void grid_renderer<T>::process(polygon_pattern_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    std::string filename = path_processor_type::evaluate( *sym.get_filename(), feature);

    boost::optional<marker_ptr> mark = marker_cache::instance().find(filename,true);
    if (!mark) return;

    if (!(*mark)->is_bitmap())
    {
        MAPNIK_LOG_DEBUG(agg_renderer) << "agg_renderer: Only images (not '" << filename << "') are supported in the line_pattern_symbolizer";
        return;
    }

    boost::optional<image_ptr> pat = (*mark)->get_bitmap_data();
    if (!pat) return;

    ras_ptr->reset();

    agg::trans_affine tr;
    evaluate_transform(tr, feature, sym.get_transform());

    typedef boost::mpl::vector<clip_poly_tag,transform_tag,affine_transform_tag,smooth_tag> conv_types;
    vertex_converter<box2d<double>, grid_rasterizer, polygon_pattern_symbolizer,
                     CoordTransform, proj_transform, agg::trans_affine, conv_types>
        converter(query_extent_,*ras_ptr,sym,t_,prj_trans,tr,scale_factor_);

    if (prj_trans.equal() && sym.clip()) converter.set<clip_poly_tag>(); //optional clip (default: true)
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>();
    if (sym.smooth() > 0.0) converter.set<smooth_tag>(); // optional smooth converter


    for ( geometry_type & geom : feature.paths())
    {
        if (geom.size() > 2)
        {
            converter.apply(geom);
        }
    }
    typedef typename grid_renderer_base_type::pixfmt_type pixfmt_type;
    typedef typename grid_renderer_base_type::pixfmt_type::color_type color_type;
    typedef agg::renderer_scanline_bin_solid<grid_renderer_base_type> renderer_type;

    grid_rendering_buffer buf(pixmap_.raw_data(), width_, height_, width_);
    pixfmt_type pixf(buf);

    grid_renderer_base_type renb(pixf);
    renderer_type ren(renb);

    // render id
    ren.color(color_type(feature.id()));
    agg::scanline_bin sl;
    ras_ptr->filling_rule(agg::fill_even_odd);
    agg::render_scanlines(*ras_ptr, sl, ren);

    // add feature properties to grid cache
    pixmap_.add_feature(feature);
}
void agg_renderer<T0,T1>::process(debug_symbolizer const& sym,
                              mapnik::feature_impl & feature,
                              proj_transform const& prj_trans)
{

    debug_symbolizer_mode_enum mode = get<debug_symbolizer_mode_enum>(sym, keys::mode, feature, common_.vars_, DEBUG_SYM_MODE_COLLISION);

    ras_ptr->reset();
    if (gamma_method_ != GAMMA_POWER || gamma_ != 1.0)
    {
        ras_ptr->gamma(agg::gamma_power());
        gamma_method_ = GAMMA_POWER;
        gamma_ = 1.0;
    }

    if (mode == DEBUG_SYM_MODE_RINGS)
    {
        RingRenderer<buffer_type> renderer(*ras_ptr,*current_buffer_,common_.t_,prj_trans);
        render_ring_visitor<buffer_type> apply(renderer);
        mapnik::util::apply_visitor(apply,feature.get_geometry());
    }
    else if (mode == DEBUG_SYM_MODE_COLLISION)
    {
        for (auto const& n : *common_.detector_)
        {
            draw_rect(pixmap_, n.get().box);
        }
    }
    else if (mode == DEBUG_SYM_MODE_VERTEX)
    {
        using apply_vertex_mode = apply_vertex_mode<buffer_type>;
        apply_vertex_mode apply(pixmap_, common_.t_, prj_trans);
        util::apply_visitor(geometry::vertex_processor<apply_vertex_mode>(apply), feature.get_geometry());
    }
}
        void start_tile_feature(mapnik::feature_impl const& feature)
        {
            current_feature_ = current_layer_->add_features();
            x_ = y_ = 0;

