示例#1
0
/// isDead returns true if the instruction is dead
/// (this was essentially copied from DeadMachineInstructionElim::isDead, but
/// with special cases for inline asm, physical registers and instructions with
/// side effects removed)
bool PPCCTRLoops::isDead(const MachineInstr *MI,
                         SmallVector<MachineInstr *, 1> &DeadPhis) const {
  // Examine each operand.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (MO.isReg() && MO.isDef()) {
      unsigned Reg = MO.getReg();
      if (!MRI->use_nodbg_empty(Reg)) {
        // This instruction has users, but if the only user is the phi node for
        // the parent block, and the only use of that phi node is this
        // instruction, then this instruction is dead: both it (and the phi
        // node) can be removed.
        MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg);
        if (llvm::next(I) == MRI->use_end() &&
            I.getOperand().getParent()->isPHI()) {
          MachineInstr *OnePhi = I.getOperand().getParent();

          for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
            const MachineOperand &OPO = OnePhi->getOperand(j);
            if (OPO.isReg() && OPO.isDef()) {
              unsigned OPReg = OPO.getReg();

              MachineRegisterInfo::use_iterator nextJ;
              for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg),
                   E = MRI->use_end(); J!=E; J=nextJ) {
                nextJ = llvm::next(J);
                MachineOperand& Use = J.getOperand();
                MachineInstr *UseMI = Use.getParent();

                if (MI != UseMI) {
                  // The phi node has a user that is not MI, bail...
                  return false;
                }
              }
            }
          }

          DeadPhis.push_back(OnePhi);
        } else {
          // This def has a non-debug use. Don't delete the instruction!
          return false;
        }
      }
    }
  }

  // If there are no defs with uses, the instruction is dead.
  return true;
}
示例#2
0
void PPCCTRLoops::removeIfDead(MachineInstr *MI) {
  // This procedure was essentially copied from DeadMachineInstructionElim

  SmallVector<MachineInstr *, 1> DeadPhis;
  if (isDead(MI, DeadPhis)) {
    DEBUG(dbgs() << "CTR looping will remove: " << *MI);

    // It is possible that some DBG_VALUE instructions refer to this
    // instruction.  Examine each def operand for such references;
    // if found, mark the DBG_VALUE as undef (but don't delete it).
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isDef())
        continue;
      unsigned Reg = MO.getReg();
      MachineRegisterInfo::use_iterator nextI;
      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
           E = MRI->use_end(); I!=E; I=nextI) {
        nextI = llvm::next(I);  // I is invalidated by the setReg
        MachineOperand& Use = I.getOperand();
        MachineInstr *UseMI = Use.getParent();
        if (UseMI==MI)
          continue;
        if (Use.isDebug()) // this might also be a instr -> phi -> instr case
                           // which can also be removed.
          UseMI->getOperand(0).setReg(0U);
      }
    }

    MI->eraseFromParent();
    for (unsigned i = 0; i < DeadPhis.size(); ++i) {
      DeadPhis[i]->eraseFromParent();
    }
  }
}
/// isLiveInButUnusedBefore - Return true if register is livein the MBB not
/// not used before it reaches the MI that defines register.
static bool isLiveInButUnusedBefore(unsigned Reg, MachineInstr *MI,
                                    MachineBasicBlock *MBB,
                                    const TargetRegisterInfo *TRI,
                                    MachineRegisterInfo* MRI) {
  // First check if register is livein.
  bool isLiveIn = false;
  for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
         E = MBB->livein_end(); I != E; ++I)
    if (Reg == *I || TRI->isSuperRegister(Reg, *I)) {
      isLiveIn = true;
      break;
    }
  if (!isLiveIn)
    return false;

  // Is there any use of it before the specified MI?
  SmallPtrSet<MachineInstr*, 4> UsesInMBB;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    if (UseMO.isReg() && UseMO.isUndef())
      continue;
    MachineInstr *UseMI = &*UI;
    if (UseMI->getParent() == MBB)
      UsesInMBB.insert(UseMI);
  }
  if (UsesInMBB.empty())
    return true;

  for (MachineBasicBlock::iterator I = MBB->begin(), E = MI; I != E; ++I)
    if (UsesInMBB.count(&*I))
      return false;
  return true;
}
bool MipsDAGToDAGISel::ReplaceUsesWithZeroReg(MachineRegisterInfo *MRI,
                                              const MachineInstr& MI) {
  unsigned DstReg = 0, ZeroReg = 0;

  // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
  if ((MI.getOpcode() == Mips::ADDiu) &&
      (MI.getOperand(1).getReg() == Mips::ZERO) &&
      (MI.getOperand(2).getImm() == 0)) {
    DstReg = MI.getOperand(0).getReg();
    ZeroReg = Mips::ZERO;
  } else if ((MI.getOpcode() == Mips::DADDiu) &&
             (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
             (MI.getOperand(2).getImm() == 0)) {
    DstReg = MI.getOperand(0).getReg();
    ZeroReg = Mips::ZERO_64;
  }

  if (!DstReg)
    return false;

  // Replace uses with ZeroReg.
  for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
       E = MRI->use_end(); U != E; ++U) {
    MachineOperand &MO = U.getOperand();
    MachineInstr *MI = MO.getParent();

    // Do not replace if it is a phi's operand or is tied to def operand.
    if (MI->isPHI() || MI->isRegTiedToDefOperand(U.getOperandNo()))
      continue;

    MO.setReg(ZeroReg);
  }

  return true;
}
示例#5
0
/// isProfitableToReMat - Return true if the heuristics determines it is likely
/// to be profitable to re-materialize the definition of Reg rather than copy
/// the register.
bool
TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
                                         const TargetRegisterClass *RC,
                                         MachineInstr *MI, MachineInstr *DefMI,
                                         MachineBasicBlock *MBB, unsigned Loc) {
  bool OtherUse = false;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    MachineInstr *UseMI = UseMO.getParent();
    MachineBasicBlock *UseMBB = UseMI->getParent();
    if (UseMBB == MBB) {
      DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
      if (DI != DistanceMap.end() && DI->second == Loc)
        continue;  // Current use.
      OtherUse = true;
      // There is at least one other use in the MBB that will clobber the
      // register. 
      if (isTwoAddrUse(UseMI, Reg))
        return true;
    }
  }

  // If other uses in MBB are not two-address uses, then don't remat.
  if (OtherUse)
    return false;

  // No other uses in the same block, remat if it's defined in the same
  // block so it does not unnecessarily extend the live range.
  return MBB == DefMI->getParent();
}
示例#6
0
void BitLevelInfo::propagateBitWidth(MachineOperand &MO) {
  assert(MO.isReg() && "Wrong operand type!");

  unsigned RegNo = MO.getReg();
  unsigned char BitWidth = VInstrInfo::getBitWidth(MO);
  assert(BitWidth && "Bit width not available!");

  for (MachineRegisterInfo::use_iterator I = MRI->use_begin(RegNo),
       E = MRI->use_end(); I != E; ++I) {
    MachineOperand &MO = I.getOperand();

    // Propagate bit width information through the def-use chain.
    if (updateBitWidth(MO, BitWidth) && (I->isCopy() || I->isPHI()))
      computeBitWidth(&*I);
  }
}
示例#7
0
/// TailDuplicateBlocks - Look for small blocks that are unconditionally
/// branched to and do not fall through. Tail-duplicate their instructions
/// into their predecessors to eliminate (dynamic) branches.
bool TailDuplicatePass::TailDuplicateBlocks(MachineFunction &MF) {
  bool MadeChange = false;

  if (PreRegAlloc && TailDupVerify) {
    DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
    VerifyPHIs(MF, true);
  }

  SmallVector<MachineInstr*, 8> NewPHIs;
  MachineSSAUpdater SSAUpdate(MF, &NewPHIs);

  for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ) {
    MachineBasicBlock *MBB = I++;

    if (NumTails == TailDupLimit)
      break;

    // Save the successors list.
    SmallSetVector<MachineBasicBlock*, 8> Succs(MBB->succ_begin(),
                                                MBB->succ_end());

    SmallVector<MachineBasicBlock*, 8> TDBBs;
    SmallVector<MachineInstr*, 16> Copies;
    if (TailDuplicate(MBB, MF, TDBBs, Copies)) {
      ++NumTails;

      // TailBB's immediate successors are now successors of those predecessors
      // which duplicated TailBB. Add the predecessors as sources to the PHI
      // instructions.
      bool isDead = MBB->pred_empty();
      if (PreRegAlloc)
        UpdateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);

