mitk::DataNode::Pointer mitk::Tool::CreateEmptySegmentationNode( Image* original, const std::string& organName, const mitk::Color& color ) { // we NEED a reference image for size etc. if (!original) return NULL; // actually create a new empty segmentation PixelType pixelType(mitk::MakeScalarPixelType<DefaultSegmentationDataType>() ); Image::Pointer segmentation = Image::New(); if (original->GetDimension() == 2) { const unsigned int dimensions[] = { original->GetDimension(0), original->GetDimension(1), 1 }; segmentation->Initialize(pixelType, 3, dimensions); } else { segmentation->Initialize(pixelType, original->GetDimension(), original->GetDimensions()); } unsigned int byteSize = sizeof(DefaultSegmentationDataType); if(segmentation->GetDimension() < 4) { for (unsigned int dim = 0; dim < segmentation->GetDimension(); ++dim) { byteSize *= segmentation->GetDimension(dim); } mitk::ImageWriteAccessor writeAccess(segmentation, segmentation->GetVolumeData(0)); memset( writeAccess.GetData(), 0, byteSize ); } else {//if we have a time-resolved image we need to set memory to 0 for each time step for (unsigned int dim = 0; dim < 3; ++dim) { byteSize *= segmentation->GetDimension(dim); } for( unsigned int volumeNumber = 0; volumeNumber < segmentation->GetDimension(3); volumeNumber++) { mitk::ImageWriteAccessor writeAccess(segmentation, segmentation->GetVolumeData(volumeNumber)); memset( writeAccess.GetData(), 0, byteSize ); } } if (original->GetTimeGeometry() ) { TimeGeometry::Pointer originalGeometry = original->GetTimeGeometry()->Clone(); segmentation->SetTimeGeometry( originalGeometry ); } else { Tool::ErrorMessage("Original image does not have a 'Time sliced geometry'! Cannot create a segmentation."); return NULL; } return CreateSegmentationNode( segmentation, organName, color ); }
mitk::Image::Pointer mitk::CompressedImageContainer::GetImage() { if (m_ByteBuffers.empty()) return nullptr; // uncompress image data, create an Image Image::Pointer image = Image::New(); unsigned int dims[20]; // more than 20 dimensions and bang for (unsigned int dim = 0; dim < m_ImageDimension; ++dim) dims[dim] = m_ImageDimensions[dim]; image->Initialize(*m_PixelType, m_ImageDimension, dims); // this IS needed, right ?? But it does allocate memory -> // does create one big lump of memory (also in windows) unsigned int timeStep(0); for (auto iter = m_ByteBuffers.begin(); iter != m_ByteBuffers.end(); ++iter, ++timeStep) { ImageReadAccessor imgAcc(image, image->GetVolumeData(timeStep)); auto *dest((unsigned char *)imgAcc.GetData()); ::uLongf destLen(m_OneTimeStepImageSizeInBytes); ::Bytef *source(iter->first); ::uLongf sourceLen(iter->second); int zlibRetVal = ::uncompress(dest, &destLen, source, sourceLen); if (itk::Object::GetDebug()) { if (zlibRetVal == Z_OK) { MITK_INFO << "Success, destLen now " << destLen << " bytes" << std::endl; } else { switch (zlibRetVal) { case Z_DATA_ERROR: MITK_ERROR << "compressed data corrupted" << std::endl; break; case Z_MEM_ERROR: MITK_ERROR << "not enough memory" << std::endl; break; case Z_BUF_ERROR: MITK_ERROR << "output buffer too small" << std::endl; break; default: MITK_ERROR << "other, unspecified error" << std::endl; break; } } } } image->SetGeometry(m_ImageGeometry); image->Modified(); return image; }
/* * Generate the information decribing the output data. The default * implementation of this method will copy information from the input to the * output. A filter may override this method if its output will have different * information than its input. For instance, a filter that shrinks an image will * need to provide an implementation for this method that changes the spacing of * the pixels. Such filters should call their superclass' implementation of this * method prior to changing the information values they need (i.e. * GenerateOutputInformation() should call * Superclass::GenerateOutputInformation() prior to changing the information. */ void mitk::ExtractImageFilter::GenerateOutputInformation() { Image::Pointer output = this->GetOutput(); Image::ConstPointer input = this->GetInput(); if (input.IsNull()) return; if ( m_SliceDimension >= input->GetDimension() && input->GetDimension() != 2 ) { MITK_ERROR << "mitk::ExtractImageFilter:GenerateOutputInformation m_SliceDimension == " << m_SliceDimension << " makes no sense with an " << input->GetDimension() << "D image." << std::endl; itkExceptionMacro("This is not a sensible value for m_SliceDimension."); return; } unsigned int sliceDimension( m_SliceDimension ); if ( input->GetDimension() == 2) { sliceDimension = 2; } unsigned int