            // TODO - encode as sint64: (n << 1) ^ ( n >> 63)
            // test current behavior with negative numbers
            current_feature_->set_id(feature.id());

            feature_kv_iterator itr = feature.begin();
            feature_kv_iterator end = feature.end();
            for ( ;itr!=end; ++itr)
            {
                std::string const& name = MAPNIK_GET<0>(*itr);
                mapnik::value const& val = MAPNIK_GET<1>(*itr);
                if (!val.is_null())
                {
                    // Insert the key index
                    keys_container::const_iterator key_itr = keys_.find(name);
                    if (key_itr == keys_.end())
                    {
                        // The key doesn't exist yet in the dictionary.
                        current_layer_->add_keys(name.c_str(), name.length());
                        size_t index = keys_.size();
                        keys_.insert(keys_container::value_type(name, index));
                        current_feature_->add_tags(index);
                    }
                    else
                    {
                        current_feature_->add_tags(key_itr->second);
                    }

                    // Insert the value index
                    values_container::const_iterator val_itr = values_.find(val);
                    if (val_itr == values_.end())
                    {
                        // The value doesn't exist yet in the dictionary.
                        to_tile_value visitor(current_layer_->add_values());
#if MAPNIK_VERSION >= 300000
                        MAPNIK_APPLY_VISITOR(visitor, val);
#else
                        MAPNIK_APPLY_VISITOR(visitor, val.base());
#endif
                        size_t index = values_.size();
                        values_.insert(values_container::value_type(val, index));
                        current_feature_->add_tags(index);
                    }
                    else
                    {
                        current_feature_->add_tags(val_itr->second);
                    }
                }
            }
        }
void grid_renderer<T>::process(building_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    using pixfmt_type = typename grid_renderer_base_type::pixfmt_type;
    using color_type = typename grid_renderer_base_type::pixfmt_type::color_type;
    using renderer_type = agg::renderer_scanline_bin_solid<grid_renderer_base_type>;
    using transform_path_type = transform_path_adapter<view_transform, vertex_adapter>;
    agg::scanline_bin sl;

    grid_rendering_buffer buf(pixmap_.raw_data(), common_.width_, common_.height_, common_.width_);
    pixfmt_type pixf(buf);

    grid_renderer_base_type renb(pixf);
    renderer_type ren(renb);

    ras_ptr->reset();

    double height = get<value_double>(sym, keys::height, feature, common_.vars_, 0.0);

    render_building_symbolizer(
        feature, height,
        [&](path_type const& faces)
        {
            vertex_adapter va(faces);
            transform_path_type faces_path (common_.t_,va,prj_trans);
            ras_ptr->add_path(faces_path);
            ren.color(color_type(feature.id()));
            agg::render_scanlines(*ras_ptr, sl, ren);
            ras_ptr->reset();
        },
        [&](path_type const& frame)
        {
            vertex_adapter va(frame);
            transform_path_type path(common_.t_,va,prj_trans);
            agg::conv_stroke<transform_path_type> stroke(path);
            ras_ptr->add_path(stroke);
            ren.color(color_type(feature.id()));
            agg::render_scanlines(*ras_ptr, sl, ren);
            ras_ptr->reset();
        },
        [&](path_type const& roof)
        {
            vertex_adapter va(roof);
            transform_path_type roof_path (common_.t_,va,prj_trans);
            ras_ptr->add_path(roof_path);
            ren.color(color_type(feature.id()));
            agg::render_scanlines(*ras_ptr, sl, ren);
        });

    pixmap_.add_feature(feature);
}
void grid_renderer<T>::process(polygon_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    typedef agg::renderer_scanline_bin_solid<grid_renderer_base_type> renderer_type;
    typedef typename grid_renderer_base_type::pixfmt_type pixfmt_type;
    typedef typename grid_renderer_base_type::pixfmt_type::color_type color_type;

    ras_ptr->reset();

