示例#1
0
void  ProgramCFG::setFuncVariable(const Function *F,string func, CFG* cfg, bool initial){
	for (Function::const_arg_iterator it = F->arg_begin(), E = F->arg_end();it != E; ++it) {
		Type *Ty = it->getType();
		if(initial){
			string varNum = it->getName();
			string varName = func+"_"+varNum;
			
			if(Ty->isPointerTy()){
				Type *ETy = Ty->getPointerElementType();
				int ID = cfg->counter_variable++;
				Variable var(varName, ID, PTR);
				cfg->variableList.push_back(var);
				
				InstParser::setVariable(cfg, NULL, ETy, varName, true);
				
			}
			else{
                VarType type;
                if(Ty->isIntegerTy())
                    type = INT;
                else if(Ty->isFloatingPointTy())
                    type = FP;
                else
                    errs()<<"0:programCFG.type error\n";
				int ID = cfg->counter_variable++;
				Variable var(varName, ID, type);
				cfg->variableList.push_back(var);
				cfg->mainInput.push_back(ID);
			}
		}
		else{
			int ID = cfg->counter_variable++;
			string varNum = it->getName();
			string varName = func+"_"+varNum;
			
            VarType type;
			if(Ty->isPointerTy())
				type = PTR;
			else if(Ty->isIntegerTy())
                type = INT;
            else if(Ty->isFloatingPointTy())
                type = FP;
            else
                errs()<<"1:programCFG.type error\n";

			if(!cfg->hasVariable(varName)){
				Variable var(varName, ID, type);
				cfg->variableList.push_back(var);
			}
			else
				errs()<<"1:setFuncVariable error 10086!!\t"<<varName<<"\n";
		}
	}
}
示例#2
0
/// CloneFunction - Return a copy of the specified function, but without
/// embedding the function into another module.  Also, any references specified
/// in the VMap are changed to refer to their mapped value instead of the
/// original one.  If any of the arguments to the function are in the VMap,
/// the arguments are deleted from the resultant function.  The VMap is
/// updated to include mappings from all of the instructions and basicblocks in
/// the function from their old to new values.
///
Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
                              bool ModuleLevelChanges,
                              ClonedCodeInfo *CodeInfo) {
  std::vector<Type*> ArgTypes;

  // The user might be deleting arguments to the function by specifying them in
  // the VMap.  If so, we need to not add the arguments to the arg ty vector
  //
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
       I != E; ++I)
    if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
      ArgTypes.push_back(I->getType());

  // Create a new function type...
  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
                                    ArgTypes, F->getFunctionType()->isVarArg());

  // Create the new function...
  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());

  // Loop over the arguments, copying the names of the mapped arguments over...
  Function::arg_iterator DestI = NewF->arg_begin();
  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
       I != E; ++I)
    if (VMap.count(I) == 0) {   // Is this argument preserved?
      DestI->setName(I->getName()); // Copy the name over...
      VMap[I] = DestI++;        // Add mapping to VMap
    }

  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
  CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
  return NewF;
}
示例#3
0
void llvm::copyFunctionBody(Function &New, const Function &Orig,
                            ValueToValueMapTy &VMap) {
  if (!Orig.isDeclaration()) {
    Function::arg_iterator DestI = New.arg_begin();
    for (Function::const_arg_iterator J = Orig.arg_begin(); J != Orig.arg_end();
         ++J) {
      DestI->setName(J->getName());
      VMap[J] = DestI++;
    }

    SmallVector<ReturnInst *, 8> Returns; // Ignore returns cloned.
    CloneFunctionInto(&New, &Orig, VMap, /*ModuleLevelChanges=*/true, Returns);
  }
}
示例#4
0
std::unique_ptr<Module> llvm::CloneModule(
    const Module *M, ValueToValueMapTy &VMap,
    std::function<bool(const GlobalValue *)> ShouldCloneDefinition) {
  // First off, we need to create the new module.
  std::unique_ptr<Module> New =
      llvm::make_unique<Module>(M->getModuleIdentifier(), M->getContext());
  New->setDataLayout(M->getDataLayout());
  New->setTargetTriple(M->getTargetTriple());
  New->setModuleInlineAsm(M->getModuleInlineAsm());
   
