XML Files");
    int num_models = model_filenames.size();
    Teuchos::Array< RCP<Albany::Application> > apps(num_models);
    Teuchos::Array< RCP<EpetraExt::ModelEvaluator> > models(num_models);
    Teuchos::Array< RCP<Teuchos::ParameterList> > piroParams(num_models);
    Teuchos::RCP< Teuchos::ParameterList> coupledPiroParams = 
      Teuchos::rcp(&(coupledParams.sublist("Piro")),false);
    Teuchos::RCP<Piro::Epetra::StokhosSolver> coupledSolver =
      Teuchos::rcp(new Piro::Epetra::StokhosSolver(coupledPiroParams, 
						   globalComm));
    Teuchos::RCP<const Epetra_Comm> app_comm = coupledSolver->getSpatialComm();

    // Set up each model
    Teuchos::Array< Teuchos::RCP<NOX::Epetra::Observer> > observers(num_models);
    for (int m=0; m<num_models; m++) {
      Albany::SolverFactory slvrfctry(
	model_filenames[m], 
	Albany::getMpiCommFromEpetraComm(*app_comm));
      models[m] = slvrfctry.createAlbanyAppAndModel(apps[m], app_comm);
      Teuchos::ParameterList& appParams = slvrfctry.getParameters();
      piroParams[m] = Teuchos::rcp(&(appParams.sublist("Piro")),false);
      observers[m] = Teuchos::rcp(new Albany_NOXObserver(apps[m]));
    }

    // Setup network model
    std::string network_name = 
      coupledSystemParams.get("Network Model", "Param To Response");
    RCP<Piro::Epetra::AbstractNetworkModel> network_model;
    if (network_name == "Param To Response")
      network_model = rcp(new Piro::Epetra::ParamToResponseNetworkModel);
    else if (network_name == "Reactor Network")
      network_model = rcp(new Albany::ReactorNetworkModel(1));
    else
      TEUCHOS_TEST_FOR_EXCEPTION(
	true, std::logic_error, "Invalid network model name " << network_name);
    RCP<EpetraExt::ModelEvaluator> coupledModel =
      rcp(new Piro::Epetra::NECoupledModelEvaluator(models, piroParams,
						    network_model,
						    coupledPiroParams, 
						    globalComm,
						    observers));
    coupledSolver->setup(coupledModel);

    // Solve coupled system
    EpetraExt::ModelEvaluator::InArgs inArgs = coupledSolver->createInArgs();
    EpetraExt::ModelEvaluator::OutArgs outArgs = coupledSolver->createOutArgs();
    for (int i=0; i<inArgs.Np(); i++)
      if (inArgs.supports(EpetraExt::ModelEvaluator::IN_ARG_p_sg, i))
	inArgs.set_p_sg(i, coupledSolver->get_p_sg_init(i));
    for (int i=0; i<outArgs.Ng(); i++) 
      if (outArgs.supports(EpetraExt::ModelEvaluator::OUT_ARG_g_sg, i)) {
	RCP<Stokhos::EpetraVectorOrthogPoly> g_sg = 
	  coupledSolver->create_g_sg(i);
	outArgs.set_g_sg(i, g_sg);
      }
    coupledSolver->evalModel(inArgs, outArgs);