    agg::trans_affine tr;
    evaluate_transform(tr, feature, sym.get_transform(), scale_factor_);

    typedef boost::mpl::vector<clip_poly_tag,transform_tag,affine_transform_tag,simplify_tag,smooth_tag> conv_types;
    vertex_converter<box2d<double>, grid_rasterizer, polygon_symbolizer,
                     CoordTransform, proj_transform, agg::trans_affine, conv_types>
        converter(query_extent_,*ras_ptr,sym,t_,prj_trans,tr,scale_factor_);

    if (prj_trans.equal() && sym.clip()) converter.set<clip_poly_tag>(); //optional clip (default: true)
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>();
    if (sym.simplify_tolerance() > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (sym.smooth() > 0.0) converter.set<smooth_tag>(); // optional smooth converter


    for ( geometry_type & geom : feature.paths())
    {
        if (geom.size() > 2)
        {
            converter.apply(geom);
        }
    }

    grid_rendering_buffer buf(pixmap_.raw_data(), width_, height_, width_);
    pixfmt_type pixf(buf);

    grid_renderer_base_type renb(pixf);
    renderer_type ren(renb);

    // render id
    ren.color(color_type(feature.id()));
    agg::scanline_bin sl;
    ras_ptr->filling_rule(agg::fill_even_odd);
    agg::render_scanlines(*ras_ptr, sl, ren);

    // add feature properties to grid cache
    pixmap_.add_feature(feature);
}
void cairo_renderer<T>::process(debug_symbolizer const& sym,
                                  mapnik::feature_impl & feature,
                                  proj_transform const& prj_trans)
{
    cairo_save_restore guard(context_);

    debug_symbolizer_mode_enum mode = get<debug_symbolizer_mode_enum>(sym, keys::mode, feature, common_.vars_, DEBUG_SYM_MODE_COLLISION);

    context_.set_operator(src_over);
    context_.set_color(mapnik::color(255, 0, 0), 1.0);
    context_.set_line_join(MITER_JOIN);
    context_.set_line_cap(BUTT_CAP);
    context_.set_miter_limit(4.0);
    context_.set_line_width(1.0);

    if (mode == DEBUG_SYM_MODE_COLLISION)
    {
        for (auto & n : *common_.detector_)
        {
            render_debug_box(context_, n.get().box);
        }
    }
    else if (mode == DEBUG_SYM_MODE_VERTEX)
    {
        using apply_vertex_mode = apply_vertex_mode<cairo_context>;
        apply_vertex_mode apply(context_, common_.t_, prj_trans);
        util::apply_visitor(geometry::vertex_processor<apply_vertex_mode>(apply), feature.get_geometry());
    }
}
void grid_renderer<T>::process(text_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    text_symbolizer_helper<face_manager<freetype_engine>,
        label_collision_detector4> helper(
            sym, feature, prj_trans,
            width_, height_,
            scale_factor_ * (1.0/pixmap_.get_resolution()),
            t_, font_manager_, *detector_,
            query_extent_);
    bool placement_found = false;

    text_renderer<T> ren(pixmap_,
                         font_manager_,
                         sym.get_halo_rasterizer(),
                         sym.comp_op(),
                         scale_factor_);

    while (helper.next()) {
        placement_found = true;
        placements_type const& placements = helper.placements();
        for (unsigned int ii = 0; ii < placements.size(); ++ii)
        {
            ren.prepare_glyphs(placements[ii]);
            ren.render_id(feature.id(), placements[ii].center);
        }
    }
    if (placement_found) pixmap_.add_feature(feature);