      // If it is dead, remove it.
      if (isDead) {
        NumInstrDups -= MBB->size();
        RemoveDeadBlock(MBB);
        ++NumDeadBlocks;
      }

      // Update SSA form.
      if (!SSAUpdateVRs.empty()) {
        for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
          unsigned VReg = SSAUpdateVRs[i];
          SSAUpdate.Initialize(VReg);

          // If the original definition is still around, add it as an available
          // value.
          MachineInstr *DefMI = MRI->getVRegDef(VReg);
          MachineBasicBlock *DefBB = 0;
          if (DefMI) {
            DefBB = DefMI->getParent();
            SSAUpdate.AddAvailableValue(DefBB, VReg);
          }

          // Add the new vregs as available values.
          DenseMap<unsigned, AvailableValsTy>::iterator LI =
            SSAUpdateVals.find(VReg);  
          for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
            MachineBasicBlock *SrcBB = LI->second[j].first;
            unsigned SrcReg = LI->second[j].second;
            SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
          }

          // Rewrite uses that are outside of the original def's block.
          MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
          while (UI != MRI->use_end()) {
            MachineOperand &UseMO = UI.getOperand();
            MachineInstr *UseMI = &*UI;
            ++UI;
            if (UseMI->isDebugValue()) {
              // SSAUpdate can replace the use with an undef. That creates
              // a debug instruction that is a kill.
              // FIXME: Should it SSAUpdate job to delete debug instructions
              // instead of replacing the use with undef?
              UseMI->eraseFromParent();
              continue;
            }
            if (UseMI->getParent() == DefBB && !UseMI->isPHI())
              continue;
            SSAUpdate.RewriteUse(UseMO);
          }
        }

        SSAUpdateVRs.clear();
        SSAUpdateVals.clear();
      }

      // Eliminate some of the copies inserted by tail duplication to maintain
      // SSA form.
      for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
        MachineInstr *Copy = Copies[i];
        if (!Copy->isCopy())
          continue;
        unsigned Dst = Copy->getOperand(0).getReg();
        unsigned Src = Copy->getOperand(1).getReg();
        MachineRegisterInfo::use_iterator UI = MRI->use_begin(Src);
        if (++UI == MRI->use_end()) {
          // Copy is the only use. Do trivial copy propagation here.
          MRI->replaceRegWith(Dst, Src);
          Copy->eraseFromParent();
        }
      }

      if (PreRegAlloc && TailDupVerify)
        VerifyPHIs(MF, false);
      MadeChange = true;
    }
  }
  NumAddedPHIs += NewPHIs.size();

  return MadeChange;
}
示例#8
0
bool A15SDOptimizer::runOnInstruction(MachineInstr *MI) {
  // We look for instructions that write S registers that are then read as
  // D/Q registers. These can only be caused by COPY, INSERT_SUBREG and
  // REG_SEQUENCE pseudos that insert an SPR value into a DPR register or
  // merge two SPR values to form a DPR register.  In order avoid false
  // positives we make sure that there is an SPR producer so we look past
  // COPY and PHI nodes to find it.
  //
  // The best code pattern for when an SPR producer is going to be used by a
  // DPR or QPR consumer depends on whether the other lanes of the
  // corresponding DPR/QPR are currently defined.
  //
  // We can handle these efficiently, depending on the type of
  // pseudo-instruction that is producing the pattern
  //
  //   * COPY:          * VDUP all lanes and merge the results together
  //                      using VEXTs.
  //
  //   * INSERT_SUBREG: * If the SPR value was originally in another DPR/QPR
  //                      lane, and the other lane(s) of the DPR/QPR register
  //                      that we are inserting in are undefined, use the
  //                      original DPR/QPR value. 
  //                    * Otherwise, fall back on the same stategy as COPY.
  //
  //   * REG_SEQUENCE:  * If all except one of the input operands are
  //                      IMPLICIT_DEFs, insert the VDUP pattern for just the
  //                      defined input operand
  //                    * Otherwise, fall back on the same stategy as COPY.
  //

  // First, get all the reads of D-registers done by this instruction.
  SmallVector<unsigned, 8> Defs = getReadDPRs(MI);
  bool Modified = false;

  for (SmallVectorImpl<unsigned>::iterator I = Defs.begin(), E = Defs.end();
     I != E; ++I) {
    // Follow the def-use chain for this DPR through COPYs, and also through
    // PHIs (which are essentially multi-way COPYs). It is because of PHIs that
    // we can end up with multiple defs of this DPR.