    // Print results
    bool printResponse = 
      coupledSystemParams.get("Print Response Expansion", true);
    int idx = outArgs.Ng()-1;
    Teuchos::RCP<Stokhos::EpetraVectorOrthogPoly> g_sg = 
      outArgs.get_g_sg(idx);
    Teuchos::RCP<Stokhos::SGModelEvaluator> sg_model =
      coupledSolver->get_sg_model();
    Teuchos::RCP<Stokhos::EpetraVectorOrthogPoly> g_sg_local = 
      //sg_model->import_solution_poly(*(g_sg->getBlockVector()));
      g_sg;
    Epetra_Vector g_mean(*(g_sg->coefficientMap()));
    Epetra_Vector g_std_dev(*(g_sg->coefficientMap()));
    g_sg->computeMean(g_mean);
    g_sg->computeStandardDeviation(g_std_dev);
    RCP<Epetra_Vector> g_mean_local = rcp(&g_mean,false);
    RCP<Epetra_Vector> g_std_dev_local = rcp(&g_std_dev,false);
    if (g_mean.Map().DistributedGlobal()) {
      Epetra_LocalMap local_map(g_mean.GlobalLength(), 0, 
				g_mean.Map().Comm());
      g_mean_local = rcp(new Epetra_Vector(local_map));
      g_std_dev_local = rcp(new Epetra_Vector(local_map));
      Epetra_Import importer(local_map, g_mean.Map());
      g_mean_local->Import(g_mean, importer, Insert);
      g_std_dev_local->Import(g_std_dev, importer, Insert);
    }
    out->precision(16);
    *out << std::endl
	 << "Final value of coupling variables:" << std::endl
	 << "Mean:" << std::endl << *g_mean_local << std::endl
	 << "Std. Dev.:" << std::endl << *g_std_dev_local << std::endl;
    if (printResponse)
      *out << "PCE:" << std::endl << *g_sg_local << std::endl;

    status += coupled_slvrfctry.checkSGTestResults(
        0,
        g_sg_local,
        g_mean_local.get(),
        g_std_dev_local.get());
    *out << "\nNumber of Failed Comparisons: " << status << std::endl;
  }

  TEUCHOS_STANDARD_CATCH_STATEMENTS(true, std::cerr, success);
  if (!success) status+=10000;

  Teuchos::TimeMonitor::summarize(*out,false,true,false/*zero timers*/);
  return status;
}
示例#3
0
int main(int argc, char *argv[]) {

  int status=0; // 0 = pass, failures are incremented

  // Initialize MPI and timer
  int Proc=0;
#ifdef HAVE_MPI
  MPI_Init(&argc,&argv);
  double total_time = -MPI_Wtime();
  (void) MPI_Comm_rank(MPI_COMM_WORLD, &Proc);
  MPI_Comm appComm = MPI_COMM_WORLD;
#else
  int appComm=0;
#endif

  using Teuchos::RCP;
  using Teuchos::rcp;

  // Command-line argument for input file
  //char* defaultfile="input_1.xml";
  
  try {

    RCP<EpetraExt::ModelEvaluator> Model = rcp(new MockModelEval_A(appComm));

    // Set input arguments to evalModel call
    EpetraExt::ModelEvaluator::InArgs inArgs = Model->createInArgs();

    RCP<Epetra_Vector> x = rcp(new Epetra_Vector(*(Model->get_x_init())));
    inArgs.set_x(x);

    int num_p = inArgs.Np();     // Number of *vectors* of parameters
    RCP<Epetra_Vector> p1;
    if (num_p > 0) {
      p1 = rcp(new Epetra_Vector(*(Model->get_p_init(0))));
      inArgs.set_p(0,p1);
    }
    int numParams = p1->MyLength(); // Number of parameters in p1 vector

    // Set output arguments to evalModel call
    EpetraExt::ModelEvaluator::OutArgs outArgs = Model->createOutArgs();

    RCP<Epetra_Vector> f = rcp(new Epetra_Vector(x->Map()));
    outArgs.set_f(f);

    int num_g = outArgs.Ng(); // Number of *vectors* of responses
    RCP<Epetra_Vector> g1;
    if (num_g > 0) {
      g1 = rcp(new Epetra_Vector(*(Model->get_g_map(0))));
      outArgs.set_g(0,g1);
    }

    RCP<Epetra_Operator> W_op = Model->create_W();
    outArgs.set_W(W_op);

    RCP<Epetra_MultiVector> dfdp = rcp(new Epetra_MultiVector(
                             *(Model->get_x_map()), numParams));
    outArgs.set_DfDp(0, dfdp);

    RCP<Epetra_MultiVector> dgdp = rcp(new Epetra_MultiVector(g1->Map(), numParams));
    outArgs.set_DgDp(0, 0, dgdp);

    RCP<Epetra_MultiVector> dgdx = rcp(new Epetra_MultiVector(x->Map(), g1->MyLength()));
    outArgs.set_DgDx(0, dgdx);