tmpDimensions[2]; switch ( sliceDimension ) { default: case 2: // orientation = PlaneGeometry::Axial; tmpDimensions[0] = input->GetDimension(0); tmpDimensions[1] = input->GetDimension(1); break; case 1: // orientation = PlaneGeometry::Frontal; tmpDimensions[0] = input->GetDimension(0); tmpDimensions[1] = input->GetDimension(2); break; case 0: // orientation = PlaneGeometry::Sagittal; tmpDimensions[0] = input->GetDimension(1); tmpDimensions[1] = input->GetDimension(2); break; } output->Initialize(input->GetPixelType(), 2, tmpDimensions, 1 /*input->GetNumberOfChannels()*/); // initialize the spacing of the output /* Vector3D spacing = input->GetSlicedGeometry()->GetSpacing(); if(input->GetDimension()>=2) spacing[2]=spacing[1]; else spacing[2] = 1.0; output->GetSlicedGeometry()->SetSpacing(spacing); */ output->SetPropertyList(input->GetPropertyList()->Clone()); }
mitk::DataNode::Pointer mitk::Tool::CreateEmptySegmentationNode( Image* original, const std::string& organName, const mitk::Color& color ) { // we NEED a reference image for size etc. if (!original) return NULL; // actually create a new empty segmentation PixelType pixelType(mitk::MakeScalarPixelType<DefaultSegmentationDataType>() ); Image::Pointer segmentation = Image::New(); if (original->GetDimension() == 2) { const unsigned int dimensions[] = { original->GetDimension(0), original->GetDimension(1), 1 }; segmentation->Initialize(pixelType, 3, dimensions); } else { segmentation->Initialize(pixelType, original->GetDimension(), original->GetDimensions()); } unsigned int byteSize = sizeof(DefaultSegmentationDataType); for (unsigned int dim = 0; dim < segmentation->GetDimension(); ++dim) { byteSize *= segmentation->GetDimension(dim); } memset( segmentation->GetData(), 0, byteSize ); if (original->GetTimeSlicedGeometry() ) { AffineGeometryFrame3D::Pointer originalGeometryAGF = original->GetTimeSlicedGeometry()->Clone(); TimeSlicedGeometry::Pointer originalGeometry = dynamic_cast<TimeSlicedGeometry*>( originalGeometryAGF.GetPointer() ); segmentation->SetGeometry( originalGeometry ); } else { Tool::ErrorMessage("Original image does not have a 'Time sliced geometry'! Cannot create a segmentation."); return NULL; } return CreateSegmentationNode( segmentation, organName, color ); }
mitk::Image::Pointer mitk::VolumeDataVtkMapper3D::GetMask() { if (this->m_Mask) { Image::Pointer mask = Image::New(); mask->Initialize(this->m_Mask); mask->SetImportVolume(this->m_Mask->GetScalarPointer(), 0, 0, Image::ReferenceMemory); mask->SetGeometry(this->GetInput()->GetGeometry()); return mask; } return 0; }
void mitk::ContourUtils::FillContourInSlice( ContourModel* projectedContour, unsigned int timeStep, Image* sliceImage, int paintingPixelValue ) { // 1. Use ipSegmentation to draw a filled(!) contour into a new 8 bit 2D image, which will later be copied back to the slice. // We don't work on the "real" working data, because ipSegmentation would restrict us to 8 bit images // convert the projected contour into a ipSegmentation format mitkIpInt4_t* picContour = new mitkIpInt4_t[2 * projectedContour->GetNumberOfVertices(timeStep)]; unsigned int index(0); ContourModel::VertexIterator iter = projectedContour->Begin(timeStep); ContourModel::VertexIterator end = projectedContour->End(timeStep); while( iter != end) { picContour[ 2 * index + 0 ] = static_cast<mitkIpInt4_t>( (*iter)->Coordinates[0] + 1.0 ); // +0.5 wahrscheinlich richtiger picContour[ 2 * index + 1 ] = static_cast<mitkIpInt4_t>( (*iter)->Coordinates[1] + 1.0 ); //MITK_INFO << "mitk 2d [" << (*iter)[0] << ", " << (*iter)[1] << "] pic [" << picContour[ 2*index+0] << ", " << picContour[ 2*index+1] << "]"; iter++; index++; } assert( sliceImage->GetSliceData() ); mitkIpPicDescriptor* originalPicSlice = mitkIpPicNew(); CastToIpPicDescriptor( sliceImage, originalPicSlice); mitkIpPicDescriptor* picSlice = ipMITKSegmentationNew( originalPicSlice ); ipMITKSegmentationClear( picSlice ); assert( originalPicSlice && picSlice ); // here comes the actual contour filling algorithm (from ipSegmentation/Graphics Gems) ipMITKSegmentationCombineRegion ( picSlice, picContour, projectedContour->GetNumberOfVertices(timeStep), NULL, IPSEGMENTATION_OR, 1); // set to 1 delete[] picContour; // 2. Copy the filled contour to the working data slice // copy all pixels that are non-zero to the original image (not caring for the actual type of the working image). perhaps make the replace value a parameter ( -> general painting tool ). // make the pic slice an mitk/itk image (as little ipPic code as possible), call a templated method with accessbyitk, iterate over the original and the modified slice Image::Pointer ipsegmentationModifiedSlice = Image::New(); ipsegmentationModifiedSlice->Initialize( CastToImageDescriptor( picSlice ) ); ipsegmentationModifiedSlice->SetSlice( picSlice->data ); AccessFixedDimensionByItk_2( sliceImage, ItkCopyFilledContourToSlice, 2, ipsegmentationModifiedSlice, paintingPixelValue ); ipsegmentationModifiedSlice = NULL; // free MITK header information ipMITKSegmentationFree( picSlice ); // free actual memory }