    SmallVector<MachineInstr *, 8> DefSrcs;
    if (!TRI->isVirtualRegister(*I))
      continue;
    MachineInstr *Def = MRI->getVRegDef(*I);
    if (!Def)
      continue;

    elideCopiesAndPHIs(Def, DefSrcs);

    for (SmallVectorImpl<MachineInstr *>::iterator II = DefSrcs.begin(),
      EE = DefSrcs.end(); II != EE; ++II) {
      MachineInstr *MI = *II;

      // If we've already analyzed and replaced this operand, don't do
      // anything.
      if (Replacements.find(MI) != Replacements.end())
        continue;

      // Now, work out if the instruction causes a SPR->DPR dependency.
      if (!hasPartialWrite(MI))
        continue;

      // Collect all the uses of this MI's DPR def for updating later.
      SmallVector<MachineOperand*, 8> Uses;
      unsigned DPRDefReg = MI->getOperand(0).getReg();
      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(DPRDefReg),
             E = MRI->use_end(); I != E; ++I)
        Uses.push_back(&I.getOperand());

      // We can optimize this.
      unsigned NewReg = optimizeSDPattern(MI);

      if (NewReg != 0) {
        Modified = true;
        for (SmallVectorImpl<MachineOperand *>::const_iterator I = Uses.begin(),
               E = Uses.end(); I != E; ++I) {
          // Make sure to constrain the register class of the new register to
          // match what we're replacing. Otherwise we can optimize a DPR_VFP2
          // reference into a plain DPR, and that will end poorly. NewReg is
          // always virtual here, so there will always be a matching subclass
          // to find.
          MRI->constrainRegClass(NewReg, MRI->getRegClass((*I)->getReg()));

          DEBUG(dbgs() << "Replacing operand "
                       << **I << " with "
                       << PrintReg(NewReg) << "\n");
          (*I)->substVirtReg(NewReg, 0, *TRI);
        }
      }
      Replacements[MI] = NewReg;
    }
  }
  return Modified;
}
bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
  bool AnyChanges = false;
  MRI = &MF.getRegInfo();
  TRI = MF.getTarget().getRegisterInfo();
  TII = MF.getTarget().getInstrInfo();

  // Treat reserved registers as always live.
  BitVector ReservedRegs = TRI->getReservedRegs(MF);

  // Loop over all instructions in all blocks, from bottom to top, so that it's
  // more likely that chains of dependent but ultimately dead instructions will
  // be cleaned up.
  for (MachineFunction::reverse_iterator I = MF.rbegin(), E = MF.rend();
       I != E; ++I) {
    MachineBasicBlock *MBB = &*I;

    // Start out assuming that reserved registers are live out of this block.
    LivePhysRegs = ReservedRegs;

    // Also add any explicit live-out physregs for this block.
    if (!MBB->empty() && MBB->back().getDesc().isReturn())
      for (MachineRegisterInfo::liveout_iterator LOI = MRI->liveout_begin(),
           LOE = MRI->liveout_end(); LOI != LOE; ++LOI) {
        unsigned Reg = *LOI;
        if (TargetRegisterInfo::isPhysicalRegister(Reg))
          LivePhysRegs.set(Reg);
      }

    // FIXME: Add live-ins from sucessors to LivePhysRegs. Normally, physregs
    // are not live across blocks, but some targets (x86) can have flags live
    // out of a block.