}
示例#8
0
void render_raster_marker(RendererType ren,
                          RasterizerType & ras,
                          image_data_rgba8 & src,
                          mapnik::feature_impl const& feature,
                          agg::trans_affine const& marker_tr,
                          double opacity)
{
    using color_type = typename RendererType::color_type;
    agg::scanline_bin sl;
    double width  = src.width();
    double height = src.height();
    double p[8];
    p[0] = 0;     p[1] = 0;
    p[2] = width; p[3] = 0;
    p[4] = width; p[5] = height;
    p[6] = 0;     p[7] = height;
    marker_tr.transform(&p[0], &p[1]);
    marker_tr.transform(&p[2], &p[3]);
    marker_tr.transform(&p[4], &p[5]);
    marker_tr.transform(&p[6], &p[7]);
    ras.move_to_d(p[0],p[1]);
    ras.line_to_d(p[2],p[3]);
    ras.line_to_d(p[4],p[5]);
    ras.line_to_d(p[6],p[7]);
    ren.color(color_type(feature.id()));
    agg::render_scanlines(ras, sl, ren);
}
示例#9
0
void grid_renderer<T>::process(text_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    agg::trans_affine tr;
    auto transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (transform) evaluate_transform(tr, feature, common_.vars_, *transform, common_.scale_factor_);
    text_symbolizer_helper helper(
            sym, feature, common_.vars_, prj_trans,
            common_.width_, common_.height_,
            common_.scale_factor_ * (1.0/pixmap_.get_resolution()),
            common_.t_, common_.font_manager_, *common_.detector_,
            common_.query_extent_, tr);
    bool placement_found = false;

    composite_mode_e comp_op = get<composite_mode_e>(sym, keys::comp_op, feature, common_.vars_, src_over);

    grid_text_renderer<T> ren(pixmap_,
                              comp_op,
                              common_.scale_factor_);

    placements_list const& placements = helper.get();
    value_integer feature_id = feature.id();

    for (glyph_positions_ptr glyphs : placements)
    {
        ren.render(*glyphs, feature_id);
        placement_found = true;
    }
    if (placement_found)
    {
        pixmap_.add_feature(feature);
    }
}
void agg_renderer<T>::process(raster_symbolizer const& sym,
                              mapnik::feature_impl & feature,
                              proj_transform const& prj_trans)
{
    raster_ptr const& source = feature.get_raster();
    if (source)
    {
        // If there's a colorizer defined, use it to color the raster in-place
        raster_colorizer_ptr colorizer = sym.get_colorizer();
        if (colorizer)
            colorizer->colorize(source,feature);