void mitk::ImageTimeSelector::GenerateOutputInformation() { Image::ConstPointer input = this->GetInput(); Image::Pointer output = this->GetOutput(); itkDebugMacro(<<"GenerateOutputInformation()"); int dim=(input->GetDimension()<3?input->GetDimension():3); output->Initialize(input->GetPixelType(), dim, input->GetDimensions()); if( (unsigned int) m_TimeNr >= input->GetDimension(3) ) { m_TimeNr = input->GetDimension(3)-1; } // initialize geometry output->SetGeometry(dynamic_cast<Geometry3D*>(input->GetSlicedGeometry(m_TimeNr)->Clone().GetPointer())); output->SetPropertyList(input->GetPropertyList()->Clone()); }
std::vector<BaseData::Pointer> ItkImageIO::Read() { std::vector<BaseData::Pointer> result; mitk::LocaleSwitch localeSwitch("C"); Image::Pointer image = Image::New(); const unsigned int MINDIM = 2; const unsigned int MAXDIM = 4; const std::string path = this->GetLocalFileName(); MITK_INFO << "loading " << path << " via itk::ImageIOFactory... " << std::endl; // Check to see if we can read the file given the name or prefix if (path.empty()) { mitkThrow() << "Empty filename in mitk::ItkImageIO "; } // Got to allocate space for the image. Determine the characteristics of // the image. m_ImageIO->SetFileName(path); m_ImageIO->ReadImageInformation(); unsigned int ndim = m_ImageIO->GetNumberOfDimensions(); if (ndim < MINDIM || ndim > MAXDIM) { MITK_WARN << "Sorry, only dimensions 2, 3 and 4 are supported. The given file has " << ndim << " dimensions! Reading as 4D."; ndim = MAXDIM; } itk::ImageIORegion ioRegion(ndim); itk::ImageIORegion::SizeType ioSize = ioRegion.GetSize(); itk::ImageIORegion::IndexType ioStart = ioRegion.GetIndex(); unsigned int dimensions[MAXDIM]; dimensions[0] = 0; dimensions[1] = 0; dimensions[2] = 0; dimensions[3] = 0; ScalarType spacing[MAXDIM]; spacing[0] = 1.0f; spacing[1] = 1.0f; spacing[2] = 1.0f; spacing[3] = 1.0f; Point3D origin; origin.Fill(0); unsigned int i; for (i = 0; i < ndim; ++i) { ioStart[i] = 0; ioSize[i] = m_ImageIO->GetDimensions(i); if (i < MAXDIM) { dimensions[i] = m_ImageIO->GetDimensions(i); spacing[i] = m_ImageIO->GetSpacing(i); if (spacing[i] <= 0) spacing[i] = 1.0f; } if (i < 3) { origin[i] = m_ImageIO->GetOrigin(i); } } ioRegion.SetSize(ioSize); ioRegion.SetIndex(ioStart); MITK_INFO << "ioRegion: " << ioRegion << std::endl; m_ImageIO->SetIORegion(ioRegion); void *buffer = new unsigned char[m_ImageIO->GetImageSizeInBytes()]; m_ImageIO->Read(buffer); image->Initialize(MakePixelType(m_ImageIO), ndim, dimensions); image->SetImportChannel(buffer, 0, Image::ManageMemory); const itk::MetaDataDictionary &dictionary = m_ImageIO->GetMetaDataDictionary(); // access direction of itk::Image and include spacing mitk::Matrix3D matrix; matrix.SetIdentity(); unsigned int j, itkDimMax3 = (ndim >= 3 ? 3 : ndim); for (i = 0; i < itkDimMax3; ++i) for (j = 0; j < itkDimMax3; ++j) matrix[i][j] = m_ImageIO->GetDirection(j)[i]; // re-initialize PlaneGeometry with origin and direction PlaneGeometry *planeGeometry = image->GetSlicedGeometry(0)->GetPlaneGeometry(0); planeGeometry->SetOrigin(origin); planeGeometry->GetIndexToWorldTransform()->SetMatrix(matrix); // re-initialize SlicedGeometry3D SlicedGeometry3D *slicedGeometry = image->GetSlicedGeometry(0); slicedGeometry->InitializeEvenlySpaced(planeGeometry, image->GetDimension(2)); slicedGeometry->SetSpacing(spacing); MITK_INFO << slicedGeometry->GetCornerPoint(false, false, false); MITK_INFO << slicedGeometry->GetCornerPoint(true, true, true); // re-initialize TimeGeometry TimeGeometry::Pointer timeGeometry; if (dictionary.HasKey(PROPERTY_NAME_TIMEGEOMETRY_TYPE) || dictionary.HasKey(PROPERTY_KEY_TIMEGEOMETRY_TYPE)) { // also check for the name because of backwards compatibility. Past code version stored with the name and not with // the key itk::MetaDataObject<std::string>::ConstPointer timeGeometryTypeData = nullptr; if (dictionary.HasKey(PROPERTY_NAME_TIMEGEOMETRY_TYPE)) { timeGeometryTypeData = dynamic_cast<const itk::MetaDataObject<std::string> *>(dictionary.Get(PROPERTY_NAME_TIMEGEOMETRY_TYPE)); } else { timeGeometryTypeData = dynamic_cast<const itk::MetaDataObject<std::string> *>(dictionary.Get(PROPERTY_KEY_TIMEGEOMETRY_TYPE)); } if (timeGeometryTypeData->GetMetaDataObjectValue() == ArbitraryTimeGeometry::GetStaticNameOfClass()) { MITK_INFO << "used time geometry: " << ArbitraryTimeGeometry::GetStaticNameOfClass() << std::endl; typedef std::vector<TimePointType> TimePointVector; TimePointVector timePoints; if (dictionary.HasKey(PROPERTY_NAME_TIMEGEOMETRY_TIMEPOINTS)) { timePoints = ConvertMetaDataObjectToTimePointList(dictionary.Get(PROPERTY_NAME_TIMEGEOMETRY_TIMEPOINTS)); } else if (dictionary.HasKey(PROPERTY_KEY_TIMEGEOMETRY_TIMEPOINTS)) { timePoints = ConvertMetaDataObjectToTimePointList(dictionary.Get(PROPERTY_KEY_TIMEGEOMETRY_TIMEPOINTS)); } if (timePoints.size() - 1 != image->GetDimension(3)) { MITK_ERROR << "Stored timepoints (" << timePoints.size() - 1 << ") and size of image time dimension (" << image->GetDimension(3) << ") do not match. Switch to ProportionalTimeGeometry fallback" << std::endl; } else { ArbitraryTimeGeometry::Pointer arbitraryTimeGeometry = ArbitraryTimeGeometry::New(); TimePointVector::const_iterator pos = timePoints.begin(); TimePointVector::const_iterator prePos = pos++; for (; pos != timePoints.end(); ++prePos, ++pos) { arbitraryTimeGeometry->AppendTimeStepClone(slicedGeometry, *pos, *prePos); } timeGeometry = arbitraryTimeGeometry; } } } if (timeGeometry.IsNull()) { // Fallback. If no other valid time geometry has been created, create a ProportionalTimeGeometry MITK_INFO << "used time geometry: " << ProportionalTimeGeometry::GetStaticNameOfClass() << std::endl; ProportionalTimeGeometry::Pointer propTimeGeometry = ProportionalTimeGeometry::New(); propTimeGeometry->Initialize(slicedGeometry, image->GetDimension(3)); timeGeometry = propTimeGeometry; } image->SetTimeGeometry(timeGeometry); buffer = NULL; MITK_INFO << "number of image components: " << image->GetPixelType().GetNumberOfComponents() << std::endl; for (itk::MetaDataDictionary::ConstIterator iter = dictionary.Begin(), iterEnd = dictionary.End(); iter != iterEnd; ++iter) { if (iter->second->GetMetaDataObjectTypeInfo() == typeid(std::string)) { const std::string &key = iter->first; std::string assumedPropertyName = key; std::replace(assumedPropertyName.begin(), assumedPropertyName.end(), '_', '.'); std::string mimeTypeName = GetMimeType()->GetName(); // Check if there is already a info for the key and our mime type. IPropertyPersistence::InfoResultType infoList = mitk::CoreServices::GetPropertyPersistence()->GetInfoByKey(key); auto predicate = [mimeTypeName](const PropertyPersistenceInfo::ConstPointer &x) { return x.IsNotNull() && x->GetMimeTypeName() == mimeTypeName; }; auto finding = std::find_if(infoList.begin(), infoList.end(), predicate); if (finding == infoList.end()) { auto predicateWild = [](const PropertyPersistenceInfo::ConstPointer &x) { return x.IsNotNull() && x->GetMimeTypeName() == PropertyPersistenceInfo::ANY_MIMETYPE_NAME(); }; finding = std::find_if(infoList.begin(), infoList.end(), predicateWild); } PropertyPersistenceInfo::ConstPointer info; if (finding != infoList.end()) { assumedPropertyName = (*finding)->GetName(); info = *finding; } else { // we have not found anything suitable so we generate our own info PropertyPersistenceInfo::Pointer newInfo = PropertyPersistenceInfo::New(); newInfo->SetNameAndKey(assumedPropertyName, key); newInfo->SetMimeTypeName(PropertyPersistenceInfo::ANY_MIMETYPE_NAME()); info = newInfo; } std::string value = dynamic_cast<itk::MetaDataObject<std::string> *>(iter->second.GetPointer())->GetMetaDataObjectValue(); mitk::BaseProperty::Pointer loadedProp = info->GetDeserializationFunction()(value); image->SetProperty(assumedPropertyName.c_str(), loadedProp); // Read properties should be persisted unless they are default properties // which are written anyway bool isDefaultKey(false); for (const auto &defaultKey : m_DefaultMetaDataKeys) { if (defaultKey.length() <= assumedPropertyName.length()) { // does the start match the default key if (assumedPropertyName.substr(0, defaultKey.length()).find(defaultKey) != std::string::npos) { isDefaultKey = true; break; } } } if (!isDefaultKey) { mitk::CoreServices::GetPropertyPersistence()->AddInfo(info); } } } MITK_INFO << "...finished!" << std::endl; result.push_back(image.GetPointer()); return result; }