  // Loop over all of the global variables, making corresponding globals in the
  // new module.  Here we add them to the VMap and to the new Module.  We
  // don't worry about attributes or initializers, they will come later.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = new GlobalVariable(*New, 
                                            I->getValueType(),
                                            I->isConstant(), I->getLinkage(),
                                            (Constant*) nullptr, I->getName(),
                                            (GlobalVariable*) nullptr,
                                            I->getThreadLocalMode(),
                                            I->getType()->getAddressSpace());
    GV->copyAttributesFrom(&*I);
    VMap[&*I] = GV;
  }

  // Loop over the functions in the module, making external functions as before
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *NF =
        Function::Create(cast<FunctionType>(I->getValueType()),
                         I->getLinkage(), I->getName(), New.get());
    NF->copyAttributesFrom(&*I);
    VMap[&*I] = NF;
  }

  // Loop over the aliases in the module
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    if (!ShouldCloneDefinition(&*I)) {
      // An alias cannot act as an external reference, so we need to create
      // either a function or a global variable depending on the value type.
      // FIXME: Once pointee types are gone we can probably pick one or the
      // other.
      GlobalValue *GV;
      if (I->getValueType()->isFunctionTy())
        GV = Function::Create(cast<FunctionType>(I->getValueType()),
                              GlobalValue::ExternalLinkage, I->getName(),
                              New.get());
      else
        GV = new GlobalVariable(
            *New, I->getValueType(), false, GlobalValue::ExternalLinkage,
            (Constant *)nullptr, I->getName(), (GlobalVariable *)nullptr,
            I->getThreadLocalMode(), I->getType()->getAddressSpace());
      VMap[&*I] = GV;
      // We do not copy attributes (mainly because copying between different
      // kinds of globals is forbidden), but this is generally not required for
      // correctness.
      continue;
    }
    auto *GA = GlobalAlias::create(I->getValueType(),
                                   I->getType()->getPointerAddressSpace(),
                                   I->getLinkage(), I->getName(), New.get());
    GA->copyAttributesFrom(&*I);
    VMap[&*I] = GA;
  }
  
  // Now that all of the things that global variable initializer can refer to
  // have been created, loop through and copy the global variable referrers
  // over...  We also set the attributes on the global now.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = cast<GlobalVariable>(VMap[&*I]);
    if (!ShouldCloneDefinition(&*I)) {
      // Skip after setting the correct linkage for an external reference.
      GV->setLinkage(GlobalValue::ExternalLinkage);
      continue;
    }
    if (I->hasInitializer())
      GV->setInitializer(MapValue(I->getInitializer(), VMap));
  }

  // Similarly, copy over function bodies now...
  //
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *F = cast<Function>(VMap[&*I]);
    if (!ShouldCloneDefinition(&*I)) {
      // Skip after setting the correct linkage for an external reference.
      F->setLinkage(GlobalValue::ExternalLinkage);
      // Personality function is not valid on a declaration.
      F->setPersonalityFn(nullptr);
      continue;
    }
    if (!I->isDeclaration()) {
      Function::arg_iterator DestI = F->arg_begin();
      for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end();
           ++J) {
        DestI->setName(J->getName());
        VMap[&*J] = &*DestI++;
      }

      SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
      CloneFunctionInto(F, &*I, VMap, /*ModuleLevelChanges=*/true, Returns);
    }

    if (I->hasPersonalityFn())
      F->setPersonalityFn(MapValue(I->getPersonalityFn(), VMap));
  }

  // And aliases
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    // We already dealt with undefined aliases above.
    if (!ShouldCloneDefinition(&*I))
      continue;
    GlobalAlias *GA = cast<GlobalAlias>(VMap[&*I]);
    if (const Constant *C = I->getAliasee())
      GA->setAliasee(MapValue(C, VMap));
  }

  // And named metadata....
  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
         E = M->named_metadata_end(); I != E; ++I) {
    const NamedMDNode &NMD = *I;
    NamedMDNode *NewNMD = New->getOrInsertNamedMetadata(NMD.getName());
    for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
      NewNMD->addOperand(MapMetadata(NMD.getOperand(i), VMap));
  }

  return New;
}
/* ************************************************************************** */
bool RangedAddressSanitizer::doInitialization(Module &M)
{
// Link FastAddressSanitizer functions into the target module
    LLVMContext & context = M.getContext();
    const char * fasanPath = getenv("FASANMODULE");
    
    if (! fasanPath) {
        return false;        
    }
    std::stringstream ss;
    ss << fasanPath;
    SMDiagnostic diag;
    Module * fasanModule = ParseIRFile(ss.str(), diag, context);

    if (!fasanModule) {
    	abort();
    }

#if 0 /* using LLVM linking facilities */
    Linker linker(&M);
    std::string linkErr;
    if (linker.linkInModule(fasanModule, Linker::DestroySource, &linkErr)) {
    	errs() << "[FASAN] Error while linking runtime module: " << fasanModule << "(!!)\n";
    	abort();
    }