    // Now, evaluate the model!
    Model->evalModel(inArgs, outArgs);

    // Print out everything
   if (Proc == 0)
    cout << "Finished Model Evaluation: Printing everything {Exact in brackets}" 
         << "\n-----------------------------------------------------------------"
         << std::setprecision(9) << endl;
    x->Print(cout << "\nSolution vector! {3,3,3,3}\n");
    if (num_p>0) p1->Print(cout << "\nParameters! {1,1}\n");
    f->Print(cout << "\nResidual! {8,5,0,-7}\n");
    if (num_g>0) g1->Print(cout << "\nResponses! {2}\n");
    RCP<Epetra_CrsMatrix> W = Teuchos::rcp_dynamic_cast<Epetra_CrsMatrix>(W_op, true);
    W->Print(cout << "\nJacobian! {6 on diags}\n");
    dfdp->Print(cout << "\nDfDp sensitivity MultiVector! {-1,0,0,0}{0,-4,-6,-8}\n");
    dgdp->Print(cout << "\nDgDp response sensitivity MultiVector!{2,2}\n");
    dgdx->Print(cout << "\nDgDx^T response gradient MultiVector! {-2,-2,-2,-2}\n");

    if (Proc == 0)
     cout <<
      "\n-----------------------------------------------------------------\n";
  }

  catch (std::exception& e) {
    cout << e.what() << endl;
    status = 10;
  }
  catch (string& s) {
    cout << s << endl;
    status = 20;
  }
  catch (char *s) {
    cout << s << endl;
    status = 30;
  }
  catch (...) {
    cout << "Caught unknown exception!" << endl;
    status = 40;
  }

#ifdef HAVE_MPI
  total_time +=  MPI_Wtime();
  MPI_Barrier(MPI_COMM_WORLD);
  if (Proc==0) cout << "\n\nTOTAL TIME     " 
                    << total_time << endl;
  MPI_Finalize() ;
#endif

  if (Proc==0) {
    if (status==0) 
      cout << "TEST PASSED" << endl;
    else 
      cout << "TEST Failed" << endl;
  }

  return status;
}
Piro::Epetra::NOXSolver::NOXSolver(
  Teuchos::RCP<Teuchos::ParameterList> piroParams_,
  Teuchos::RCP<EpetraExt::ModelEvaluator> model_,
  Teuchos::RCP<NOX::Epetra::Observer> observer_,
  Teuchos::RCP<NOX::Epetra::ModelEvaluatorInterface> custom_interface,
  Teuchos::RCP<NOX::Epetra::LinearSystem> custom_linsys
) :
  piroParams(piroParams_),
  model(model_),
  observer(observer_),
  utils(piroParams->sublist("NOX").sublist("Printing"))
{
  Teuchos::RCP<Teuchos::ParameterList> noxParams =
	Teuchos::rcp(&(piroParams->sublist("NOX")),false);
  Teuchos::ParameterList& printParams = noxParams->sublist("Printing");

  std::string jacobianSource = piroParams->get("Jacobian Operator", "Have Jacobian");
  bool leanMatrixFree = piroParams->get("Lean Matrix Free",false);

  Teuchos::ParameterList& noxstratlsParams = noxParams->
        sublist("Direction").sublist("Newton").sublist("Stratimikos Linear Solver");

  // Inexact Newton must be set in a second sublist when using 
  // Stratimikos: This code snippet sets it automatically
  bool inexact = (noxParams->sublist("Direction").sublist("Newton").
                  get("Forcing Term Method", "Constant") != "Constant");
  if (inexact)
    noxstratlsParams.sublist("NOX Stratimikos Options").
       set("Use Linear Solve Tolerance From NOX", inexact);


  if (jacobianSource == "Matrix-Free") {
    if (piroParams->isParameter("Matrix-Free Perturbation")) {
      model = Teuchos::rcp(new Piro::Epetra::MatrixFreeDecorator(model,
                           piroParams->get<double>("Matrix-Free Perturbation")));
    }
    else model = Teuchos::rcp(new Piro::Epetra::MatrixFreeDecorator(model));
  }

