void nearestKSearch (float vfhSignature[]) { std::vector<float> vec; vec.resize(308); for (int i =0; i < 308; i++){ vec[i] = vfhSignature[i]; } // Query point flann::Matrix<float> p = flann::Matrix<float>(new float[vec.size()], 1, vec.size()); memcpy (&p.data[0], &vec[0], p.cols * p.rows * sizeof (float)); k_indices = flann::Matrix<int>(new int[noOfNeighbors], 1, noOfNeighbors); k_distances = flann::Matrix<float>(new float[noOfNeighbors], 1, noOfNeighbors); ROS_INFO("%d",index->size()); index->knnSearch (p, k_indices, k_distances, noOfNeighbors, flann::SearchParams (512)); p.free(); }
void FeatureMatchThread::run() { Mat resultImg; Mat grayImg; cvtColor(cropImg,grayImg,CV_BGR2GRAY); featureDetector.detect(grayImg,keyPoints); featureExtractor.compute(grayImg,keyPoints,descriptors); flannIndex.build(descriptors,flann::LshIndexParams(12,20,2),cvflann::FLANN_DIST_HAMMING); while(true) { Mat captureImage_gray; vector<KeyPoint> captureKeyPoints; Mat captureDescription; vector<DMatch> goodMatches; cap >> captureImage; if(captureImage.empty()) continue; cvtColor(captureImage,captureImage_gray,CV_BGR2GRAY); featureDetector.detect(captureImage_gray,captureKeyPoints); featureExtractor.compute(captureImage_gray,captureKeyPoints,captureDescription); Mat matchIndex(captureDescription.rows,2,CV_32SC1); Mat matchDistance(captureDescription.rows,2,CV_32FC1); flannIndex.knnSearch(captureDescription,matchIndex,matchDistance,2,flann::SearchParams()); for(int i=0;i<matchDistance.rows;i++) { if(matchDistance.at<float>(i,0) < 0.6 * matchDistance.at<float>(i,1)) { DMatch dmatches(i,matchIndex.at<int>(i,0),matchDistance.at<float>(i,0)); goodMatches.push_back(dmatches); } } drawMatches(captureImage,captureKeyPoints,cropImg,keyPoints,goodMatches,resultImg); emit NewFeatureMatch(&resultImg); imshow(WindowName,captureImage); cv::setMouseCallback(WindowName,mouse_callback); captureKeyPoints.clear(); goodMatches.clear(); waitKey(30); } return; }
map<int,float> code(flann::Index& index, vector<vector<float> >& features, int knn = 5) { vector< vector<float> > codes; for(int i = 0; i < features.size(); i++) { vector<float> dists; vector<int> indices; vector<float> data = features[i]; index.knnSearch(data, indices, dists, knn); vector<float> thisCodes; for(int j =0; j < knn; j++) { thisCodes.push_back( indices[j] ); thisCodes.push_back( dists[j] ); } codes.push_back(thisCodes); } return pool(codes); }
void SupervisedFilter::classify(Volume &volume, flann::Index<flann::L2<short> > &index, size_t nn) { // Need same number of points in dataset and classification // and same number of features in dataset and query. if (this->dataset.rows != this->classifications.rows || this->dataset.cols != this->query.cols) { std::cerr << "Error: Data dimensions mismatch" << std::endl; return; } flann::Matrix<int> indices(new int[query.rows*nn], query.rows, nn); flann::Matrix<float> distances(new float[query.rows*nn], query.rows, nn); std::cout << "Beginning nn search\n"; index.knnSearch(query, indices, distances, nn, flann::SearchParams(128)); std::cout << "Making probability image\n"; size_t row = 0; for (size_t x = 0; x < volume.width; ++x) { for (size_t y = 0; y < volume.height; ++y) { for (size_t z = 0; z < volume.depth; ++z) { int feature_neighbours = 0; for (size_t j = 0; j < nn; ++j) { feature_neighbours += this->classifications[indices[row][j]][0]; } volume(x,y,z) = feature_neighbours; // What is a good meassure here? ++row; } } } delete[] indices.ptr(); delete[] distances.ptr(); }
void runTest(const flann::Index<L2_Simple<float> >& index, SearchParams params) { start_timer("Searching Radius (single core)..."); params.cores = 1; int single_neighbor_count = index.radiusSearch(query_, indices_single_, dists_single_, radius_, params); printf("done (%g seconds)\n", stop_timer()); start_timer("Searching Radius (multi core)..."); params.cores = 0; int multi_neighbor_count = index.radiusSearch(query_, indices_multi_, dists_multi_, radius_, params); printf("done (%g seconds)\n", stop_timer()); EXPECT_EQ(single_neighbor_count, multi_neighbor_count); printf("Checking results...\n"); float precision = compute_precision(indices_single_, indices_multi_); EXPECT_GE(precision, 0.99); printf("Precision: %g\n", precision); }
