/// isBlockOnlyReachableByFallthough - Return true if the basic block has /// exactly one predecessor and the control transfer mechanism between /// the predecessor and this block is a fall-through. /// Override AsmPrinter implementation to handle delay slots bool SparcAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { // If this is a landing pad, it isn't a fall through. If it has no preds, // then nothing falls through to it. if (MBB->isLandingPad() || MBB->pred_empty()) return false; // If there isn't exactly one predecessor, it can't be a fall through. MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; ++PI2; if (PI2 != MBB->pred_end()) return false; // The predecessor has to be immediately before this block. const MachineBasicBlock *Pred = *PI; if (!Pred->isLayoutSuccessor(MBB)) return false; // Check if the last terminator is an unconditional branch MachineBasicBlock::const_iterator I = Pred->end(); while( I != Pred->begin() && !(--I)->getDesc().isTerminator() ) ; /* Noop */ return I == Pred->end() || !I->getDesc().isBarrier(); }
SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; // Compute split points on the first call. The pair is independent of the // current live interval. if (!LSP.first.isValid()) { MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); if (FirstTerm == MBB->end()) LSP.first = LIS.getMBBEndIdx(MBB); else LSP.first = LIS.getInstructionIndex(FirstTerm); // If there is a landing pad successor, also find the call instruction. if (!LPad) return LSP.first; // There may not be a call instruction (?) in which case we ignore LPad. LSP.second = LSP.first; for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); I != E;) { --I; if (I->getDesc().isCall()) { LSP.second = LIS.getInstructionIndex(I); break; } } } // If CurLI is live into a landing pad successor, move the last split point // back to the call that may throw. if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad)) return LSP.second; else return LSP.first; }
/// shouldTailDuplicate - Determine if it is profitable to duplicate this block. bool TailDuplicatePass::shouldTailDuplicate(const MachineFunction &MF, MachineBasicBlock &TailBB) { // Only duplicate blocks that end with unconditional branches. if (TailBB.canFallThrough()) return false; // Don't try to tail-duplicate single-block loops. if (TailBB.isSuccessor(&TailBB)) return false; // Set the limit on the cost to duplicate. When optimizing for size, // duplicate only one, because one branch instruction can be eliminated to // compensate for the duplication. unsigned MaxDuplicateCount; if (TailDuplicateSize.getNumOccurrences() == 0 && MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) MaxDuplicateCount = 1; else MaxDuplicateCount = TailDuplicateSize; // If the target has hardware branch prediction that can handle indirect // branches, duplicating them can often make them predictable when there // are common paths through the code. The limit needs to be high enough // to allow undoing the effects of tail merging and other optimizations // that rearrange the predecessors of the indirect branch. if (PreRegAlloc && !TailBB.empty()) { const TargetInstrDesc &TID = TailBB.back().getDesc(); if (TID.isIndirectBranch()) MaxDuplicateCount = 20; } // Check the instructions in the block to determine whether tail-duplication // is invalid or unlikely to be profitable. unsigned InstrCount = 0; for (MachineBasicBlock::const_iterator I = TailBB.begin(); I != TailBB.end(); ++I) { // Non-duplicable things shouldn't be tail-duplicated. if (I->getDesc().isNotDuplicable()) return false; // Do not duplicate 'return' instructions if this is a pre-regalloc run. // A return may expand into a lot more instructions (e.g. reload of callee // saved registers) after PEI. if (PreRegAlloc && I->getDesc().isReturn()) return false; // Avoid duplicating calls before register allocation. Calls presents a // barrier to register allocation so duplicating them may end up increasing // spills. if (PreRegAlloc && I->getDesc().isCall()) return false; if (!I->isPHI() && !I->isDebugValue()) InstrCount += 1; if (InstrCount > MaxDuplicateCount) return false; } return true; }