#else
    PointerType * voidPtrTy = PointerType::getInt8PtrTy(context, 0);
    IntegerType * boolTy = IntegerType::get(context, 1);
    Type * voidTy = Type::getVoidTy(context);
    FunctionType * touchFunType = FunctionType::get(voidTy, ArrayRef<Type*>(voidPtrTy), false);
    FunctionType * verifyFunType = FunctionType::get(boolTy, ArrayRef<Type*>(voidPtrTy), false);

    ValueToValueMapTy reMap;
    reMap[fasanModule->getFunction("__fasan_touch")] = M.getOrInsertFunction("__fasan_touch", touchFunType);
    reMap[fasanModule->getFunction("__fasan_verify")] = M.getOrInsertFunction("__fasan_verify", verifyFunType);
    
    // migrate check function
    {
        std::string errMsg;
        Function * checkFunc = fasanModule->getFunction("__fasan_check");
        if (!checkFunc) {
                abort();
        }

#if 1
        FunctionType * checkFuncType = checkFunc->getFunctionType();
        Function * targetFunc = dyn_cast<Function>(M.getOrInsertFunction("__fasan_check", checkFuncType));
        assert(targetFunc && "function cast to const by getOrInsertFunc..?");

      // Loop over the arguments, copying the names of the mapped arguments over...
        Function::arg_iterator DestI = targetFunc->arg_begin();
        for (Function::const_arg_iterator I = checkFunc->arg_begin(), E = checkFunc->arg_end();
             I != E; ++I)
           if (reMap.count(I) == 0) {   // Is this argument preserved?
            DestI->setName(I->getName()); // Copy the name over...
            reMap[I] = DestI++;        // Add mapping to VMap
        }
        SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
        CloneFunctionInto(targetFunc, checkFunc, reMap, false, Returns, "", nullptr);

        targetFunc->addAttribute(0,Attribute::SanitizeAddress);

#else
        Function * clonedCheckFunc = CloneFunction(checkFunc, reMap, false, 0);
        assert(!M.getFunction("__fasan_check") && "already exists in module");
        M.getFunctionList().push_back(clonedCheckFunc);

        ReuseFn_ = clonedCheckFunc;
        clonedCheckFunc->setLinkage(GlobalValue::InternalLinkage); // avoid conflicts during linking

        // re-map fake use to local copy
        for (auto & BB : *clonedCheckFunc) {
            for (auto & Inst : BB) {
                RemapInstruction(&Inst, reMap, RF_IgnoreMissingEntries, 0, 0);
            }
        }
#endif
#endif
    }
    delete fasanModule;
    return true;
}
示例#6
0
文件: CloneModule.cpp 项目: Drup/llvm
Module *llvm::CloneModule(const Module *M, ValueToValueMapTy &VMap) {
  // First off, we need to create the new module.
  Module *New = new Module(M->getModuleIdentifier(), M->getContext());
  New->setDataLayout(M->getDataLayout());
  New->setTargetTriple(M->getTargetTriple());
  New->setModuleInlineAsm(M->getModuleInlineAsm());
   
  // Loop over all of the global variables, making corresponding globals in the
  // new module.  Here we add them to the VMap and to the new Module.  We
  // don't worry about attributes or initializers, they will come later.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = new GlobalVariable(*New, 
                                            I->getType()->getElementType(),
                                            I->isConstant(), I->getLinkage(),
                                            (Constant*) nullptr, I->getName(),
                                            (GlobalVariable*) nullptr,
                                            I->getThreadLocalMode(),
                                            I->getType()->getAddressSpace());
    GV->copyAttributesFrom(I);
    VMap[I] = GV;
  }

  // Loop over the functions in the module, making external functions as before
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *NF =
      Function::Create(cast<FunctionType>(I->getType()->getElementType()),
                       I->getLinkage(), I->getName(), New);
    NF->copyAttributesFrom(I);
    VMap[I] = NF;
  }

