static bool compare_ (const ImageBuf &A, const ImageBuf &B, float failthresh, float warnthresh, ImageBufAlgo::CompareResults &result, ROI roi, int nthreads) { imagesize_t npels = roi.npixels(); imagesize_t nvals = npels * roi.nchannels(); int Achannels = A.nchannels(), Bchannels = B.nchannels(); // Compare the two images. // double totalerror = 0; double totalsqrerror = 0; result.maxerror = 0; result.maxx=0, result.maxy=0, result.maxz=0, result.maxc=0; result.nfail = 0, result.nwarn = 0; float maxval = 1.0; // max possible value ImageBuf::ConstIterator<Atype> a (A, roi, ImageBuf::WrapBlack); ImageBuf::ConstIterator<Btype> b (B, roi, ImageBuf::WrapBlack); bool deep = A.deep(); // Break up into batches to reduce cancelation errors as the error // sums become too much larger than the error for individual pixels. const int batchsize = 4096; // As good a guess as any for ( ; ! a.done(); ) { double batcherror = 0; double batch_sqrerror = 0; if (deep) { for (int i = 0; i < batchsize && !a.done(); ++i, ++a, ++b) { bool warned = false, failed = false; // For this pixel for (int c = roi.chbegin; c < roi.chend; ++c) for (int s = 0, e = a.deep_samples(); s < e; ++s) { compare_value (a, c, a.deep_value(c,s), b.deep_value(c,s), result, maxval, batcherror, batch_sqrerror, failed, warned, failthresh, warnthresh); } } } else { // non-deep for (int i = 0; i < batchsize && !a.done(); ++i, ++a, ++b) { bool warned = false, failed = false; // For this pixel for (int c = roi.chbegin; c < roi.chend; ++c) compare_value (a, c, c < Achannels ? a[c] : 0.0f, c < Bchannels ? b[c] : 0.0f, result, maxval, batcherror, batch_sqrerror, failed, warned, failthresh, warnthresh); } } totalerror += batcherror; totalsqrerror += batch_sqrerror; } result.meanerror = totalerror / nvals; result.rms_error = sqrt (totalsqrerror / nvals); result.PSNR = 20.0 * log10 (maxval / result.rms_error); return result.nfail == 0; }
static inline bool isConstantColor_ (const ImageBuf &src, float *color, ROI roi, int nthreads) { // Iterate using the native typing (for speed). std::vector<T> constval (roi.nchannels()); ImageBuf::ConstIterator<T,T> s (src, roi); for (int c = roi.chbegin; c < roi.chend; ++c) constval[c] = s[c]; // Loop over all pixels ... for ( ; ! s.done(); ++s) { for (int c = roi.chbegin; c < roi.chend; ++c) if (constval[c] != s[c]) return false; } if (color) { ImageBuf::ConstIterator<T,float> s (src, roi); for (int c = 0; c < roi.chbegin; ++c) color[c] = 0.0f; for (int c = roi.chbegin; c < roi.chend; ++c) color[c] = s[c]; for (int c = roi.chend; c < src.nchannels(); ++c) color[c] = 0.0f; } return true; }
static bool paste_ (ImageBuf &dst, ROI dstroi, const ImageBuf &src, ROI srcroi, int nthreads) { // N.B. Punt on parallelizing because of the subtle interplay // between srcroi and dstroi, the parallel_image idiom doesn't // handle that especially well. And it's not worth customizing for // this function which is inexpensive and not commonly used, and so // would benefit little from parallelizing. We can always revisit // this later. But in the mean time, we maintain the 'nthreads' // parameter for uniformity with the rest of IBA. int src_nchans = src.nchannels (); int dst_nchans = dst.nchannels (); ImageBuf::ConstIterator<S,D> s (src, srcroi); ImageBuf::Iterator<D,D> d (dst, dstroi); for ( ; ! s.done(); ++s, ++d) { if (! d.exists()) continue; // Skip paste-into pixels that don't overlap dst's data for (int c = srcroi.chbegin, c_dst = dstroi.chbegin; c < srcroi.chend; ++c, ++c_dst) { if (c_dst >= 0 && c_dst < dst_nchans) d[c_dst] = c < src_nchans ? s[c] : D(0); } } return true; }