void mitk::PicFileReader::GenerateOutputInformation() { Image::Pointer output = this->GetOutput(); if ((output->IsInitialized()) && (this->GetMTime() <= m_ReadHeaderTime.GetMTime())) return; itkDebugMacro(<<"Reading file for GenerateOutputInformation()" << m_FileName); // Check to see if we can read the file given the name or prefix // if ( m_FileName == "" && m_FilePrefix == "" ) { throw itk::ImageFileReaderException(__FILE__, __LINE__, "One of FileName or FilePrefix must be non-empty"); } if( m_FileName != "") { mitkIpPicDescriptor* header=mitkIpPicGetHeader(const_cast<char *>(m_FileName.c_str()), NULL); if ( !header ) { throw itk::ImageFileReaderException(__FILE__, __LINE__, "File could not be read."); } header=MITKipPicGetTags(const_cast<char *>(m_FileName.c_str()), header); int channels = 1; mitkIpPicTSV_t *tsv; if ( (tsv = mitkIpPicQueryTag( header, "SOURCE HEADER" )) != NULL) { if(tsv->n[0]>1e+06) { mitkIpPicTSV_t *tsvSH; tsvSH = mitkIpPicDelTag( header, "SOURCE HEADER" ); mitkIpPicFreeTag(tsvSH); } } if ( (tsv = mitkIpPicQueryTag( header, "ICON80x80" )) != NULL) { mitkIpPicTSV_t *tsvSH; tsvSH = mitkIpPicDelTag( header, "ICON80x80" ); mitkIpPicFreeTag(tsvSH); } if ( (tsv = mitkIpPicQueryTag( header, "VELOCITY" )) != NULL) { ++channels; mitkIpPicDelTag( header, "VELOCITY" ); } if( header == NULL || header->bpe == 0) { itk::ImageFileReaderException e(__FILE__, __LINE__); itk::OStringStream msg; msg << " Could not read file " << m_FileName.c_str(); e.SetDescription(msg.str().c_str()); throw e; return; } // First initialize the geometry of the output image by the pic-header SlicedGeometry3D::Pointer slicedGeometry = mitk::SlicedGeometry3D::New(); PicHelper::InitializeEvenlySpaced(header, header->n[2], slicedGeometry); // if pic image only 3D, the n[3] value is not initialized unsigned int timesteps = 1; if( header->dim > 3 ) timesteps = header->n[3]; TimeSlicedGeometry::Pointer timeSliceGeometry = TimeSlicedGeometry::New(); timeSliceGeometry->InitializeEvenlyTimed(slicedGeometry, timesteps); timeSliceGeometry->ImageGeometryOn(); // Cast the pic descriptor to ImageDescriptor and initialize the output output->Initialize( CastToImageDescriptor(header)); output->SetGeometry( timeSliceGeometry ); mitkIpPicFree ( header ); } else { int numberOfImages=0; m_StartFileIndex=0; mitkIpPicDescriptor* header=NULL; char fullName[1024]; while(m_StartFileIndex<10) { sprintf(fullName, m_FilePattern.c_str(), m_FilePrefix.c_str(), m_StartFileIndex+numberOfImages); FILE * f=fopen(fullName,"r"); if(f==NULL) { //already found an image? if(numberOfImages>0) break; //no? let's increase start ++m_StartFileIndex; } else { fclose(f); //only open the header of the first file found, //@warning what to do when images do not have the same size?? if(header==NULL) { header=mitkIpPicGetHeader(fullName, NULL); header=MITKipPicGetTags(fullName, header); } ++numberOfImages; } } printf("\n numberofimages %d\n",numberOfImages); if(numberOfImages==0) { itk::ImageFileReaderException e(__FILE__, __LINE__); itk::OStringStream msg; msg << "no images found"; e.SetDescription(msg.str().c_str()); throw e; return; } //@FIXME: was ist, wenn die Bilder nicht alle gleich gross sind? if(numberOfImages>1) { printf("\n numberofimages %d > 1\n",numberOfImages); header->dim=3; header->n[2]=numberOfImages; } printf(" \ninitialisize output\n"); output->Initialize( CastToImageDescriptor(header) ); mitkIpPicFree ( header ); } m_ReadHeaderTime.Modified(); }
std::vector<BaseData::Pointer> LabelSetImageIO::Read() { const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, NULL ); if ( locale.compare(currLocale)!=0 ) { try { setlocale(LC_ALL, locale.c_str()); } catch(...) { mitkThrow() << "Could not set locale."; } } // begin regular image loading, adapted from mitkItkImageIO itk::NrrdImageIO::Pointer nrrdImageIO = itk::NrrdImageIO::New(); Image::Pointer image = Image::New(); const unsigned int MINDIM = 2; const unsigned int MAXDIM = 4; const std::string path = this->GetLocalFileName(); MITK_INFO << "loading " << path << " via itk::ImageIOFactory... " << std::endl; // Check to see if we can read the file given the name or prefix if (path.empty()) { mitkThrow() << "Empty filename in mitk::ItkImageIO "; } // Got to allocate space for the image. Determine the characteristics of // the image. nrrdImageIO->SetFileName(path); nrrdImageIO->ReadImageInformation(); unsigned int ndim = nrrdImageIO->GetNumberOfDimensions(); if (ndim < MINDIM || ndim > MAXDIM) { MITK_WARN << "Sorry, only dimensions 2, 3 and 4 are supported. The given file has " << ndim << " dimensions! Reading as 4D."; ndim = MAXDIM; } itk::ImageIORegion ioRegion(ndim); itk::ImageIORegion::SizeType ioSize = ioRegion.GetSize(); itk::ImageIORegion::IndexType ioStart = ioRegion.GetIndex(); unsigned int dimensions[MAXDIM]; dimensions[0] = 0; dimensions[1] = 