  // Loop over the aliases in the module
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    auto *PTy = cast<PointerType>(I->getType());
    auto *GA =
        GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
                            I->getLinkage(), I->getName(), New);
    GA->copyAttributesFrom(I);
    VMap[I] = GA;
  }
  
  // Now that all of the things that global variable initializer can refer to
  // have been created, loop through and copy the global variable referrers
  // over...  We also set the attributes on the global now.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = cast<GlobalVariable>(VMap[I]);
    if (I->hasInitializer())
      GV->setInitializer(MapValue(I->getInitializer(), VMap));
  }

  // Similarly, copy over function bodies now...
  //
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *F = cast<Function>(VMap[I]);
    if (!I->isDeclaration()) {
      Function::arg_iterator DestI = F->arg_begin();
      for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end();
           ++J) {
        DestI->setName(J->getName());
        VMap[J] = DestI++;
      }

      SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
      CloneFunctionInto(F, I, VMap, /*ModuleLevelChanges=*/true, Returns);
    }
  }

  // And aliases
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    GlobalAlias *GA = cast<GlobalAlias>(VMap[I]);
    if (const Constant *C = I->getAliasee())
      GA->setAliasee(cast<GlobalObject>(MapValue(C, VMap)));
  }

  // And named metadata....
  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
         E = M->named_metadata_end(); I != E; ++I) {
    const NamedMDNode &NMD = *I;
    NamedMDNode *NewNMD = New->getOrInsertNamedMetadata(NMD.getName());
    for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
      NewNMD->addOperand(MapValue(NMD.getOperand(i), VMap));
  }

  return New;
}
// InlineFunction - This function inlines the called function into the basic
// block of the caller.  This returns false if it is not possible to inline this
// call.  The program is still in a well defined state if this occurs though.
//
// Note that this only does one level of inlining.  For example, if the
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
// exists in the instruction stream.  Similiarly this will inline a recursive
// function by one level.
//
bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
  Instruction *TheCall = CS.getInstruction();
  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
         "Instruction not in function!");

  const Function *CalledFunc = CS.getCalledFunction();
  if (CalledFunc == 0 ||          // Can't inline external function or indirect
      CalledFunc->isDeclaration() || // call, or call to a vararg function!
      CalledFunc->getFunctionType()->isVarArg()) return false;


  // If the call to the callee is not a tail call, we must clear the 'tail'
  // flags on any calls that we inline.
  bool MustClearTailCallFlags =
    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());

  // If the call to the callee cannot throw, set the 'nounwind' flag on any
  // calls that we inline.
  bool MarkNoUnwind = CS.doesNotThrow();

  BasicBlock *OrigBB = TheCall->getParent();
  Function *Caller = OrigBB->getParent();

  // GC poses two hazards to inlining, which only occur when the callee has GC:
  //  1. If the caller has no GC, then the callee's GC must be propagated to the
  //     caller.
  //  2. If the caller has a differing GC, it is invalid to inline.
  if (CalledFunc->hasGC()) {
    if (!Caller->hasGC())
      Caller->setGC(CalledFunc->getGC());
    else if (CalledFunc->getGC() != Caller->getGC())
      return false;
  }

  // Get an iterator to the last basic block in the function, which will have
  // the new function inlined after it.
  //
  Function::iterator LastBlock = &Caller->back();

  // Make sure to capture all of the return instructions from the cloned
  // function.
  std::vector<ReturnInst*> Returns;
  ClonedCodeInfo InlinedFunctionInfo;
  Function::iterator FirstNewBlock;

  { // Scope to destroy ValueMap after cloning.
    DenseMap<const Value*, Value*> ValueMap;

    assert(CalledFunc->arg_size() == CS.arg_size() &&
           "No varargs calls can be inlined!");

    // Calculate the vector of arguments to pass into the function cloner, which
    // matches up the formal to the actual argument values.
    CallSite::arg_iterator AI = CS.arg_begin();
    unsigned ArgNo = 0;
    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
      Value *ActualArg = *AI;

      // When byval arguments actually inlined, we need to make the copy implied
      // by them explicit.  However, we don't do this if the callee is readonly
      // or readnone, because the copy would be unneeded: the callee doesn't
      // modify the struct.
      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal) &&
          !CalledFunc->onlyReadsMemory()) {
        const Type *AggTy = cast<PointerType>(I->getType())->getElementType();
        const Type *VoidPtrTy = PointerType::getUnqual(Type::Int8Ty);