    // Now scan the instructions and delete dead ones, tracking physreg
    // liveness as we go.
    for (MachineBasicBlock::reverse_iterator MII = MBB->rbegin(),
         MIE = MBB->rend(); MII != MIE; ) {
      MachineInstr *MI = &*MII;

      // If the instruction is dead, delete it!
      if (isDead(MI)) {
        DEBUG(dbgs() << "DeadMachineInstructionElim: DELETING: " << *MI);
        // It is possible that some DBG_VALUE instructions refer to this
        // instruction.  Examine each def operand for such references;
        // if found, mark the DBG_VALUE as undef (but don't delete it).
        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
          const MachineOperand &MO = MI->getOperand(i);
          if (!MO.isReg() || !MO.isDef())
            continue;
          unsigned Reg = MO.getReg();
          if (!TargetRegisterInfo::isVirtualRegister(Reg))
            continue;
          MachineRegisterInfo::use_iterator nextI;
          for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
               E = MRI->use_end(); I!=E; I=nextI) {
            nextI = llvm::next(I);  // I is invalidated by the setReg
            MachineOperand& Use = I.getOperand();
            MachineInstr *UseMI = Use.getParent();
            if (UseMI==MI)
              continue;
            assert(Use.isDebug());
            UseMI->getOperand(0).setReg(0U);
          }
        }
        AnyChanges = true;
        MI->eraseFromParent();
        ++NumDeletes;
        MIE = MBB->rend();
        // MII is now pointing to the next instruction to process,
        // so don't increment it.
        continue;
      }

      // Record the physreg defs.
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        const MachineOperand &MO = MI->getOperand(i);
        if (MO.isReg() && MO.isDef()) {
          unsigned Reg = MO.getReg();
          if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
            LivePhysRegs.reset(Reg);
            // Check the subreg set, not the alias set, because a def
            // of a super-register may still be partially live after
            // this def.
            for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
                 *SubRegs; ++SubRegs)
              LivePhysRegs.reset(*SubRegs);
          }
        }
      }
      // Record the physreg uses, after the defs, in case a physreg is
      // both defined and used in the same instruction.
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        const MachineOperand &MO = MI->getOperand(i);
        if (MO.isReg() && MO.isUse()) {
          unsigned Reg = MO.getReg();
          if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
            LivePhysRegs.set(Reg);
            for (const unsigned *AliasSet = TRI->getAliasSet(Reg);
                 *AliasSet; ++AliasSet)
              LivePhysRegs.set(*AliasSet);
          }
        }
      }

      // We didn't delete the current instruction, so increment MII to
      // the next one.
      ++MII;
    }
  }

  LivePhysRegs.clear();
  return AnyChanges;
}
示例#10
0
/// processImplicitDefs - Process IMPLICIT_DEF instructions and make sure
/// there is one implicit_def for each use. Add isUndef marker to
/// implicit_def defs and their uses.
bool ProcessImplicitDefs::runOnMachineFunction(MachineFunction &fn) {

  DEBUG(dbgs() << "********** PROCESS IMPLICIT DEFS **********\n"
               << "********** Function: "
               << ((Value*)fn.getFunction())->getName() << '\n');

  bool Changed = false;

  TII = fn.getTarget().getInstrInfo();
  TRI = fn.getTarget().getRegisterInfo();
  MRI = &fn.getRegInfo();
  LV = &getAnalysis<LiveVariables>();

  SmallSet<unsigned, 8> ImpDefRegs;
  SmallVector<MachineInstr*, 8> ImpDefMIs;
  SmallVector<MachineInstr*, 4> RUses;
  SmallPtrSet<MachineBasicBlock*,16> Visited;
  SmallPtrSet<MachineInstr*, 8> ModInsts;

  MachineBasicBlock *Entry = fn.begin();
  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
       DFI != E; ++DFI) {
    MachineBasicBlock *MBB = *DFI;
    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
         I != E; ) {
      MachineInstr *MI = &*I;
      ++I;
      if (MI->isImplicitDef()) {
        ImpDefMIs.push_back(MI);
        // Is this a sub-register read-modify-write?
        if (MI->getOperand(0).readsReg())
          continue;
        unsigned Reg = MI->getOperand(0).getReg();
        ImpDefRegs.insert(Reg);
        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
          for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
            ImpDefRegs.insert(*SS);
        }
        continue;
      }

      // Eliminate %reg1032:sub<def> = COPY undef.
      if (MI->isCopy() && MI->getOperand(0).readsReg()) {
        MachineOperand &MO = MI->getOperand(1);
        if (MO.isUndef() || ImpDefRegs.count(MO.getReg())) {
          if (MO.isKill()) {
            LiveVariables::VarInfo& vi = LV->getVarInfo(MO.getReg());
            vi.removeKill(MI);
          }
          unsigned Reg = MI->getOperand(0).getReg();
          MI->eraseFromParent();
          Changed = true;

