void BoxTest::testGetters() { const Geometry::Box b1(-1.0f, 1.0f, -2.0f, 2.0f, -3.0f, 3.0f); const Geometry::Box b2; CPPUNIT_ASSERT(b1.getMaxX() == 1.0f); CPPUNIT_ASSERT(b1.getMax(Geometry::dimension_t::X) == 1.0f); CPPUNIT_ASSERT(b1.getMaxY() == 2.0f); CPPUNIT_ASSERT(b1.getMax(Geometry::dimension_t::Y) == 2.0f); CPPUNIT_ASSERT(b1.getMaxZ() == 3.0f); CPPUNIT_ASSERT(b1.getMax(Geometry::dimension_t::Z) == 3.0f); CPPUNIT_ASSERT(b1.getMinX() == -1.0f); CPPUNIT_ASSERT(b1.getMin(Geometry::dimension_t::X) == -1.0f); CPPUNIT_ASSERT(b1.getMinY() == -2.0f); CPPUNIT_ASSERT(b1.getMin(Geometry::dimension_t::Y) == -2.0f); CPPUNIT_ASSERT(b1.getMinZ() == -3.0f); CPPUNIT_ASSERT(b1.getMin(Geometry::dimension_t::Z) == -3.0f); CPPUNIT_ASSERT(b1.getExtentMax() == 6.0f); CPPUNIT_ASSERT(b1.getExtentMin() == 2.0f); CPPUNIT_ASSERT(b1.getExtentX() == 2.0f); CPPUNIT_ASSERT(b1.getExtent(Geometry::dimension_t::X) == 2.0f); CPPUNIT_ASSERT(b1.getExtentY() == 4.0f); CPPUNIT_ASSERT(b1.getExtent(Geometry::dimension_t::Y) == 4.0f); CPPUNIT_ASSERT(b1.getExtentZ() == 6.0f); CPPUNIT_ASSERT(b1.getExtent(Geometry::dimension_t::Z) == 6.0f); CPPUNIT_ASSERT(b1.getVolume() == 48.0f); CPPUNIT_ASSERT(b1.getSurfaceArea() == 88.0f); CPPUNIT_ASSERT(b1.getCenter() == Geometry::Vec3(0.0f, 0.0f, 0.0f)); CPPUNIT_ASSERT(b1.getBoundingSphereRadius() == 0.5f * std::sqrt(56.0f)); }
void drawBox(RenderingContext & rc, const Geometry::Box & box) { static Util::Reference<Mesh> mesh; if (mesh.isNull()) { VertexDescription vertexDescription; vertexDescription.appendPosition3D(); vertexDescription.appendNormalFloat(); const Geometry::Box unitBox(Geometry::Vec3(-0.5f, -0.5f, -0.5f), Geometry::Vec3(0.5f, 0.5f, 0.5f)); mesh = MeshUtils::MeshBuilder::createBox(vertexDescription, unitBox); } Geometry::Matrix4x4 matrix; matrix.translate(box.getCenter()); matrix.scale(box.getExtentX(), box.getExtentY(), box.getExtentZ()); rc.pushMatrix_modelToCamera(); rc.multMatrix_modelToCamera(matrix); rc.displayMesh(mesh.get()); rc.popMatrix_modelToCamera(); }
void PolygonDensityEvaluator::calcPriority(Region * r) { int testsPerAxis = getAttribute(Util::StringIdentifier("#Tests per axis"))->toUnsignedInt(); Geometry::Box box = r->getBounds(); PrioSplit px = calcPriority(Geometry::Helper::splitUpBox(box, testsPerAxis,1,1)); PrioSplit py = calcPriority(Geometry::Helper::splitUpBox(box, 1,testsPerAxis,1)); PrioSplit pz = calcPriority(Geometry::Helper::splitUpBox(box, 1,1,testsPerAxis)); float volumePower = pow(box.getVolume(), getAttribute(Util::StringIdentifier("Volume Power"))->toFloat()); px.prio *= volumePower; py.prio *= volumePower; pz.prio *= volumePower; float p = std::max(std::max(px.prio,py.prio),pz.prio); r->setAttribute(Util::StringIdentifier("PolygonDensityPrio"), GenericAttribute::createNumber<float>(p)); float f = getAttribute(Util::StringIdentifier("Extent Power"))->toFloat(); px.prio *= pow(box.getExtentX(),f); py.prio *= pow(box.getExtentY(),f); pz.prio *= pow(box.getExtentZ(),f); p = std::max(std::max(px.prio,py.prio),pz.prio); if(p==px.prio) { r->setAttribute(Util::StringIdentifier("PolygonDensitySplit"), GenericAttribute::createNumber<int>(0)); r->setAttribute(Util::StringIdentifier("PolygonDensityRatio"), GenericAttribute::createNumber<float>(px.ratio)); } else if(p==py.prio) { r->setAttribute(Util::StringIdentifier("PolygonDensitySplit"), GenericAttribute::createNumber<int>(1)); r->setAttribute(Util::StringIdentifier("PolygonDensityRatio"), GenericAttribute::createNumber<float>(py.ratio)); } else if(p==pz.prio) { r->setAttribute(Util::StringIdentifier("PolygonDensitySplit"), GenericAttribute::createNumber<int>(2)); r->setAttribute(Util::StringIdentifier("PolygonDensityRatio"), GenericAttribute::createNumber<float>(pz.ratio)); } else FAIL(); }
static void describeGeometryNode(ExporterContext & /*ctxt*/,DescriptionMap & desc, Node * node) { desc.setString(Consts::ATTR_NODE_TYPE, Consts::NODE_TYPE_GEOMETRY); std::unique_ptr<DescriptionMap> dataDesc(new DescriptionMap); GeometryNode * gn = dynamic_cast<GeometryNode*>(node); // annotate with bounding box const Geometry::Box bb = gn->getBB(); const Geometry::Vec3 center = bb.getCenter(); std::stringstream s; s << center.getX() << " " << center.getY() << " " << center.getZ() << " " << bb.getExtentX() << " " << bb.getExtentY() << " " << bb.getExtentZ(); dataDesc->setString(Consts::ATTR_MESH_BB, s.str()); Rendering::Mesh * m = gn->getMesh(); if(m!=nullptr) { // mesh present? // no filename -> store data in .minsg if(m->getFileName().empty()) { std::ostringstream meshStream; if(Rendering::Serialization::saveMesh(gn->getMesh(), "mmf", meshStream)) { dataDesc->setString(Consts::ATTR_DATA_TYPE,"mesh"); dataDesc->setString(Consts::ATTR_DATA_ENCODING,"base64"); const std::string streamString = meshStream.str(); const std::string meshString = Util::encodeBase64(std::vector<uint8_t>(streamString.begin(), streamString.end())); dataDesc->setString(Consts::DATA_BLOCK,meshString); } } else { // filename given? Util::FileName meshFilename(m->getFileName()); // // make path to mesh relative to scene (if mesh lies below the scene) // Util::FileUtils::makeRelativeIfPossible(ctxt.sceneFile, meshFilename); dataDesc->setString(Consts::ATTR_DATA_TYPE,"mesh"); dataDesc->setString(Consts::ATTR_MESH_FILENAME,meshFilename.toShortString()); } ExporterTools::addDataEntry(desc, std::move(dataDesc)); } }