void mouse_callback(int event,int x,int y,int flags, void* param) { switch(event) { case EVENT_MOUSEMOVE: { if(drawing_box) { box.width = x-box.x; box.height = y-box.y; Mat tmp = captureImage.clone(); cv::rectangle(tmp,Point(box.x,box.y),Point(box.x + box.width , box.y + box.height) , Scalar(0,255,0) , 3); imshow(WindowName,tmp); } } break; case EVENT_LBUTTONDOWN: { drawing_box = true; box = Rect(x,y,0,0); } break; case EVENT_LBUTTONUP: { drawing_box = false; if(box.width < 0) { box.x += box.width; box.width *= -1; } if(box.height < 0) { box.y += box.height; box.height *= -1; } //Â^¨ú¹Ï¹³ Mat copyCapture = captureImage.clone(); Mat tmp(copyCapture,box); Mat grayImg; cropImg = tmp; cvtColor(cropImg,grayImg,CV_BGR2GRAY); featureDetector.detect(grayImg,keyPoints); featureExtractor.compute(grayImg,keyPoints,descriptors); flannIndex.build(descriptors,flann::LshIndexParams(12,20,2),cvflann::FLANN_DIST_HAMMING); } break; } return; }
void VFH::nearestKSearch (flann::Index<flann::ChiSquareDistance<float> > &index, const vfh_model &model, int k, flann::Matrix<int> &indices, flann::Matrix<float> &distances) { // Query point flann::Matrix<float> p = flann::Matrix<float>(new float[model.second.size ()], 1, model.second.size ()); memcpy (&p.ptr ()[0], &model.second[0], p.cols * p.rows * sizeof (float)); indices = flann::Matrix<int>(new int[k], 1, k); distances = flann::Matrix<float>(new float[k], 1, k); index.knnSearch (p, indices, distances, k, flann::SearchParams (512)); delete[] p.ptr (); }
//! Find the nearest neighbors in the descriptor space using FLANN. void append_nearest_neighbors( size_t i1, const Set<OERegion, RealDescriptor>& keys1, const Set<OERegion, RealDescriptor>& keys2, vector<Match>& matches, const flann::Matrix<float>& /*data2*/, flann::Index<flann::L2<float>>& tree2, float squared_ratio_thres, Match::Direction dir, bool self_matching, const KeyProximity& is_redundant, // self-matching vector<int>& vec_indices, vector<float>& vec_dists, size_t num_max_neighbors) // internal storage parameters { // Prepare the query matrix flann::Matrix<float> query{ const_cast<float *>(&(keys1.descriptors.matrix()(0, i1))), 1, keys1.descriptors.dimension() }; // Prepare the indices and distances. flann::Matrix<int> indices{ &vec_indices[0], 1, num_max_neighbors }; flann::Matrix<float> dists{ &vec_dists[0], 1, num_max_neighbors }; // Create search parameters. flann::SearchParams search_params; // N.B.: We should not be in the boundary case in practice, in which case the // ambiguity score does not really make sense. // // Boundary case 1. if (keys2.size() == 0) return; // Boundary case 2. if (keys2.size() == 1 && !self_matching) { auto m = Match{ &keys1.features[i1], &keys2.features[0], 1.f, dir, int(i1), 0 }; m.rank() = 1; if(dir == Match::Direction::TargetToSource) { swap(m.x_pointer(), m.y_pointer()); swap(m.x_index(), m.y_index()); } if (m.score() < squared_ratio_thres) matches.push_back(m); return; } // Boundary case 3. if (keys2.size() == 2 && self_matching) { tree2.knnSearch(query, indices, dists, 2, search_params); const auto i2 = indices[0][1]; // The first index can't be indices[0][0], which is i1. auto m = Match{ &keys1.features[i1], &keys2.features[i2], 1.f, dir, int(i1), i2 }; m.rank() = 1; if(dir == Match::Direction::TargetToSource) { swap(m.x_pointer(), m.y_pointer()); swap(m.x_index(), m.y_index()); } if (m.score() < squared_ratio_thres) matches.push_back(m); return; } // Now treat the generic case. // // Search the nearest neighbor. tree2.knnSearch(query, indices, dists, 3, search_params); // This is to avoid the source key matches with himself in case of intra // image matching. const auto top1_index = self_matching ? 1 : 0; auto top1_score = dists[0][top1_index + 1] > 0.f ? dists[0][top1_index] / dists[0][top1_index + 1] : 0.f; auto K = 1; // Determine the number of nearest neighbors. if (squared_ratio_thres > 1.f) { // Performs an adaptive radius search. const auto radius = dists[0][top1_index] * squared_ratio_thres; K = tree2.radiusSearch(query, indices, dists, radius, search_params); } // Retrieve the right key points. for (int rank = top1_index; rank < K; ++rank) { auto score = 0.f; if (rank == top1_index) score = top1_score; else if (dists[0][top1_index]) score = dists[0][rank] / dists[0][top1_index]; // We still need this check as FLANN can still return wrong neighbors. if (score > squared_ratio_thres) break; auto i2 = indices[0][rank]; // Ignore the match if keys1 == keys2. if (self_matching && is_redundant(keys1.features[i1], keys2.features[i2])) continue; Match m(&keys1.features[i1], &keys2.features[i2], score, dir, i1, i2); m.rank() = top1_index == 0 ? rank+1 : rank; if(dir == Match::Direction::TargetToSource) { swap(m.x_pointer(), m.y_pointer()); swap(m.x_index(), m.y_index()); } matches.push_back(m); } }
const IndexParams* getIndexParameters() { return flann_index->getParameters(); }
int veclen() const { return flann_index->veclen(); }
void buildIndex() { flann_index->buildIndex(); }