        box2d<double> target_ext = box2d<double>(source->ext_);
        prj_trans.backward(target_ext, PROJ_ENVELOPE_POINTS);
        box2d<double> ext = t_.forward(target_ext);
        int start_x = static_cast<int>(ext.minx());
        int start_y = static_cast<int>(ext.miny());
        int end_x = static_cast<int>(ceil(ext.maxx()));
        int end_y = static_cast<int>(ceil(ext.maxy()));
        int raster_width = end_x - start_x;
        int raster_height = end_y - start_y;
        if (raster_width > 0 && raster_height > 0)
        {
            image_data_32 target_data(raster_width,raster_height);
            raster target(target_ext, target_data);
            scaling_method_e scaling_method = sym.get_scaling_method();
            double filter_radius = sym.calculate_filter_factor();
            double offset_x = ext.minx() - start_x;
            double offset_y = ext.miny() - start_y;
            if (!prj_trans.equal())
            {
                reproject_and_scale_raster(target, *source, prj_trans,
                                 offset_x, offset_y,
                                 sym.get_mesh_size(),
                                 filter_radius,
                                 scaling_method);
            }
            else
            {
                if (scaling_method == SCALING_BILINEAR8){
                    scale_image_bilinear8<image_data_32>(target.data_,source->data_, offset_x, offset_y);
                } else {
                    double scaling_ratio = ext.width() / source->data_.width();
                    scale_image_agg<image_data_32>(target.data_,
                                                   source->data_,
                                                   scaling_method,
                                                   scaling_ratio,
                                                   offset_x,
                                                   offset_y,
                                                   filter_radius);
                }
            }
            composite(current_buffer_->data(), target.data_, sym.comp_op(), sym.get_opacity(), start_x, start_y, true);
        }
    }
}
void agg_renderer<T0,T1>::process(dot_symbolizer const& sym,
                                  mapnik::feature_impl & feature,
                                  proj_transform const& prj_trans)
{
    double width = 0.0;
    double height = 0.0;
    bool has_width = has_key(sym,keys::width);
    bool has_height = has_key(sym,keys::height);
    if (has_width && has_height)
    {
        width = get<double>(sym, keys::width, feature, common_.vars_, 0.0);
        height = get<double>(sym, keys::height, feature, common_.vars_, 0.0);
    }
    else if (has_width)
    {
        width = height = get<double>(sym, keys::width, feature, common_.vars_, 0.0);
    }
    else if (has_height)
    {
        width = height = get<double>(sym, keys::height, feature, common_.vars_, 0.0);
    }
    double rx = width/2.0;
    double ry = height/2.0;
    double opacity = get<double>(sym, keys::opacity, feature, common_.vars_, 1.0);
    color const& fill = get<mapnik::color>(sym, keys::fill, feature, common_.vars_, mapnik::color(128,128,128));
    ras_ptr->reset();
    agg::rendering_buffer buf(current_buffer_->raw_data(),current_buffer_->width(),current_buffer_->height(),current_buffer_->width() * 4);
    using blender_type = agg::comp_op_adaptor_rgba_pre<agg::rgba8, agg::order_rgba>;
    using pixfmt_comp_type = agg::pixfmt_custom_blend_rgba<blender_type, agg::rendering_buffer>;
    using renderer_base = agg::renderer_base<pixfmt_comp_type>;
    using renderer_type = agg::renderer_scanline_aa_solid<renderer_base>;
    pixfmt_comp_type pixf(buf);
    pixf.comp_op(static_cast<agg::comp_op_e>(get<composite_mode_e>(sym, keys::comp_op, feature, common_.vars_, src_over)));
    renderer_base renb(pixf);
    renderer_type ren(renb);
    agg::scanline_u8 sl;
    ren.color(agg::rgba8_pre(fill.red(), fill.green(), fill.blue(), int(fill.alpha() * opacity)));
    agg::ellipse el(0,0,rx,ry);
    unsigned num_steps = el.num_steps();
    for (geometry_type const& geom : feature.paths()) {
        double x,y,z = 0;
        unsigned cmd = 1;
        geom.rewind(0);
        while ((cmd = geom.vertex(&x, &y)) != mapnik::SEG_END) {
            if (cmd == SEG_CLOSE) continue;
            prj_trans.backward(x,y,z);
            common_.t_.forward(&x,&y);
            el.init(x,y,rx,ry,num_steps);
            ras_ptr->add_path(el);
            agg::render_scanlines(*ras_ptr, sl, ren);
        }
    }
}
示例#12
0
文件: grid.cpp 项目: Andrey-VI/mapnik
void hit_grid<T>::add_feature(mapnik::feature_impl const& feature)
{
    value_type feature_id = feature.id();
    // avoid adding duplicate features (e.g. in the case of both a line symbolizer and a polygon symbolizer)
    typename feature_key_type::const_iterator feature_pos = f_keys_.find(feature_id);
    if (feature_pos != f_keys_.end())
    {
        return;
    }

    if (ctx_->size() == 0)
    {
        context_type::map_type::const_iterator itr = feature.context()->begin();
        context_type::map_type::const_iterator end = feature.context()->end();
        for ( ;itr!=end; ++itr)
        {
            ctx_->add(itr->first,itr->second);
        }
    }
    // NOTE: currently lookup keys must be strings,
    // but this should be revisited
    lookup_type lookup_value;
    if (key_ == id_name_)
    {
        mapnik::util::to_string(lookup_value,feature_id);
    }
    else
    {
        if (feature.has_key(key_))
        {
            lookup_value = feature.get(key_).to_string();
        }
        else
        {
            MAPNIK_LOG_DEBUG(grid) << "hit_grid: Should not get here: key '" << key_ << "' not found in feature properties";
        }
    }