        // Create the alloca.  If we have TargetData, use nice alignment.
        unsigned Align = 1;
        if (TD) Align = TD->getPrefTypeAlignment(AggTy);
        Value *NewAlloca = new AllocaInst(AggTy, 0, Align, I->getName(),
                                          Caller->begin()->begin());
        // Emit a memcpy.
        const Type *Tys[] = { Type::Int64Ty };
        Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
                                                       Intrinsic::memcpy, 
                                                       Tys, 1);
        Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
        Value *SrcCast = new BitCastInst(*AI, VoidPtrTy, "tmp", TheCall);

        Value *Size;
        if (TD == 0)
          Size = ConstantExpr::getSizeOf(AggTy);
        else
          Size = ConstantInt::get(Type::Int64Ty, TD->getTypeStoreSize(AggTy));

        // Always generate a memcpy of alignment 1 here because we don't know
        // the alignment of the src pointer.  Other optimizations can infer
        // better alignment.
        Value *CallArgs[] = {
          DestCast, SrcCast, Size, ConstantInt::get(Type::Int32Ty, 1)
        };
        CallInst *TheMemCpy =
          CallInst::Create(MemCpyFn, CallArgs, CallArgs+4, "", TheCall);

        // If we have a call graph, update it.
        if (CG) {
          CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
          CallGraphNode *CallerNode = (*CG)[Caller];
          CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
        }

        // Uses of the argument in the function should use our new alloca
        // instead.
        ActualArg = NewAlloca;
      }

      ValueMap[I] = ActualArg;
    }

    // We want the inliner to prune the code as it copies.  We would LOVE to
    // have no dead or constant instructions leftover after inlining occurs
    // (which can happen, e.g., because an argument was constant), but we'll be
    // happy with whatever the cloner can do.
    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
                              &InlinedFunctionInfo, TD);

    // Remember the first block that is newly cloned over.
    FirstNewBlock = LastBlock; ++FirstNewBlock;

    // Update the callgraph if requested.
    if (CG)
      UpdateCallGraphAfterInlining(CS, FirstNewBlock, ValueMap, *CG);
  }

  // If there are any alloca instructions in the block that used to be the entry
  // block for the callee, move them to the entry block of the caller.  First
  // calculate which instruction they should be inserted before.  We insert the
  // instructions at the end of the current alloca list.
  //
  {
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
    for (BasicBlock::iterator I = FirstNewBlock->begin(),
           E = FirstNewBlock->end(); I != E; )
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
        // If the alloca is now dead, remove it.  This often occurs due to code
        // specialization.
        if (AI->use_empty()) {
          AI->eraseFromParent();
          continue;
        }

        if (isa<Constant>(AI->getArraySize())) {
          // Scan for the block of allocas that we can move over, and move them
          // all at once.
          while (isa<AllocaInst>(I) &&
                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
            ++I;

          // Transfer all of the allocas over in a block.  Using splice means
          // that the instructions aren't removed from the symbol table, then
          // reinserted.
          Caller->getEntryBlock().getInstList().splice(
              InsertPoint,
              FirstNewBlock->getInstList(),
              AI, I);
        }
      }
  }

  // If the inlined code contained dynamic alloca instructions, wrap the inlined
  // code with llvm.stacksave/llvm.stackrestore intrinsics.
  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
    Module *M = Caller->getParent();
    // Get the two intrinsics we care about.
    Constant *StackSave, *StackRestore;
    StackSave    = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
    StackRestore = Intrinsic::getDeclaration(M, Intrinsic::stackrestore);

    // If we are preserving the callgraph, add edges to the stacksave/restore
    // functions for the calls we insert.
    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
    if (CG) {
      // We know that StackSave/StackRestore are Function*'s, because they are
      // intrinsics which must have the right types.
      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
      CallerNode = (*CG)[Caller];
    }

    // Insert the llvm.stacksave.
    CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
                                          FirstNewBlock->begin());
    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);

    // Insert a call to llvm.stackrestore before any return instructions in the
    // inlined function.
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
    }

    // Count the number of StackRestore calls we insert.
    unsigned NumStackRestores = Returns.size();