static bool circular_shift_ (ImageBuf &dst, const ImageBuf &src, int xshift, int yshift, int zshift, ROI dstroi, ROI roi, int nthreads) { if (nthreads != 1 && roi.npixels() >= 1000) { // Possible multiple thread case -- recurse via parallel_image ImageBufAlgo::parallel_image ( boost::bind(circular_shift_<DSTTYPE,SRCTYPE>, boost::ref(dst), boost::cref(src), xshift, yshift, zshift, dstroi, _1 /*roi*/, 1 /*nthreads*/), roi, nthreads); return true; } // Serial case int width = dstroi.width(), height = dstroi.height(), depth = dstroi.depth(); ImageBuf::ConstIterator<SRCTYPE,DSTTYPE> s (src, roi); ImageBuf::Iterator<DSTTYPE,DSTTYPE> d (dst); for ( ; ! s.done(); ++s) { int dx = s.x() + xshift; OIIO::wrap_periodic (dx, dstroi.xbegin, width); int dy = s.y() + yshift; OIIO::wrap_periodic (dy, dstroi.ybegin, height); int dz = s.z() + zshift; OIIO::wrap_periodic (dz, dstroi.zbegin, depth); d.pos (dx, dy, dz); if (! d.exists()) continue; for (int c = roi.chbegin; c < roi.chend; ++c) d[c] = s[c]; } return true; }
static bool transpose_ (ImageBuf &dst, const ImageBuf &src, ROI roi, int nthreads) { if (nthreads != 1 && roi.npixels() >= 1000) { // Possible multiple thread case -- recurse via parallel_image ImageBufAlgo::parallel_image ( boost::bind(transpose_<DSTTYPE,SRCTYPE>, boost::ref(dst), boost::cref(src), _1 /*roi*/, 1 /*nthreads*/), roi, nthreads); return true; } // Serial case ImageBuf::ConstIterator<SRCTYPE,DSTTYPE> s (src, roi); ImageBuf::Iterator<DSTTYPE,DSTTYPE> d (dst); for ( ; ! s.done(); ++s) { d.pos (s.y(), s.x(), s.z()); if (! d.exists()) continue; for (int c = roi.chbegin; c < roi.chend; ++c) d[c] = s[c]; } return true; }
static bool convolve_ (ImageBuf &dst, const ImageBuf &src, const ImageBuf &kernel, bool normalize, ROI roi, int nthreads) { if (nthreads != 1 && roi.npixels() >= 1000) { // Lots of pixels and request for multi threads? Parallelize. ImageBufAlgo::parallel_image ( boost::bind(convolve_<DSTTYPE,SRCTYPE>, boost::ref(dst), boost::cref(src), boost::cref(kernel), normalize, _1 /*roi*/, 1 /*nthreads*/), roi, nthreads); return true; } // Serial case float scale = 1.0f; if (normalize) { scale = 0.0f; for (ImageBuf::ConstIterator<float> k (kernel); ! k.done(); ++k) scale += k[0]; scale = 1.0f / scale; } float *sum = ALLOCA (float, roi.chend); ROI kroi = get_roi (kernel.spec()); ImageBuf::Iterator<DSTTYPE> d (dst, roi); ImageBuf::ConstIterator<SRCTYPE> s (src, roi, ImageBuf::WrapClamp); for ( ; ! d.done(); ++d) { for (int c = roi.chbegin; c < roi.chend; ++c) sum[c] = 0.0f; for (ImageBuf::ConstIterator<float> k (kernel, kroi); !k.done(); ++k) { float kval = k[0]; s.pos (d.x() + k.x(), d.y() + k.y(), d.z() + k.z()); for (int c = roi.chbegin; c < roi.chend; ++c) sum[c] += kval * s[c]; } for (int c = roi.chbegin; c < roi.chend; ++c) d[c] = scale * sum[c]; } return true; }
static bool transpose_ (ImageBuf &dst, const ImageBuf &src, ROI roi, int nthreads) { ImageBufAlgo::parallel_image (roi, nthreads, [&](ROI roi){ ImageBuf::ConstIterator<SRCTYPE,DSTTYPE> s (src, roi); ImageBuf::Iterator<DSTTYPE,DSTTYPE> d (dst); for ( ; ! s.done(); ++s) { d.pos (s.y(), s.x(), s.z()); if (! d.exists()) continue; for (int c = roi.chbegin; c < roi.chend; ++c) d[c] = s[c]; } }); return true; }
static inline void get_pixel_channels_ (const ImageBuf &buf, int xbegin, int xend, int ybegin, int yend, int zbegin, int zend, int chbegin, int chend, D *r, stride_t xstride, stride_t ystride, stride_t zstride) { int w = (xend-xbegin), h = (yend-ybegin); int nchans = chend - chbegin; ImageSpec::auto_stride (xstride, ystride, zstride, sizeof(D), nchans, w, h); for (ImageBuf::ConstIterator<S,D> p (buf, xbegin, xend, ybegin, yend, zbegin, zend); !p.done(); ++p) { imagesize_t offset = (p.z()-zbegin)*zstride + (p.y()-ybegin)*ystride + (p.x()-xbegin)*xstride; D *rc = (D *)((char *)r + offset); for (int c = 0; c < nchans; ++c) rc[c] = p[c+chbegin]; } }