0; dimensions[2] = 0; dimensions[3] = 0; ScalarType spacing[MAXDIM]; spacing[0] = 1.0f; spacing[1] = 1.0f; spacing[2] = 1.0f; spacing[3] = 1.0f; Point3D origin; origin.Fill(0); unsigned int i; for (i = 0; i < ndim; ++i) { ioStart[i] = 0; ioSize[i] = nrrdImageIO->GetDimensions(i); if (i<MAXDIM) { dimensions[i] = nrrdImageIO->GetDimensions(i); spacing[i] = nrrdImageIO->GetSpacing(i); if (spacing[i] <= 0) spacing[i] = 1.0f; } if (i<3) { origin[i] = nrrdImageIO->GetOrigin(i); } } ioRegion.SetSize(ioSize); ioRegion.SetIndex(ioStart); MITK_INFO << "ioRegion: " << ioRegion << std::endl; nrrdImageIO->SetIORegion(ioRegion); void* buffer = new unsigned char[nrrdImageIO->GetImageSizeInBytes()]; nrrdImageIO->Read(buffer); image->Initialize(MakePixelType(nrrdImageIO), ndim, dimensions); image->SetImportChannel(buffer, 0, Image::ManageMemory); // access direction of itk::Image and include spacing mitk::Matrix3D matrix; matrix.SetIdentity(); unsigned int j, itkDimMax3 = (ndim >= 3 ? 3 : ndim); for (i = 0; i < itkDimMax3; ++i) for (j = 0; j < itkDimMax3; ++j) matrix[i][j] = nrrdImageIO->GetDirection(j)[i]; // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = image->GetSlicedGeometry(0)->GetPlaneGeometry(0); planeGeometry->SetOrigin(origin); planeGeometry->GetIndexToWorldTransform()->SetMatrix(matrix); // re-initialize SlicedGeometry3D SlicedGeometry3D* slicedGeometry = image->GetSlicedGeometry(0); slicedGeometry->InitializeEvenlySpaced(planeGeometry, image->GetDimension(2)); slicedGeometry->SetSpacing(spacing); MITK_INFO << slicedGeometry->GetCornerPoint(false, false, false); MITK_INFO << slicedGeometry->GetCornerPoint(true, true, true); // re-initialize TimeGeometry ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, image->GetDimension(3)); image->SetTimeGeometry(timeGeometry); buffer = NULL; MITK_INFO << "number of image components: " << image->GetPixelType().GetNumberOfComponents() << std::endl; const itk::MetaDataDictionary& dictionary = nrrdImageIO->GetMetaDataDictionary(); for (itk::MetaDataDictionary::ConstIterator iter = dictionary.Begin(), iterEnd = dictionary.End(); iter != iterEnd; ++iter) { std::string key = std::string("meta.") + iter->first; if (iter->second->GetMetaDataObjectTypeInfo() == typeid(std::string)) { std::string value = dynamic_cast<itk::MetaDataObject<std::string>*>(iter->second.GetPointer())->GetMetaDataObjectValue(); image->SetProperty(key.c_str(), mitk::StringProperty::New(value)); } } // end regular image loading LabelSetImage::Pointer output = LabelSetImageConverter::ConvertImageToLabelSetImage(image); // get labels and add them as properties to the image char keybuffer[256]; unsigned int numberOfLayers = GetIntByKey(dictionary, "layers"); std::string _xmlStr; mitk::Label::Pointer label; for (unsigned int layerIdx = 0; layerIdx < numberOfLayers; layerIdx++) { sprintf(keybuffer, "layer_%03d", layerIdx); int numberOfLabels = GetIntByKey(dictionary, keybuffer); mitk::LabelSet::Pointer labelSet = mitk::LabelSet::New(); for (int labelIdx = 0; labelIdx < numberOfLabels; labelIdx++) { TiXmlDocument doc; sprintf(keybuffer, "label_%03d_%05d", layerIdx, labelIdx); _xmlStr = GetStringByKey(dictionary, keybuffer); doc.Parse(_xmlStr.c_str()); TiXmlElement * labelElem = doc.FirstChildElement("Label"); if (labelElem == 0) mitkThrow() << "Error parsing NRRD header for mitk::LabelSetImage IO"; label = LoadLabelFromTiXmlDocument(labelElem); if (label->GetValue() == 0) // set exterior label is needed to hold exterior information output->SetExteriorLabel(label); labelSet->AddLabel(label); labelSet->SetLayer(layerIdx); } output->AddLabelSetToLayer(layerIdx, labelSet); } MITK_INFO << "...finished!" << std::endl; try { setlocale(LC_ALL, currLocale.c_str()); } catch(...) { mitkThrow() << "Could not reset locale!"; } std::vector<BaseData::Pointer> result; result.push_back(output.GetPointer()); return result; }
void ToFNrrdImageWriter::ConvertStreamToNrrdFormat( std::string fileName ) { int CaptureWidth = 0; int CaptureHeight = 0; int PixelNumber = 0; int ImageSizeInBytes = 0; if (fileName==this->m_RGBImageFileName) { CaptureWidth = this->m_RGBCaptureWidth; CaptureHeight = this->m_RGBCaptureHeight; PixelNumber = this->m_RGBPixelNumber; ImageSizeInBytes = this->m_RGBImageSizeInBytes; } else { CaptureWidth = this->m_ToFCaptureWidth; CaptureHeight = this->m_ToFCaptureHeight; PixelNumber = this->m_ToFPixelNumber; ImageSizeInBytes = this->m_ToFImageSizeInBytes; } Image::Pointer imageTemplate = Image::New(); int dimension ; unsigned int* dimensions; if(m_ToFImageType == ToFImageType2DPlusT) { dimension = 