unsigned char* JITDwarfEmitter::EmitExceptionTable(MachineFunction* MF, unsigned char* StartFunction, unsigned char* EndFunction) const { assert(MMI && "MachineModuleInfo not registered!"); // Map all labels and get rid of any dead landing pads. MMI->TidyLandingPads(JCE->getLabelLocations()); const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos(); const std::vector<unsigned> &FilterIds = MMI->getFilterIds(); const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads(); if (PadInfos.empty()) return 0; // Sort the landing pads in order of their type ids. This is used to fold // duplicate actions. SmallVector<const LandingPadInfo *, 64> LandingPads; LandingPads.reserve(PadInfos.size()); for (unsigned i = 0, N = PadInfos.size(); i != N; ++i) LandingPads.push_back(&PadInfos[i]); std::sort(LandingPads.begin(), LandingPads.end(), PadLT); // Negative type ids index into FilterIds, positive type ids index into // TypeInfos. The value written for a positive type id is just the type // id itself. For a negative type id, however, the value written is the // (negative) byte offset of the corresponding FilterIds entry. The byte // offset is usually equal to the type id, because the FilterIds entries // are written using a variable width encoding which outputs one byte per // entry as long as the value written is not too large, but can differ. // This kind of complication does not occur for positive type ids because // type infos are output using a fixed width encoding. // FilterOffsets[i] holds the byte offset corresponding to FilterIds[i]. SmallVector<int, 16> FilterOffsets; FilterOffsets.reserve(FilterIds.size()); int Offset = -1; for(std::vector<unsigned>::const_iterator I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) { FilterOffsets.push_back(Offset); Offset -= MCAsmInfo::getULEB128Size(*I); } // Compute the actions table and gather the first action index for each // landing pad site. SmallVector<ActionEntry, 32> Actions; SmallVector<unsigned, 64> FirstActions; FirstActions.reserve(LandingPads.size()); int FirstAction = 0; unsigned SizeActions = 0; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LP = LandingPads[i]; const std::vector<int> &TypeIds = LP->TypeIds; const unsigned NumShared = i ? SharedTypeIds(LP, LandingPads[i-1]) : 0; unsigned SizeSiteActions = 0; if (NumShared < TypeIds.size()) { unsigned SizeAction = 0; ActionEntry *PrevAction = 0; if (NumShared) { const unsigned SizePrevIds = LandingPads[i-1]->TypeIds.size(); assert(Actions.size()); PrevAction = &Actions.back(); SizeAction = MCAsmInfo::getSLEB128Size(PrevAction->NextAction) + MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); for (unsigned j = NumShared; j != SizePrevIds; ++j) { SizeAction -= MCAsmInfo::getSLEB128Size(PrevAction->ValueForTypeID); SizeAction += -PrevAction->NextAction; PrevAction = PrevAction->Previous; } } // Compute the actions. for (unsigned I = NumShared, M = TypeIds.size(); I != M; ++I) { int TypeID = TypeIds[I]; assert(-1-TypeID < (int)FilterOffsets.size() && "Unknown filter id!"); int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID; unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID); int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0; SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction); SizeSiteActions += SizeAction; ActionEntry Action = {ValueForTypeID, NextAction, PrevAction}; Actions.push_back(Action); PrevAction = &Actions.back(); } // Record the first action of the landing pad site. FirstAction = SizeActions + SizeSiteActions - SizeAction + 1; } // else identical - re-use previous FirstAction FirstActions.push_back(FirstAction); // Compute this sites contribution to size. SizeActions += SizeSiteActions; } // Compute the call-site table. Entries must be ordered by address. SmallVector<CallSiteEntry, 64> CallSites; RangeMapType PadMap; for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) { const LandingPadInfo *LandingPad = LandingPads[i]; for (unsigned j=0, E = LandingPad->BeginLabels.size(); j != E; ++j) { MCSymbol *BeginLabel = LandingPad->BeginLabels[j]; assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!"); PadRange P = { i, j }; PadMap[BeginLabel] = P; } } bool MayThrow = false; MCSymbol *LastLabel = 0; for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { MayThrow |= MI->getDesc().isCall(); continue; } MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol(); assert(BeginLabel && "Invalid label!"); if (BeginLabel == LastLabel) MayThrow = false; RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) continue; PadRange P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // If some instruction between the previous try-range and this one may // throw, create a call-site entry with no landing pad for the region // between the try-ranges. if (MayThrow) { CallSiteEntry Site = {LastLabel, BeginLabel, 0, 0}; CallSites.push_back(Site); } LastLabel = LandingPad->EndLabels[P.RangeIndex]; CallSiteEntry Site = {BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex]}; assert(Site.BeginLabel && Site.EndLabel && Site.PadLabel && "Invalid landing pad!"); // Try to merge with the previous call-site. if (CallSites.size()) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. CallSites.push_back(Site); } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (MayThrow) { CallSiteEntry Site = {LastLabel, 0, 0, 0}; CallSites.push_back(Site); } // Final tallies. unsigned SizeSites = CallSites.size() * (sizeof(int32_t) + // Site start. sizeof(int32_t) + // Site length. sizeof(int32_t)); // Landing pad. for (unsigned i = 0, e = CallSites.size(); i < e; ++i) SizeSites += MCAsmInfo::getULEB128Size(CallSites[i].Action); unsigned SizeTypes = TypeInfos.size() * TD->getPointerSize(); unsigned TypeOffset = sizeof(int8_t) + // Call site format // Call-site table length MCAsmInfo::getULEB128Size(SizeSites) + SizeSites + SizeActions + SizeTypes; // Begin the exception table. JCE->emitAlignmentWithFill(4, 0); // Asm->EOL("Padding"); unsigned char* DwarfExceptionTable = (unsigned char*)JCE->getCurrentPCValue(); // Emit the header. JCE->emitByte(dwarf::DW_EH_PE_omit); // Asm->EOL("LPStart format (DW_EH_PE_omit)"); JCE->emitByte(dwarf::DW_EH_PE_absptr); // Asm->EOL("TType format (DW_EH_PE_absptr)"); JCE->emitULEB128Bytes(TypeOffset); // Asm->EOL("TType base offset"); JCE->emitByte(dwarf::DW_EH_PE_udata4); // Asm->EOL("Call site format (DW_EH_PE_udata4)"); JCE->emitULEB128Bytes(SizeSites); // Asm->EOL("Call-site table length"); // Emit the landing pad site information. for (unsigned i = 0; i < CallSites.size(); ++i) { CallSiteEntry &S = CallSites[i]; intptr_t BeginLabelPtr = 0; intptr_t EndLabelPtr = 0; if (!S.BeginLabel) { BeginLabelPtr = (intptr_t)StartFunction; JCE->emitInt32(0); } else { BeginLabelPtr = JCE->getLabelAddress(S.BeginLabel); JCE->emitInt32(BeginLabelPtr - (intptr_t)StartFunction); } // Asm->EOL("Region start"); if (!S.EndLabel) EndLabelPtr = (intptr_t)EndFunction; else EndLabelPtr = JCE->getLabelAddress(S.EndLabel); JCE->emitInt32(EndLabelPtr - BeginLabelPtr); //Asm->EOL("Region