    // If we are inlining an invoke instruction, insert restores before each
    // unwind.  These unwinds will be rewritten into branches later.
    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
           BB != E; ++BB)
        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
          CallInst::Create(StackRestore, SavedPtr, "", UI);
          ++NumStackRestores;
        }
    }
  }

  // If we are inlining tail call instruction through a call site that isn't
  // marked 'tail', we must remove the tail marker for any calls in the inlined
  // code.  Also, calls inlined through a 'nounwind' call site should be marked
  // 'nounwind'.
  if (InlinedFunctionInfo.ContainsCalls &&
      (MustClearTailCallFlags || MarkNoUnwind)) {
    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
         BB != E; ++BB)
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        if (CallInst *CI = dyn_cast<CallInst>(I)) {
          if (MustClearTailCallFlags)
            CI->setTailCall(false);
          if (MarkNoUnwind)
            CI->setDoesNotThrow();
        }
  }

  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
  // instructions are unreachable.
  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
         BB != E; ++BB) {
      TerminatorInst *Term = BB->getTerminator();
      if (isa<UnwindInst>(Term)) {
        new UnreachableInst(Term);
        BB->getInstList().erase(Term);
      }
    }

  // If we are inlining for an invoke instruction, we must make sure to rewrite
  // any inlined 'unwind' instructions into branches to the invoke exception
  // destination, and call instructions into invoke instructions.
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);

  // If we cloned in _exactly one_ basic block, and if that block ends in a
  // return instruction, we splice the body of the inlined callee directly into
  // the calling basic block.
  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
    // Move all of the instructions right before the call.
    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
                                 FirstNewBlock->begin(), FirstNewBlock->end());
    // Remove the cloned basic block.
    Caller->getBasicBlockList().pop_back();

    // If the call site was an invoke instruction, add a branch to the normal
    // destination.
    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
      BranchInst::Create(II->getNormalDest(), TheCall);

    // If the return instruction returned a value, replace uses of the call with
    // uses of the returned value.
    if (!TheCall->use_empty()) {
      ReturnInst *R = Returns[0];
      TheCall->replaceAllUsesWith(R->getReturnValue());
    }
    // Since we are now done with the Call/Invoke, we can delete it.
    TheCall->eraseFromParent();

    // Since we are now done with the return instruction, delete it also.
    Returns[0]->eraseFromParent();

    // We are now done with the inlining.
    return true;
  }

  // Otherwise, we have the normal case, of more than one block to inline or
  // multiple return sites.

  // We want to clone the entire callee function into the hole between the
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
  // this is an invoke instruction or a call instruction.
  BasicBlock *AfterCallBB;
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {

    // Add an unconditional branch to make this look like the CallInst case...
    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);

    // Split the basic block.  This guarantees that no PHI nodes will have to be
    // updated due to new incoming edges, and make the invoke case more
    // symmetric to the call case.
    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
                                          CalledFunc->getName()+".exit");

  } else {  // It's a call
    // If this is a call instruction, we need to split the basic block that
    // the call lives in.
    //
    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
                                          CalledFunc->getName()+".exit");
  }

  // Change the branch that used to go to AfterCallBB to branch to the first
  // basic block of the inlined function.
  //
  TerminatorInst *Br = OrigBB->getTerminator();
  assert(Br && Br->getOpcode() == Instruction::Br &&
         "splitBasicBlock broken!");
  Br->setOperand(0, FirstNewBlock);


  // Now that the function is correct, make it a little bit nicer.  In
  // particular, move the basic blocks inserted from the end of the function
  // into the space made by splitting the source basic block.
  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
                                     FirstNewBlock, Caller->end());

  // Handle all of the return instructions that we just cloned in, and eliminate
  // any users of the original call/invoke instruction.
  const Type *RTy = CalledFunc->getReturnType();

  if (Returns.size() > 1) {
    // The PHI node should go at the front of the new basic block to merge all
    // possible incoming values.
    PHINode *PHI = 0;
    if (!TheCall->use_empty()) {
      PHI = PHINode::Create(RTy, TheCall->getName(),
                            AfterCallBB->begin());
      // Anything that used the result of the function call should now use the
      // PHI node as their operand.
      TheCall->replaceAllUsesWith(PHI);
    }

    // Loop over all of the return instructions adding entries to the PHI node
    // as appropriate.
    if (PHI) {
      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
        ReturnInst *RI = Returns[i];
        assert(RI->getReturnValue()->getType() == PHI->getType() &&
               "Ret value not consistent in function!");
        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
      }
    }