4; dimensions = new unsigned int[dimension]; dimensions[0] = CaptureWidth; dimensions[1] = CaptureHeight; dimensions[2] = 1; dimensions[3] = this->m_NumOfFrames; } else if( m_ToFImageType == ToFImageType3D) { dimension = 3; dimensions = new unsigned int[dimension]; dimensions[0] = CaptureWidth; dimensions[1] = CaptureHeight; dimensions[2] = this->m_NumOfFrames; } else { throw std::logic_error("No image type set, please choose between 2D+t and 3D!"); } float* floatData; unsigned char* rgbData; if (fileName==this->m_RGBImageFileName) { rgbData = new unsigned char[PixelNumber*3]; for(int i=0; i<PixelNumber*3; i++) { rgbData[i] = i + 0.0; } mitk::PixelType RGBType = MakePixelType<unsigned char, itk::RGBPixel<unsigned char>, 3>(); imageTemplate->Initialize( RGBType,dimension, dimensions, 1); imageTemplate->SetSlice(rgbData, 0, 0, 0); } else { floatData = new float[PixelNumber]; for(int i=0; i<PixelNumber; i++) { floatData[i] = i + 0.0; } mitk::PixelType FloatType = MakeScalarPixelType<float>(); imageTemplate->Initialize( FloatType,dimension, dimensions, 1); imageTemplate->SetSlice(floatData, 0, 0, 0); } itk::NrrdImageIO::Pointer nrrdWriter = itk::NrrdImageIO::New(); nrrdWriter->SetNumberOfDimensions(dimension); nrrdWriter->SetPixelType( imageTemplate->GetPixelType().GetPixelType()); nrrdWriter->SetComponentType( (itk::ImageIOBase::IOComponentType) imageTemplate->GetPixelType().GetComponentType()); if(imageTemplate->GetPixelType().GetNumberOfComponents() > 1) { nrrdWriter->SetNumberOfComponents(imageTemplate->GetPixelType().GetNumberOfComponents()); } itk::ImageIORegion ioRegion( dimension ); mitk::Vector3D spacing = imageTemplate->GetGeometry()->GetSpacing(); mitk::Point3D origin = imageTemplate->GetGeometry()->GetOrigin(); for(unsigned int i = 0; i < dimension; i++) { nrrdWriter->SetDimensions(i,dimensions[i]); nrrdWriter->SetSpacing(i,spacing[i]); nrrdWriter->SetOrigin(i,origin[i]); mitk::Vector3D direction; direction.Set_vnl_vector(imageTemplate->GetGeometry()->GetIndexToWorldTransform()->GetMatrix().GetVnlMatrix().get_column(i)); vnl_vector< double > axisDirection(dimension); for(unsigned int j = 0; j < dimension; j++) { axisDirection[j] = direction[j]/spacing[i]; } nrrdWriter->SetDirection( i, axisDirection ); ioRegion.SetSize(i, imageTemplate->GetLargestPossibleRegion().GetSize(i) ); ioRegion.SetIndex(i, imageTemplate->GetLargestPossibleRegion().GetIndex(i) ); } nrrdWriter->SetIORegion(ioRegion); nrrdWriter->SetFileName(fileName); nrrdWriter->SetUseStreamedWriting(true); std::ifstream stream(fileName.c_str(), std::ifstream::binary); if (fileName==m_RGBImageFileName) { unsigned int size = PixelNumber*3 * this->m_NumOfFrames; unsigned int sizeInBytes = size * sizeof(unsigned char); unsigned char* data = new unsigned char[size]; stream.read((char*)data, sizeInBytes); nrrdWriter->Write(data); stream.close(); delete[] data; } else { unsigned int size = PixelNumber * this->m_NumOfFrames; unsigned int sizeInBytes = size * sizeof(float); float* data = new float[size]; stream.read((char*)data, sizeInBytes); try { nrrdWriter->Write(data); } catch (itk::ExceptionObject* e) { MITK_ERROR<< e->what(); return; } stream.close(); delete[] data; } delete[] dimensions; if (fileName==m_RGBImageFileName) { delete[] rgbData; } else { delete[] floatData; } }
mitk::Image::Pointer mitk::PicFileReader::CreateImage() { Image::Pointer output = Image::New(); std::string fileName = this->GetLocalFileName(); mitkIpPicDescriptor *header = mitkIpPicGetHeader(const_cast<char *>(fileName.c_str()), NULL); if (!header) { mitkThrow() << "File could not be read."; } header = mitkIpPicGetTags(const_cast<char *>(fileName.c_str()), header); int channels = 1; mitkIpPicTSV_t *tsv; if ((tsv = mitkIpPicQueryTag(header, "SOURCE HEADER")) != NULL) { if (tsv->n[0] > 1e+06) { mitkIpPicTSV_t *tsvSH; tsvSH = mitkIpPicDelTag(header, "SOURCE HEADER"); mitkIpPicFreeTag(tsvSH); } } if ((tsv = mitkIpPicQueryTag(header, "ICON80x80")) != NULL) { mitkIpPicTSV_t *tsvSH; tsvSH = mitkIpPicDelTag(header, "ICON80x80"); mitkIpPicFreeTag(tsvSH); } if ((tsv = mitkIpPicQueryTag(header, "VELOCITY")) != NULL) { ++channels; mitkIpPicDelTag(header, "VELOCITY"); } if (header == NULL || header->bpe == 0) { mitkThrow() << " Could not read file " << fileName; } // if pic image only 2D, the n[2] value is not initialized unsigned int slices = 1; if (header->dim == 2) { header->n[2] = slices; } // First initialize the geometry of the output image by the pic-header SlicedGeometry3D::Pointer slicedGeometry = mitk::SlicedGeometry3D::New(); PicHelper::InitializeEvenlySpaced(header, header->n[2], slicedGeometry); // if pic image only 3D, the n[3] value is not initialized unsigned int timesteps = 1; if (header->dim > 3) { timesteps = header->n[3]; } slicedGeometry->ImageGeometryOn(); ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, timesteps); // Cast the pic descriptor to ImageDescriptor and initialize the output output->Initialize(CastToImageDescriptor(header)); output->SetTimeGeometry(timeGeometry); mitkIpPicFree(header); return output; }