  // Grab some modelEval stuff from underlying model
  EpetraExt::ModelEvaluator::InArgs inargs = model->createInArgs();
  num_p = inargs.Np();
  EpetraExt::ModelEvaluator::OutArgs outargs = model->createOutArgs();
  num_g = outargs.Ng();

  // Create initial guess
  Teuchos::RCP<const Epetra_Vector> u = model->get_x_init();
  currentSolution = Teuchos::rcp(new NOX::Epetra::Vector(*u));

  // Create NOX interface from model evaluator
  if (custom_interface != Teuchos::null)
    interface = custom_interface;
  else
    interface = Teuchos::rcp(new NOX::Epetra::ModelEvaluatorInterface(model));
  Teuchos::RCP<NOX::Epetra::Interface::Required> iReq = interface;

  // Create the Jacobian matrix (unless flag is set to do it numerically)
  Teuchos::RCP<Epetra_Operator> A;
  Teuchos::RCP<NOX::Epetra::Interface::Jacobian> iJac;

  if (jacobianSource == "Have Jacobian" || jacobianSource == "Matrix-Free") {
    A = model->create_W();
    iJac = interface;
  }
  else if (jacobianSource == "Finite Difference") {
    A = Teuchos::rcp(new NOX::Epetra::FiniteDifference(printParams,
                                            iReq, *currentSolution));
    iJac = Teuchos::rcp_dynamic_cast<NOX::Epetra::Interface::Jacobian>(A);
  }
  else
    TEUCHOS_TEST_FOR_EXCEPTION(true, Teuchos::Exceptions::InvalidParameter,
                 "Error in Piro::Epetra::NOXSolver " <<
                 "Invalid value for parameter \" Jacobian Operator\"= " <<
                 jacobianSource << std::endl);

  // Create separate preconditioner if the model supports it
  /* NOTE: How do we want to decide between using an
   * available preconditioner: (1) If the model supports
   * it, then we use it, or (2) if a parameter list says
   * User_Defined ?  [Below, logic is ooption (1).]
   */
  Teuchos::RCP<EpetraExt::ModelEvaluator::Preconditioner> WPrec;
  if (outargs.supports(EpetraExt::ModelEvaluator::OUT_ARG_WPrec))
    WPrec = model->create_WPrec(); 

  // Create the linear system
  if (custom_linsys != Teuchos::null)
    linsys = custom_linsys;
  else {
    if (WPrec != Teuchos::null) {
      Teuchos::RCP<NOX::Epetra::Interface::Preconditioner> iPrec = interface;
      linsys = Teuchos::rcp(new NOX::Epetra::LinearSystemStratimikos(
			      printParams,
			      noxstratlsParams, iJac, A, iPrec, WPrec->PrecOp,
			      *currentSolution, WPrec->isAlreadyInverted));
    }
    else {
      linsys = Teuchos::rcp(new NOX::Epetra::LinearSystemStratimikos(
			      printParams,
			      noxstratlsParams, iJac, A, *currentSolution));
    }
  }

  // Build NOX group
  grp = Teuchos::rcp(new NOX::Epetra::Group(printParams, iReq,
					    *currentSolution, linsys));

  // Saves one resid calculation per solve, but not as safe
  if (leanMatrixFree) grp->disableLinearResidualComputation(true);

  // Create the Solver convergence test
  Teuchos::ParameterList& statusParams = noxParams->sublist("Status Tests");
  Teuchos::RCP<NOX::StatusTest::Generic> statusTests =
    NOX::StatusTest::buildStatusTests(statusParams, utils);

  // Create the solver
  solver = NOX::Solver::buildSolver(grp, statusTests, noxParams);

  // Create transpose linear solver
  Teuchos::RCP<LOCA::Abstract::Factory> epetraFactory =
    Teuchos::rcp(new LOCA::Epetra::Factory);
  globalData = LOCA::createGlobalData(piroParams, epetraFactory);
  LOCA::Epetra::TransposeLinearSystem::Factory tls_factory(globalData);
  tls_strategy = tls_factory.create(piroParams, linsys);
}