length"); if (!S.PadLabel) { JCE->emitInt32(0); } else { unsigned PadLabelPtr = JCE->getLabelAddress(S.PadLabel); JCE->emitInt32(PadLabelPtr - (intptr_t)StartFunction); } // Asm->EOL("Landing pad"); JCE->emitULEB128Bytes(S.Action); // Asm->EOL("Action"); } // Emit the actions. for (unsigned I = 0, N = Actions.size(); I != N; ++I) { ActionEntry &Action = Actions[I]; JCE->emitSLEB128Bytes(Action.ValueForTypeID); //Asm->EOL("TypeInfo index"); JCE->emitSLEB128Bytes(Action.NextAction); //Asm->EOL("Next action"); } // Emit the type ids. for (unsigned M = TypeInfos.size(); M; --M) { const GlobalVariable *GV = TypeInfos[M - 1]; if (GV) { if (TD->getPointerSize() == sizeof(int32_t)) JCE->emitInt32((intptr_t)Jit.getOrEmitGlobalVariable(GV)); else JCE->emitInt64((intptr_t)Jit.getOrEmitGlobalVariable(GV)); } else { if (TD->getPointerSize() == sizeof(int32_t)) JCE->emitInt32(0); else JCE->emitInt64(0); } // Asm->EOL("TypeInfo"); } // Emit the filter typeids. for (unsigned j = 0, M = FilterIds.size(); j < M; ++j) { unsigned TypeID = FilterIds[j]; JCE->emitULEB128Bytes(TypeID); //Asm->EOL("Filter TypeInfo index"); } JCE->emitAlignmentWithFill(4, 0); return DwarfExceptionTable; }
/// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke /// has a try-range containing the call, a non-zero landing pad, and an /// appropriate action. The entry for an ordinary call has a try-range /// containing the call and zero for the landing pad and the action. Calls /// marked 'nounwind' have no entry and must not be contained in the try-range /// of any entry - they form gaps in the table. Entries must be ordered by /// try-range address. void DwarfException:: ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites, const RangeMapType &PadMap, const SmallVectorImpl<const LandingPadInfo *> &LandingPads, const SmallVectorImpl<unsigned> &FirstActions) { // The end label of the previous invoke or nounwind try-range. unsigned LastLabel = 0; // Whether there is a potentially throwing instruction (currently this means // an ordinary call) between the end of the previous try-range and now. bool SawPotentiallyThrowing = false; // Whether the last CallSite entry was for an invoke. bool PreviousIsInvoke = false; // Visit all instructions in order of address. for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end(); MI != E; ++MI) { if (!MI->isLabel()) { SawPotentiallyThrowing |= MI->getDesc().isCall(); continue; } unsigned BeginLabel = MI->getOperand(0).getImm(); assert(BeginLabel && "Invalid label!"); // End of the previous try-range? if (BeginLabel == LastLabel) SawPotentiallyThrowing = false; // Beginning of a new try-range? RangeMapType::iterator L = PadMap.find(BeginLabel); if (L == PadMap.end()) // Nope, it was just some random label. continue; const PadRange &P = L->second; const LandingPadInfo *LandingPad = LandingPads[P.PadIndex]; assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] && "Inconsistent landing pad map!"); // For Dwarf exception handling (SjLj handling doesn't use this). If some // instruction between the previous try-range and this one may throw, // create a call-site entry with no landing pad for the region between the // try-ranges. if (SawPotentiallyThrowing && TAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 }; CallSites.push_back(Site); PreviousIsInvoke = false; } LastLabel = LandingPad->EndLabels[P.RangeIndex]; assert(BeginLabel && LastLabel && "Invalid landing pad!"); if (LandingPad->LandingPadLabel) { // This try-range is for an invoke. CallSiteEntry Site = { BeginLabel, LastLabel, LandingPad->LandingPadLabel, FirstActions[P.PadIndex] }; // Try to merge with the previous call-site. if (PreviousIsInvoke) { CallSiteEntry &Prev = CallSites.back(); if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) { // Extend the range of the previous entry. Prev.EndLabel = Site.EndLabel; continue; } } // Otherwise, create a new call-site. CallSites.push_back(Site); PreviousIsInvoke = true; } else { // Create a gap. PreviousIsInvoke = false; } } } // If some instruction between the previous try-range and the end of the // function may throw, create a call-site entry with no landing pad for the // region following the try-range. if (SawPotentiallyThrowing && TAI->getExceptionHandlingType() == ExceptionHandling::Dwarf) { CallSiteEntry Site = { LastLabel, 0, 0, 0 }; CallSites.push_back(Site); } }
bool VirtRegReduction::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; #if VRRPROF const Function *F = MF.getFunction(); std::string FN = F->getName().str(); llog("starting vrr... %s (%d)\n", FN.c_str(), (int)time(NULL)); llog("starting immRegs finder... (%d)\n", (int)time(NULL)); #endif std::auto_ptr<std::unordered_set<unsigned> > immRegsHolder; std::unordered_set<unsigned> *immRegs = NULL; // single-def regs defined by a MoveImm shouldn't coalesce as we may be // able to fold them later { std::unordered_map<unsigned, const MachineInstr *> singleDef; MachineFunction::const_iterator I = MF.begin(), E = MF.end(); // find all registers w/ a single def for(; I != E; I++) { MachineBasicBlock::const_iterator BI = I->begin(), BE = I->end(); for(; BI != BE; BI++) { MachineInstr::const_mop_iterator II, IE; II = BI->operands_begin(); IE = BI->operands_end(); for(; II != IE; II++) if(II->isReg() && II->isDef()) { unsigned R = II->getReg(); std::unordered_map<unsigned, const MachineInstr *>::iterator SI = singleDef.find(R); if(SI == singleDef.end()) singleDef[R] = BI; // first seen! insert else SI->second = NULL; // second seen -- replace w/ NULL } } } std::unordered_map<unsigned, const MachineInstr *>::const_iterator SI = singleDef.begin(), SE = singleDef.end(); for(; SI != SE; SI++) { if(SI->second && SI->second->getDesc().isMoveImmediate()) // single def imm? { if(!immRegs) immRegsHolder.reset(immRegs = new std::unordered_set<unsigned>); immRegs->insert(SI->first); // don't coalesce } } } #if VRRPROF llog("starting tdkRegs finder... (%d)\n", (int)time(NULL)); #endif std::auto_ptr<std::unordered_set<unsigned> > tdkRegsHolder; std::unordered_set<unsigned> *tdkRegs = NULL; bool setjmpSafe = !MF.callsSetJmp() && MF.getFunction()->doesNotThrow(); { tdkRegsHolder.reset(tdkRegs = new std::unordered_set<unsigned>); std::unordered_map<unsigned, unsigned> trivialDefKills; MachineFunction::const_iterator I = MF.begin(), E = MF.end(); // find all registers defed and killed in the same block w/ no intervening // unsafe (due to setjmp) calls + side-effecty operations for(; I != E; I++) { std::unordered_set<unsigned> defs; MachineBasicBlock::const_iterator BI = I->begin(), BE = I->end(); for(; BI != BE; BI++) { // TODO need to add || BI->getDesc().isInlineAsm() here to help stackification? if((!setjmpSafe && BI->getDesc().isCall()) || BI->getDesc().hasUnmodeledSideEffects()) { // invalidate on a call instruction if setjmp present, or instr with side effects regardless defs.clear(); } MachineInstr::const_mop_iterator II, IE; // uses when we're not tracking a reg it make it unsafe II = BI->operands_begin(); IE = BI->operands_end(); for(; II != IE; II++) if(II->isReg() && II->isUse()) { unsigned R = II->getReg(); std::unordered_set<unsigned>::const_iterator DI = defs.find(R); if(DI == defs.end()) trivialDefKills[R] = 100; } // kills of tracked defs are trivial def/kills II = BI->operands_begin(); IE = BI->operands_end(); for(; II != IE; II++) if(II->isReg() && II->isKill()) { unsigned R = II->getReg(); std::unordered_set<unsigned>::const_iterator DI = defs.find(R); if(DI != defs.end()) { defs.erase(DI); trivialDefKills[R]++; } else trivialDefKills[R] = 100; // don't use } // record all defs in this instruction II = BI->operands_begin(); IE = BI->operands_end(); for(; II != IE; II++) if(II->isReg() && II->isDef()) defs.insert(II->getReg()); } } std::unordered_map<unsigned, unsigned>::const_iterator DKI = trivialDefKills.begin(), DKE = trivialDefKills.end(); for(; DKI != DKE; DKI++) if(DKI->second == 1) tdkRegs->insert(DKI->first); } #if VRRPROF llog("starting conflict graph construction... (%d)\n", (int)time(NULL)); #endif std::unordered_set<unsigned>::const_iterator tdkE = tdkRegs->end(); std::unordered_set<unsigned> *okRegs = NULL; if(!setjmpSafe) okRegs = tdkRegs; MachineRegisterInfo *RI = &(MF.getRegInfo()); // will eventually hold a virt register coloring for this function ConflictGraph::Coloring coloring; { ConflictGraph cg; LiveIntervals &LIS = getAnalysis<LiveIntervals>(); LiveIntervals::const_iterator I = LIS.begin(), E = LIS.end(); // check every possible LiveInterval, LiveInterval pair of the same // register class for overlap and add overlaps to the conflict graph // also, treat trivially def-kill-ed regs and not trivially def-kill-ed // regs as conflicting so they end up using different VRs -- this makes // stackification easier later in the toolchain for(; I != E; I++) { unsigned R = I->first; if(TargetRegisterInfo::isPhysicalRegister(R)) continue; if(okRegs && okRegs->find(R) == okRegs->end()) continue; // leave singly-defined MoveImm regs for later coalescing if(immRegs && immRegs->find(R) != immRegs->end()) continue; // const TargetRegisterClass *RC = RI->getRegClass(R); const LiveInterval *LI = I->second; if(LI->empty()) continue; cg.addVertex(R); bool notTDK = tdkRegs->find(R) == tdkE; LiveIntervals::const_iterator I1 = I; I1++; for(; I1 != E; I1++) { unsigned R1 = I1->first; if(TargetRegisterInfo::isPhysicalRegister(R1)) continue; if(okRegs && okRegs->find(R1) == okRegs->end()) continue; // leave singly-defined MoveImm regs for later coalescing if(immRegs && immRegs->find(R1) != immRegs->end()) continue; /* Don't bother checked RC -- even though it sounds like an opt, it doesn't speed us up in practice const TargetRegisterClass *RC1 = RI->getRegClass(R1); if(RC != RC1) continue; // different reg class... won't conflict */ const LiveInterval *LI1 = I1->second; // conflict if intervals overlap OR they're not both TDK or both NOT TDK if(LI->overlaps(*LI1) || notTDK != (tdkRegs->find(R1) == tdkE)) cg.addEdge(R, R1); } } #if VRRPROF llog("starting coloring... (%d)\n", (int)time(NULL)); #endif cg.color(&coloring); #if VRRPROF llog("starting vreg=>vreg construction... (%d)\n", (int)time(NULL)); #endif typedef std::unordered_map<unsigned, unsigned> VRegMap; VRegMap Regs; // build up map of vreg=>vreg { std::unordered_map<const TargetRegisterClass *, std::unordered_map<unsigned, unsigned> > RCColor2VReg; ConflictGraph::Coloring::const_iterator I = coloring.begin(), E = coloring.end(); for(; I != E; I++) { unsigned R = I->first; unsigned Color = I->second; const TargetRegisterClass *RC = RI->getRegClass(R); std::unordered_map<unsigned, unsigned> &Color2VReg = RCColor2VReg[RC]; VRegMap::const_iterator CI = Color2VReg.find(Color); if(CI != Color2VReg.end()) Regs[R] = CI->second; // seen this color; map it else Regs[R] = Color2VReg[Color] = R; // first sighting of color; bind to this reg } } #if VRRPROF llog("starting remap... (%d)\n", (int)time(NULL)); #endif // remap regs { VRegMap::const_iterator I = Regs.begin(), E = Regs.end(); for(; I != E; I++) if(I->first != I->second) { RI->replaceRegWith(I->first, I->second); Changed = true; } } } #if VRRPROF llog("done... (%d)\n", (int)time(NULL)); #endif return Changed; }