    // Add a branch to the merge points and remove return instructions.
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
      ReturnInst *RI = Returns[i];
      BranchInst::Create(AfterCallBB, RI);
      RI->eraseFromParent();
    }
  } else if (!Returns.empty()) {
    // Otherwise, if there is exactly one return value, just replace anything
    // using the return value of the call with the computed value.
    if (!TheCall->use_empty())
      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());

    // Splice the code from the return block into the block that it will return
    // to, which contains the code that was after the call.
    BasicBlock *ReturnBB = Returns[0]->getParent();
    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
                                      ReturnBB->getInstList());

    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
    ReturnBB->replaceAllUsesWith(AfterCallBB);

    // Delete the return instruction now and empty ReturnBB now.
    Returns[0]->eraseFromParent();
    ReturnBB->eraseFromParent();
  } else if (!TheCall->use_empty()) {
    // No returns, but something is using the return value of the call.  Just
    // nuke the result.
    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
  }

  // Since we are now done with the Call/Invoke, we can delete it.
  TheCall->eraseFromParent();

  // We should always be able to fold the entry block of the function into the
  // single predecessor of the block...
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);

  // Splice the code entry block into calling block, right before the
  // unconditional branch.
  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes

  // Remove the unconditional branch.
  OrigBB->getInstList().erase(Br);

  // Now we can remove the CalleeEntry block, which is now empty.
  Caller->getBasicBlockList().erase(CalleeEntry);

  return true;
}
示例#8
0
Module *llvm::CloneModule(const Module *M,
                          DenseMap<const Value*, Value*> &ValueMap) {
  // First off, we need to create the new module...
  Module *New = new Module(M->getModuleIdentifier());
  New->setDataLayout(M->getDataLayout());
  New->setTargetTriple(M->getTargetTriple());
  New->setModuleInlineAsm(M->getModuleInlineAsm());

  // Copy all of the type symbol table entries over.
  const TypeSymbolTable &TST = M->getTypeSymbolTable();
  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
       TI != TE; ++TI)
    New->addTypeName(TI->first, TI->second);
  
  // Copy all of the dependent libraries over.
  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
    New->addLibrary(*I);

  // Loop over all of the global variables, making corresponding globals in the
  // new module.  Here we add them to the ValueMap and to the new Module.  We
  // don't worry about attributes or initializers, they will come later.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = new GlobalVariable(I->getType()->getElementType(),
                                            false,
                                            GlobalValue::ExternalLinkage, 0,
                                            I->getName(), New);
    GV->setAlignment(I->getAlignment());
    ValueMap[I] = GV;
  }

  // Loop over the functions in the module, making external functions as before
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *NF =
      Function::Create(cast<FunctionType>(I->getType()->getElementType()),
                       GlobalValue::ExternalLinkage, I->getName(), New);
    NF->copyAttributesFrom(I);
    ValueMap[I] = NF;
  }

  // Loop over the aliases in the module
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    ValueMap[I] = new GlobalAlias(I->getType(), GlobalAlias::ExternalLinkage,
                                  I->getName(), NULL, New);
  
  // Now that all of the things that global variable initializer can refer to
  // have been created, loop through and copy the global variable referrers
  // over...  We also set the attributes on the global now.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = cast<GlobalVariable>(ValueMap[I]);
    if (I->hasInitializer())
      GV->setInitializer(cast<Constant>(MapValue(I->getInitializer(),
                                                 ValueMap)));
    GV->setLinkage(I->getLinkage());
    GV->setThreadLocal(I->isThreadLocal());
    GV->setConstant(I->isConstant());
  }

  // Similarly, copy over function bodies now...
  //
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *F = cast<Function>(ValueMap[I]);
    if (!I->isDeclaration()) {
      Function::arg_iterator DestI = F->arg_begin();
      for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end();
           ++J) {
        DestI->setName(J->getName());
        ValueMap[J] = DestI++;
      }

      std::vector<ReturnInst*> Returns;  // Ignore returns cloned...
      CloneFunctionInto(F, I, ValueMap, Returns);
    }