static bool histogram_impl (const ImageBuf &A, int channel, std::vector<imagesize_t> &histogram, int bins, float min, float max, imagesize_t *submin, imagesize_t *supermax, ROI roi) { // Double check A's type. if (A.spec().format != BaseTypeFromC<Atype>::value) { A.error ("Unsupported pixel data format '%s'", A.spec().format); return false; } // Initialize. ImageBuf::ConstIterator<Atype, float> a (A, roi); float ratio = bins / (max-min); int bins_minus_1 = bins-1; bool submin_ok = submin != NULL; bool supermax_ok = supermax != NULL; if (submin_ok) *submin = 0; if (supermax_ok) *supermax = 0; histogram.assign(bins, 0); // Compute histogram. for ( ; ! a.done(); a++) { float c = a[channel]; if (c >= min && c < max) { // Map range min->max to 0->(bins-1). histogram[ (int) ((c-min) * ratio) ]++; } else if (c == max) { histogram[bins_minus_1]++; } else { if (submin_ok && c < min) (*submin)++; else if (supermax_ok) (*supermax)++; } } return true; }
static bool color_count_ (const ImageBuf &src, atomic_ll *count, int ncolors, const float *color, const float *eps, ROI roi, int nthreads) { if (nthreads != 1 && roi.npixels() >= 1000) { // Lots of pixels and request for multi threads? Parallelize. ImageBufAlgo::parallel_image ( boost::bind(color_count_<T>, boost::ref(src), count, ncolors, color, eps, _1 /*roi*/, 1 /*nthreads*/), roi, nthreads); return true; } // Serial case int nchannels = src.nchannels(); long long *n = ALLOCA (long long, ncolors); for (int col = 0; col < ncolors; ++col) n[col] = 0; for (ImageBuf::ConstIterator<T> p (src, roi); !p.done(); ++p) { int coloffset = 0; for (int col = 0; col < ncolors; ++col, coloffset += nchannels) { int match = 1; for (int c = roi.chbegin; c < roi.chend; ++c) { if (fabsf(p[c] - color[coloffset+c]) > eps[c]) { match = 0; break; } } n[col] += match; } } for (int col = 0; col < ncolors; ++col) count[col] += n[col]; return true; }
static bool colorconvert_impl (ImageBuf &R, const ImageBuf &A, const ColorProcessor* processor, bool unpremult, ROI roi, int nthreads) { if (nthreads != 1 && roi.npixels() >= 1000) { // Possible multiple thread case -- recurse via parallel_image ImageBufAlgo::parallel_image ( OIIO::bind(colorconvert_impl<Rtype,Atype>, OIIO::ref(R), OIIO::cref(A), processor, unpremult, _1 /*roi*/, 1 /*nthreads*/), roi, nthreads); return true; } // Serial case int width = roi.width(); // Temporary space to hold one RGBA scanline std::vector<float> scanline(width*4, 0.0f); // Only process up to, and including, the first 4 channels. This // does let us process images with fewer than 4 channels, which is // the intent. // FIXME: Instead of loading the first 4 channels, obey // Rspec.alpha_channel index (but first validate that the // index is set properly for normal formats) int channelsToCopy = std::min (4, roi.nchannels()); // Walk through all data in our buffer. (i.e., crop or overscan) // FIXME: What about the display window? Should this actually promote // the datawindow to be union of data + display? This is useful if // the color of black moves. (In which case non-zero sections should // now be promoted). Consider the lin->log of a roto element, where // black now moves to non-black. float * dstPtr = NULL; const float fltmin = std::numeric_limits<float>::min(); // If the processor has crosstalk, and