std::vector<BaseData::Pointer> ItkImageIO::Read() { std::vector<BaseData::Pointer> result; const std::string& locale = "C"; const std::string& currLocale = setlocale( LC_ALL, NULL ); if ( locale.compare(currLocale)!=0 ) { try { setlocale(LC_ALL, locale.c_str()); } catch(...) { MITK_INFO << "Could not set locale " << locale; } } Image::Pointer image = Image::New(); const unsigned int MINDIM = 2; const unsigned int MAXDIM = 4; const std::string path = this->GetLocalFileName(); MITK_INFO << "loading " << path << " via itk::ImageIOFactory... " << std::endl; // Check to see if we can read the file given the name or prefix if (path.empty()) { mitkThrow() << "Empty filename in mitk::ItkImageIO "; } // Got to allocate space for the image. Determine the characteristics of // the image. m_ImageIO->SetFileName( path ); m_ImageIO->ReadImageInformation(); unsigned int ndim = m_ImageIO->GetNumberOfDimensions(); if ( ndim < MINDIM || ndim > MAXDIM ) { MITK_WARN << "Sorry, only dimensions 2, 3 and 4 are supported. The given file has " << ndim << " dimensions! Reading as 4D."; ndim = MAXDIM; } itk::ImageIORegion ioRegion( ndim ); itk::ImageIORegion::SizeType ioSize = ioRegion.GetSize(); itk::ImageIORegion::IndexType ioStart = ioRegion.GetIndex(); unsigned int dimensions[ MAXDIM ]; dimensions[ 0 ] = 0; dimensions[ 1 ] = 0; dimensions[ 2 ] = 0; dimensions[ 3 ] = 0; ScalarType spacing[ MAXDIM ]; spacing[ 0 ] = 1.0f; spacing[ 1 ] = 1.0f; spacing[ 2 ] = 1.0f; spacing[ 3 ] = 1.0f; Point3D origin; origin.Fill(0); unsigned int i; for ( i = 0; i < ndim ; ++i ) { ioStart[ i ] = 0; ioSize[ i ] = m_ImageIO->GetDimensions( i ); if(i<MAXDIM) { dimensions[ i ] = m_ImageIO->GetDimensions( i ); spacing[ i ] = m_ImageIO->GetSpacing( i ); if(spacing[ i ] <= 0) spacing[ i ] = 1.0f; } if(i<3) { origin[ i ] = m_ImageIO->GetOrigin( i ); } } ioRegion.SetSize( ioSize ); ioRegion.SetIndex( ioStart ); MITK_INFO << "ioRegion: " << ioRegion << std::endl; m_ImageIO->SetIORegion( ioRegion ); void* buffer = new unsigned char[m_ImageIO->GetImageSizeInBytes()]; m_ImageIO->Read( buffer ); image->Initialize( MakePixelType(m_ImageIO), ndim, dimensions ); image->SetImportChannel( buffer, 0, Image::ManageMemory ); // access direction of itk::Image and include spacing mitk::Matrix3D matrix; matrix.SetIdentity(); unsigned int j, itkDimMax3 = (ndim >= 3? 3 : ndim); for ( i=0; i < itkDimMax3; ++i) for( j=0; j < itkDimMax3; ++j ) matrix[i][j] = m_ImageIO->GetDirection(j)[i]; // re-initialize PlaneGeometry with origin and direction PlaneGeometry* planeGeometry = image->GetSlicedGeometry(0)->GetPlaneGeometry(0); planeGeometry->SetOrigin(origin); planeGeometry->GetIndexToWorldTransform()->SetMatrix(matrix); // re-initialize SlicedGeometry3D SlicedGeometry3D* slicedGeometry = image->GetSlicedGeometry(0); slicedGeometry->InitializeEvenlySpaced(planeGeometry, image->GetDimension(2)); slicedGeometry->SetSpacing(spacing); MITK_INFO << slicedGeometry->GetCornerPoint(false,false,false); MITK_INFO << slicedGeometry->GetCornerPoint(true,true,true); // re-initialize TimeGeometry ProportionalTimeGeometry::Pointer timeGeometry = ProportionalTimeGeometry::New(); timeGeometry->Initialize(slicedGeometry, image->GetDimension(3)); image->SetTimeGeometry(timeGeometry); buffer = NULL; MITK_INFO << "number of image components: "<< image->GetPixelType().GetNumberOfComponents() << std::endl; const itk::MetaDataDictionary& dictionary = m_ImageIO->GetMetaDataDictionary(); for (itk::MetaDataDictionary::ConstIterator iter = dictionary.Begin(), iterEnd = dictionary.End(); iter != iterEnd; ++iter) { std::string key = std::string("meta.") + iter->first; if (iter->second->GetMetaDataObjectTypeInfo() == typeid(std::string)) { std::string value = dynamic_cast<itk::MetaDataObject<std::string>*>(iter->second.GetPointer())->GetMetaDataObjectValue(); image->SetProperty(key.c_str(), mitk::StringProperty::New(value)); } } MITK_INFO << "...finished!" << std::endl; try { setlocale(LC_ALL, currLocale.c_str()); } catch(...) { MITK_INFO << "Could not reset locale " << currLocale; } result.push_back(image.GetPointer()); return result; }