    F->setLinkage(I->getLinkage());
  }

  // And aliases
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    GlobalAlias *GA = cast<GlobalAlias>(ValueMap[I]);
    GA->setLinkage(I->getLinkage());
    if (const Constant* C = I->getAliasee())
      GA->setAliasee(cast<Constant>(MapValue(C, ValueMap)));
  }
  
  return New;
}
示例#9
0
Module *llvm::CloneModule(const Module *M,
                          ValueToValueMapTy &VMap) {
  // First off, we need to create the new module...
  Module *New = new Module(M->getModuleIdentifier(), M->getContext());
  New->setDataLayout(M->getDataLayout());
  New->setTargetTriple(M->getTargetTriple());
  New->setModuleInlineAsm(M->getModuleInlineAsm());

  // Copy all of the type symbol table entries over.
  const TypeSymbolTable &TST = M->getTypeSymbolTable();
  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 
       TI != TE; ++TI)
    New->addTypeName(TI->first, TI->second);
  
  // Copy all of the dependent libraries over.
  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
    New->addLibrary(*I);

  // Loop over all of the global variables, making corresponding globals in the
  // new module.  Here we add them to the VMap and to the new Module.  We
  // don't worry about attributes or initializers, they will come later.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = new GlobalVariable(*New, 
                                            I->getType()->getElementType(),
                                            false,
                                            GlobalValue::ExternalLinkage, 0,
                                            I->getName());
    GV->setAlignment(I->getAlignment());
    VMap[I] = GV;
  }

  // Loop over the functions in the module, making external functions as before
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *NF =
      Function::Create(cast<FunctionType>(I->getType()->getElementType()),
                       GlobalValue::ExternalLinkage, I->getName(), New);
    NF->copyAttributesFrom(I);
    VMap[I] = NF;
  }

  // Loop over the aliases in the module
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I)
    VMap[I] = new GlobalAlias(I->getType(), GlobalAlias::ExternalLinkage,
                                  I->getName(), NULL, New);
  
  // Now that all of the things that global variable initializer can refer to
  // have been created, loop through and copy the global variable referrers
  // over...  We also set the attributes on the global now.
  //
  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
       I != E; ++I) {
    GlobalVariable *GV = cast<GlobalVariable>(VMap[I]);
    if (I->hasInitializer())
      GV->setInitializer(cast<Constant>(MapValue(I->getInitializer(),
                                                 VMap)));
    GV->setLinkage(I->getLinkage());
    GV->setThreadLocal(I->isThreadLocal());
    GV->setConstant(I->isConstant());
  }

  // Similarly, copy over function bodies now...
  //
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
    Function *F = cast<Function>(VMap[I]);
    if (!I->isDeclaration()) {
      Function::arg_iterator DestI = F->arg_begin();
      for (Function::const_arg_iterator J = I->arg_begin(); J != I->arg_end();
           ++J) {
        DestI->setName(J->getName());
        VMap[J] = DestI++;
      }

      SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
      CloneFunctionInto(F, I, VMap, Returns);
    }

    F->setLinkage(I->getLinkage());
  }

  // And aliases
  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
       I != E; ++I) {
    GlobalAlias *GA = cast<GlobalAlias>(VMap[I]);
    GA->setLinkage(I->getLinkage());
    if (const Constant* C = I->getAliasee())
      GA->setAliasee(cast<Constant>(MapValue(C, VMap)));
  }

  // And named metadata....
  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
         E = M->named_metadata_end(); I != E; ++I) {
    const NamedMDNode &NMD = *I;
    SmallVector<MDNode*, 4> MDs;
    for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
      MDs.push_back(cast<MDNode>(MapValue(NMD.getOperand(i), VMap)));
    NamedMDNode::Create(New->getContext(), NMD.getName(),
                        MDs.data(), MDs.size(), New);
  }

  // Update metadata attach with instructions.
  for (Module::iterator MI = New->begin(), ME = New->end(); MI != ME; ++MI)   
    for (Function::iterator FI = MI->begin(), FE = MI->end(); 
         FI != FE; ++FI)
      for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 
           BI != BE; ++BI) {
        SmallVector<std::pair<unsigned, MDNode *>, 4 > MDs;
        BI->getAllMetadata(MDs);
        for (SmallVector<std::pair<unsigned, MDNode *>, 4>::iterator 
               MDI = MDs.begin(), MDE = MDs.end(); MDI != MDE; ++MDI) {
          Value *MappedValue = MapValue(MDI->second, VMap);
          if (MDI->second != MappedValue && MappedValue)
            BI->setMetadata(MDI->first, cast<MDNode>(MappedValue));
        }
      }
  return New;
}