we'll be using it, we should // reset the channels to 0 before loading each scanline. bool clearScanline = (channelsToCopy<4 && (processor->hasChannelCrosstalk() || unpremult)); ImageBuf::ConstIterator<Atype> a (A, roi); ImageBuf::Iterator<Rtype> r (R, roi); for (int k = roi.zbegin; k < roi.zend; ++k) { for (int j = roi.ybegin; j < roi.yend; ++j) { // Clear the scanline if (clearScanline) memset (&scanline[0], 0, sizeof(float)*scanline.size()); // Load the scanline dstPtr = &scanline[0]; a.rerange (roi.xbegin, roi.xend, j, j+1, k, k+1); for ( ; !a.done(); ++a, dstPtr += 4) for (int c = 0; c < channelsToCopy; ++c) dstPtr[c] = a[c]; // Optionally unpremult if ((channelsToCopy >= 4) && unpremult) { for (int i = 0; i < width; ++i) { float alpha = scanline[4*i+3]; if (alpha > fltmin) { scanline[4*i+0] /= alpha; scanline[4*i+1] /= alpha; scanline[4*i+2] /= alpha; } } } // Apply the color transformation in place processor->apply (&scanline[0], width, 1, 4, sizeof(float), 4*sizeof(float), width*4*sizeof(float)); // Optionally premult if ((channelsToCopy >= 4) && unpremult) { for (int i = 0; i < width; ++i) { float alpha = scanline[4*i+3]; if (alpha > fltmin) { scanline[4*i+0] *= alpha; scanline[4*i+1] *= alpha; scanline[4*i+2] *= alpha; } } } // Store the scanline dstPtr = &scanline[0]; r.rerange (roi.xbegin, roi.xend, j, j+1, k, k+1); for ( ; !r.done(); ++r, dstPtr += 4) for (int c = 0; c < channelsToCopy; ++c) r[c] = dstPtr[c]; } } return true; }
static bool resize_ (ImageBuf &dst, const ImageBuf &src, Filter2D *filter, ROI roi, int nthreads) { if (nthreads != 1 && roi.npixels() >= 1000) { // Lots of pixels and request for multi threads? Parallelize. ImageBufAlgo::parallel_image ( boost::bind(resize_<DSTTYPE,SRCTYPE>, boost::ref(dst), boost::cref(src), filter, _1 /*roi*/, 1 /*nthreads*/), roi, nthreads); return true; } // Serial case const ImageSpec &srcspec (src.spec()); const ImageSpec &dstspec (dst.spec()); int nchannels = dstspec.nchannels; // Local copies of the source image window, converted to float float srcfx = srcspec.full_x; float srcfy = srcspec.full_y; float srcfw = srcspec.full_width; float srcfh = srcspec.full_height; // Ratios of dst/src size. Values larger than 1 indicate that we // are maximizing (enlarging the image), and thus want to smoothly // interpolate. Values less than 1 indicate that we are minimizing // (shrinking the image), and thus want to properly filter out the // high frequencies. float xratio = float(dstspec.full_width) / srcfw; // 2 upsize, 0.5 downsize float yratio = float(dstspec.full_height) / srcfh; float dstfx = dstspec.full_x; float dstfy = dstspec.full_y; float dstfw = dstspec.full_width; float dstfh = dstspec.full_height; float dstpixelwidth = 1.0f / dstfw; float dstpixelheight = 1.0f / dstfh; float *pel = ALLOCA (float, nchannels); float filterrad = filter->width() / 2.0f; // radi,radj is the filter radius, as an integer, in source pixels. We // will filter the source over [x-radi, x+radi] X [y-radj,y+radj]. int radi = (int) ceilf (filterrad/xratio); int radj = (int) ceilf (filterrad/yratio); int xtaps = 2*radi + 1; int ytaps = 2*radj + 1; bool separable = filter->separable(); float *xfiltval = NULL, *yfiltval = NULL; if (separable) { // Allocate temp space to cache the filter weights xfiltval = ALLOCA (float, xtaps); yfiltval = ALLOCA (float, ytaps); } #if 0 std::cerr << "Resizing " << srcspec.full_width << "x" << srcspec.full_height << " to " << dstspec.full_width << "x" << dstspec.full_height << "\n"; std::cerr << "ratios = " << xratio << ", " << yratio << "\n"; std::cerr << "examining