//Creates a neural net with 1 hidden layer FANN::neural_net create_net(float learning_rate, unsigned int num_layers,unsigned int num_input, unsigned int num_hidden, unsigned int num_output){ FANN::neural_net net; unsigned int layers[3]={num_input,num_hidden,num_output}; net.create_standard_array(num_layers,layers); net.set_learning_rate(learning_rate); net.set_activation_steepness_hidden(.1); net.set_activation_steepness_output(.1); net.set_activation_function_hidden(FANN::SIGMOID_SYMMETRIC_STEPWISE); net.set_activation_function_output(FANN::SIGMOID_SYMMETRIC_STEPWISE); //net.set_training_algorithm(FANN::TRAIN_INCREMENTAL); // Set additional properties such as the training algorithm //net.set_training_algorithm(FANN::TRAIN_QUICKPROP); return net; }
int main(int argc, char *argv[]) { if (argv[1][0] == 'r') { WAVFile inp(argv[2]); translate_wav(inp); return 0; } if (argc == 1 || argc % 2 != 1) { std::cout << "bad number of training examples\n"; return -1; } int to_open = (argc - 1)/2; for (int i = 0; i < to_open; i++) { WAVFile inp(argv[2*i+1]); WAVFile out(argv[2*i+2]); add_training_sound(inp, out); } float *train_in[input_training.size()]; float *train_out[output_training.size()]; for (int i = 0; i < input_training.size(); i++) { train_in[i] = input_training[i]; train_out[i] = output_training[i]; } FANN::training_data training; training.set_train_data(input_training.size(), (samples_per_segment/2+1)*2, train_in, (samples_per_segment/2+1)*2, train_out); FANN::neural_net net; const unsigned int layers[] = {(samples_per_segment/2+1)*2, (samples_per_segment/2+1)*2, (samples_per_segment/2+1)*2}; net.create_standard_array(3, (unsigned int*)layers); net.set_activation_function_output(FANN::LINEAR); //net.set_activation_function_hidden(FANN::LINEAR); net.set_learning_rate(1.2f); net.train_on_data(training, 50000, 1, 3.0f); net.save("net.net"); }
void trainingThread::train() { std::stringstream log; log << std::endl << " test started." << std::endl; const float learning_rate = netConfigPTR->learning_rate ; const unsigned int num_layers = netConfigPTR->num_layers; const unsigned int num_input = netConfigPTR->num_input; const unsigned int num_hidden = netConfigPTR->num_hidden; const unsigned int num_output = netConfigPTR->num_output; const float desired_error = netConfigPTR->desired_error; const unsigned int max_iterations = netConfigPTR->max_iterations; const unsigned int iterations_between_reports = netConfigPTR->iterations_between_reports; log << std::endl << "Creating network." << std::endl; FANN::neural_net net; if (netConfigPTR->leyersVector.size() > 1) { unsigned int vectorSize = netConfigPTR->leyersVector.size(); unsigned int* leyers = new unsigned int[vectorSize+2]; leyers[0] = num_input; for (unsigned int i = 0; i < vectorSize; ++i) { leyers[i+1] = netConfigPTR->leyersVector.at(i); } leyers[num_layers-1] = num_output; for ( unsigned int i = 0 ; i< vectorSize+2 ; ++i) { qDebug() << "vector size: "<< vectorSize+2<<" i:"<<i<< " leyers "<< leyers[i]; } net.create_standard_array(vectorSize+2, leyers); //net.create_standard(vectorSize+2, leyers[0], leyers[2],leyers[3], leyers[1]); delete[] leyers; } else { net.create_standard(num_layers, num_input, num_hidden, num_output); } net.set_learning_rate(learning_rate); net.set_activation_steepness_hidden(1.0); net.set_activation_steepness_output(1.0); net.set_activation_function_hidden(FANN::SIGMOID_SYMMETRIC_STEPWISE); net.set_activation_function_output(FANN::SIGMOID_SYMMETRIC_STEPWISE); // Set additional properties such as the training algorithm net.set_training_algorithm(netConfigPTR->trainingAlgo); // Output network type and parameters log << std::endl << "Network Type : "; switch (net.get_network_type()) { case FANN::LAYER: log << "LAYER" << std::endl; break; case FANN::SHORTCUT: log << "SHORTCUT" << std::endl; break; default: log << "UNKNOWN" << std::endl; break; } //net.print_parameters(); log << std::endl << "Training network." << std::endl; FANN::training_data data; if (data.read_train_from_file(netConfigPTR->trainingDataPatch)) { // Initialize and train the network with the data net.init_weights(data); log << "Max Epochs " << std::setw(8) << max_iterations << ". " << "Desired Error: " << std::left << desired_error << std::right << std::endl; emit updateLog(QString::fromStdString(log.str())); log << "dupa"; log.str(""); log.clear(); net.set_callback(print_callback, nullptr); net.train_on_data(data, max_iterations, iterations_between_reports, desired_error); log << std::endl << "Testing network." << std::endl; for (unsigned int i = 0; i < data.length_train_data(); ++i) { // Run the network on the test data fann_type *calc_out = net.run(data.get_input()[i]); log << "test ("; for (unsigned int j = 0; j < num_input; ++j) { log << std::showpos << data.get_input()[i][j] << ", "; //qDebug()<< "jestem w log<<"; } log << ") -> " ; for(unsigned int k = 0 ; k < num_output ; ++k) { log << calc_out[k] <<", "; } log << ",\t should be "; for(unsigned int k = 0 ; k < num_output ; ++k) { log << data.get_output()[i][k] <<", "; } log << std::endl ; } log << std::endl << "Saving network." << std::endl; // Save the network in floating point and fixed point net.save(netConfigPTR->netFloat); unsigned int decimal_point = net.save_to_fixed(netConfigPTR->netFixed); std::string path = netConfigPTR->trainingDataPatch.substr(0,netConfigPTR->trainingDataPatch.size()-5); data.save_train_to_fixed(path +"_fixed.data", decimal_point); log << std::endl << "test completed." << std::endl; emit updateLog(QString::fromStdString(log.str())); emit updateProgressBar(100); } }