          // A REG_SEQUENCE may have been expanded into partial definitions.
          // If this was the last one, mark Reg as implicitly defined.
          if (TargetRegisterInfo::isVirtualRegister(Reg) && MRI->def_empty(Reg))
            ImpDefRegs.insert(Reg);
          continue;
        }
      }

      bool ChangedToImpDef = false;
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        MachineOperand& MO = MI->getOperand(i);
        if (!MO.isReg() || !MO.readsReg())
          continue;
        unsigned Reg = MO.getReg();
        if (!Reg)
          continue;
        if (!ImpDefRegs.count(Reg))
          continue;
        // Use is a copy, just turn it into an implicit_def.
        if (CanTurnIntoImplicitDef(MI, Reg, i, ImpDefRegs)) {
          bool isKill = MO.isKill();
          MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
          for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
            MI->RemoveOperand(j);
          if (isKill) {
            ImpDefRegs.erase(Reg);
            LiveVariables::VarInfo& vi = LV->getVarInfo(Reg);
            vi.removeKill(MI);
          }
          ChangedToImpDef = true;
          Changed = true;
          break;
        }

        Changed = true;
        MO.setIsUndef();
        // This is a partial register redef of an implicit def.
        // Make sure the whole register is defined by the instruction.
        if (MO.isDef()) {
          MI->addRegisterDefined(Reg);
          continue;
        }
        if (MO.isKill() || MI->isRegTiedToDefOperand(i)) {
          // Make sure other reads of Reg are also marked <undef>.
          for (unsigned j = i+1; j != e; ++j) {
            MachineOperand &MOJ = MI->getOperand(j);
            if (MOJ.isReg() && MOJ.getReg() == Reg && MOJ.readsReg())
              MOJ.setIsUndef();
          }
          ImpDefRegs.erase(Reg);
        }
      }

      if (ChangedToImpDef) {
        // Backtrack to process this new implicit_def.
        --I;
      } else {
        for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
          MachineOperand& MO = MI->getOperand(i);
          if (!MO.isReg() || !MO.isDef())
            continue;
          ImpDefRegs.erase(MO.getReg());
        }
      }
    }

    // Any outstanding liveout implicit_def's?
    for (unsigned i = 0, e = ImpDefMIs.size(); i != e; ++i) {
      MachineInstr *MI = ImpDefMIs[i];
      unsigned Reg = MI->getOperand(0).getReg();
      if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
          !ImpDefRegs.count(Reg)) {
        // Delete all "local" implicit_def's. That include those which define
        // physical registers since they cannot be liveout.
        MI->eraseFromParent();
        Changed = true;
        continue;
      }

      // If there are multiple defs of the same register and at least one
      // is not an implicit_def, do not insert implicit_def's before the
      // uses.
      bool Skip = false;
      SmallVector<MachineInstr*, 4> DeadImpDefs;
      for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(Reg),
             DE = MRI->def_end(); DI != DE; ++DI) {
        MachineInstr *DeadImpDef = &*DI;
        if (!DeadImpDef->isImplicitDef()) {
          Skip = true;
          break;
        }
        DeadImpDefs.push_back(DeadImpDef);
      }
      if (Skip)
        continue;

      // The only implicit_def which we want to keep are those that are live
      // out of its block.
      for (unsigned j = 0, ee = DeadImpDefs.size(); j != ee; ++j)
        DeadImpDefs[j]->eraseFromParent();
      Changed = true;

      // Process each use instruction once.
      for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
             UE = MRI->use_end(); UI != UE; ++UI) {
        if (UI.getOperand().isUndef())
          continue;
        MachineInstr *RMI = &*UI;
        if (ModInsts.insert(RMI))
          RUses.push_back(RMI);
      }

      for (unsigned i = 0, e = RUses.size(); i != e; ++i) {
        MachineInstr *RMI = RUses[i];