src filter support radius of " << radi << " x " << radj << " pixels\n"; std::cerr << "dst range " << roi << "\n"; std::cerr << "separable filter\n"; #endif // We're going to loop over all output pixels we're interested in. // // (s,t) = NDC space coordinates of the output sample we are computing. // This is the "sample point". // (src_xf, src_xf) = source pixel space float coordinates of the // sample we're computing. We want to compute the weighted sum // of all the source image pixels that fall under the filter when // centered at that location. // (src_x, src_y) = image space integer coordinates of the floor, // i.e., the closest pixel in the source image. // src_xf_frac and src_yf_frac are the position within that pixel // of our sample. ImageBuf::Iterator<DSTTYPE> out (dst, roi); for (int y = roi.ybegin; y < roi.yend; ++y) { float t = (y-dstfy+0.5f)*dstpixelheight; float src_yf = srcfy + t * srcfh; int src_y; float src_yf_frac = floorfrac (src_yf, &src_y); // If using separable filters, our vertical set of filter tap // weights will be the same for the whole scanline we're on. Just // compute and normalize them once. float totalweight_y = 0.0f; if (separable) { for (int j = 0; j < ytaps; ++j) { float w = filter->yfilt (yratio * (j-radj-(src_yf_frac-0.5f))); yfiltval[j] = w; totalweight_y += w; } for (int i = 0; i <= ytaps; ++i) yfiltval[i] /= totalweight_y; } for (int x = roi.xbegin; x < roi.xend; ++x) { float s = (x-dstfx+0.5f)*dstpixelwidth; float src_xf = srcfx + s * srcfw; int src_x; float src_xf_frac = floorfrac (src_xf, &src_x); for (int c = 0; c < nchannels; ++c) pel[c] = 0.0f; if (separable) { // Cache and normalize the horizontal filter tap weights // just once for this (x,y) position, reuse for all vertical // taps. float totalweight_x = 0.0f; for (int i = 0; i < xtaps; ++i) { float w = filter->xfilt (xratio * (i-radi-(src_xf_frac-0.5f))); xfiltval[i] = w; totalweight_x += w; } if (totalweight_x != 0.0f) { for (int i = 0; i < xtaps; ++i) // normalize x filter xfiltval[i] /= totalweight_x; // weights ImageBuf::ConstIterator<SRCTYPE> srcpel (src, src_x-radi, src_x+radi+1, src_y-radj, src_y+radj+1, 0, 1, ImageBuf::WrapClamp); for (int j = -radj; j <= radj; ++j) { float wy = yfiltval[j+radj]; if (wy == 0.0f) { // 0 weight for this y tap -- move to next line srcpel.pos (srcpel.x(), srcpel.y()+1, srcpel.z()); continue; } for (int i = 0; i < xtaps; ++i, ++srcpel) { float w = wy * xfiltval[i]; for (int c = 0; c < nchannels; ++c) pel[c] += w * srcpel[c]; } } } // Copy the pixel value (already normalized) to the output. DASSERT (out.x() == x && out.y() == y); if (totalweight_y == 0.0f) { // zero it out for (int c = 0; c < nchannels; ++c) out[c] = 0.0f; } else { for (int c = 0; c < nchannels; ++c) out[c] = pel[c]; } } else { // Non-separable float totalweight = 0.0f; ImageBuf::ConstIterator<SRCTYPE> srcpel (src, src_x-radi, src_x+radi+1, src_y-radi, src_y+radi+1, 0, 1, ImageBuf::WrapClamp); for (int j = -radj; j <= radj; ++j) { for (int i = -radi; i <= radi; ++i, ++srcpel) { float w = (*filter)(xratio * (i-(src_xf_frac-0.5f)), yratio * (j-(src_yf_frac-0.5f))); totalweight += w; if (w == 0.0f) continue; DASSERT (! srcpel.done()); for (int c = 0; c < nchannels; ++c) pel[c] += w * srcpel[c]; } } DASSERT (srcpel.done()); // Rescale pel to normalize the filter and write it to the // output image. DASSERT (out.x() == x && out.y() == y); if (totalweight == 0.0f) { // zero it out for (int c = 0; c < nchannels; ++c) out[c] = 0.0f; } else { for (int c = 0; c < nchannels; ++c) out[c] = pel[c] / totalweight; } } ++out; } } return true; }