        // Turn a copy use into an implicit_def.
        if (isUndefCopy(RMI, Reg, ImpDefRegs)) {
          RMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));

          bool isKill = false;
          SmallVector<unsigned, 4> Ops;
          for (unsigned j = 0, ee = RMI->getNumOperands(); j != ee; ++j) {
            MachineOperand &RRMO = RMI->getOperand(j);
            if (RRMO.isReg() && RRMO.getReg() == Reg) {
              Ops.push_back(j);
              if (RRMO.isKill())
                isKill = true;
            }
          }
          // Leave the other operands along.
          for (unsigned j = 0, ee = Ops.size(); j != ee; ++j) {
            unsigned OpIdx = Ops[j];
            RMI->RemoveOperand(OpIdx-j);
          }

          // Update LiveVariables varinfo if the instruction is a kill.
          if (isKill) {
            LiveVariables::VarInfo& vi = LV->getVarInfo(Reg);
            vi.removeKill(RMI);
          }
          continue;
        }

        // Replace Reg with a new vreg that's marked implicit.
        const TargetRegisterClass* RC = MRI->getRegClass(Reg);
        unsigned NewVReg = MRI->createVirtualRegister(RC);
        bool isKill = true;
        for (unsigned j = 0, ee = RMI->getNumOperands(); j != ee; ++j) {
          MachineOperand &RRMO = RMI->getOperand(j);
          if (RRMO.isReg() && RRMO.getReg() == Reg) {
            RRMO.setReg(NewVReg);
            RRMO.setIsUndef();
            if (isKill) {
              // Only the first operand of NewVReg is marked kill.
              RRMO.setIsKill();
              isKill = false;
            }
          }
        }
      }
      RUses.clear();
      ModInsts.clear();
    }
    ImpDefRegs.clear();
    ImpDefMIs.clear();
  }

  return Changed;
}
示例#11
0
/// Sink3AddrInstruction - A two-address instruction has been converted to a
/// three-address instruction to avoid clobbering a register. Try to sink it
/// past the instruction that would kill the above mentioned register to reduce
/// register pressure.
bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
                                           MachineInstr *MI, unsigned SavedReg,
                                           MachineBasicBlock::iterator OldPos) {
  // Check if it's safe to move this instruction.
  bool SeenStore = true; // Be conservative.
  if (!MI->isSafeToMove(TII, SeenStore, AA))
    return false;

  unsigned DefReg = 0;
  SmallSet<unsigned, 4> UseRegs;

  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    unsigned MOReg = MO.getReg();
    if (!MOReg)
      continue;
    if (MO.isUse() && MOReg != SavedReg)
      UseRegs.insert(MO.getReg());
    if (!MO.isDef())
      continue;
    if (MO.isImplicit())
      // Don't try to move it if it implicitly defines a register.
      return false;
    if (DefReg)
      // For now, don't move any instructions that define multiple registers.
      return false;
    DefReg = MO.getReg();
  }

  // Find the instruction that kills SavedReg.
  MachineInstr *KillMI = NULL;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    if (!UseMO.isKill())
      continue;
    KillMI = UseMO.getParent();
    break;
  }

  if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
    return false;

  // If any of the definitions are used by another instruction between the
  // position and the kill use, then it's not safe to sink it.
  // 
  // FIXME: This can be sped up if there is an easy way to query whether an
  // instruction is before or after another instruction. Then we can use
  // MachineRegisterInfo def / use instead.
  MachineOperand *KillMO = NULL;
  MachineBasicBlock::iterator KillPos = KillMI;
  ++KillPos;

  unsigned NumVisited = 0;
  for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
    MachineInstr *OtherMI = I;
    if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
      return false;
    ++NumVisited;
    for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
      MachineOperand &MO = OtherMI->getOperand(i);
      if (!MO.isReg())
        continue;
      unsigned MOReg = MO.getReg();
      if (!MOReg)
        continue;
      if (DefReg == MOReg)
        return false;

      if (MO.isKill()) {
        if (OtherMI == KillMI && MOReg == SavedReg)
          // Save the operand that kills the register. We want to unset the kill
          // marker if we can sink MI past it.
          KillMO = &MO;
        else if (UseRegs.count(MOReg))
          // One of the uses is killed before the destination.
          return false;
      }
    }
  }

  // Update kill and LV information.
  KillMO->setIsKill(false);
  KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
  KillMO->setIsKill(true);
  
  if (LV)
    LV->replaceKillInstruction(SavedReg, KillMI, MI);

  // Move instruction to its destination.
  MBB->remove(MI);
  MBB->insert(KillPos, MI);

  ++Num3AddrSunk;
  return true;
}