    if (!lookup_value.empty())
    {
        // TODO - consider shortcutting f_keys if feature_id == lookup_value
        // create a mapping between the pixel id and the feature key
        f_keys_.emplace(feature_id,lookup_value);
        // if extra fields have been supplied, push them into grid memory
        if (!names_.empty())
        {
            // it is ~ 2x faster to copy feature attributes compared
            // to building up a in-memory cache of feature_ptrs
            // https://github.com/mapnik/mapnik/issues/1198
            mapnik::feature_ptr feature2(mapnik::feature_factory::create(ctx_,feature_id));
            feature2->set_data(feature.get_data());
            features_.emplace(lookup_value,feature2);
        }
    }
    else
    {
        MAPNIK_LOG_DEBUG(grid) << "hit_grid: Warning - key '" << key_ << "' was blank for " << feature;
    }
}
示例#13
0
bool svg_renderer<OutputIterator>::process(rule::symbolizers const& syms,
                                           mapnik::feature_impl & feature,
                                           proj_transform const& prj_trans)
{
    // svg renderer supports processing of multiple symbolizers.
    typedef coord_transform<CoordTransform, geometry_type> path_type;

    bool process_path = false;
    // process each symbolizer to collect its (path) information.
    // path information (attributes from line_ and polygon_ symbolizers)
    // is collected with the path_attributes_ data member.
    for (symbolizer const& sym : syms)
    {
        if (is_path_based(sym))
        {
            process_path = true;
        }
        boost::apply_visitor(symbol_dispatch(*this, feature, prj_trans), sym);
    }

    if (process_path)
    {
        // generate path output for each geometry of the current feature.
        for(std::size_t i=0; i<feature.num_geometries(); ++i)
        {
            geometry_type & geom = feature.get_geometry(i);
            if(geom.size() > 0)
            {
                path_type path(t_, geom, prj_trans);
                generator_.generate_path(path, path_attributes_);
            }
        }
        // set the previously collected values back to their defaults
        // for the feature that will be processed next.
        path_attributes_.reset();
    }
    return true;
}
void  grid_renderer<T>::process(shield_symbolizer const& sym,
                                mapnik::feature_impl & feature,
                                proj_transform const& prj_trans)
{
    shield_symbolizer_helper<face_manager<freetype_engine>,
        label_collision_detector4> helper(
            sym, feature, prj_trans,
            width_, height_,
            scale_factor_,
            t_, font_manager_, *detector_,
            query_extent_);
    bool placement_found = false;

    text_renderer<T> ren(pixmap_,
                         font_manager_,
                         sym.get_halo_rasterizer(),
                         sym.comp_op(),
                         scale_factor_);

    text_placement_info_ptr placement;
    while (helper.next())
    {
        placement_found = true;
        placements_type const& placements = helper.placements();
        for (unsigned int ii = 0; ii < placements.size(); ++ii)
        {
            // get_marker_position returns (minx,miny) corner position,
            // while (currently only) agg_renderer::render_marker newly
            // expects center position;
            // until all renderers and shield_symbolizer_helper are
            // modified accordingly, we must adjust the position here
            pixel_position pos = helper.get_marker_position(placements[ii]);
            pos.x += 0.5 * helper.get_marker_width();
            pos.y += 0.5 * helper.get_marker_height();
            render_marker(feature,
                          pixmap_.get_resolution(),
                          pos,
                          helper.get_marker(),
                          helper.get_image_transform(),
                          sym.get_opacity(),
                          sym.comp_op());

            ren.prepare_glyphs(placements[ii]);
            ren.render_id(feature.id(), placements[ii].center);
        }
    }
    if (placement_found)
        pixmap_.add_feature(feature);
}
void cairo_renderer<T>::process(debug_symbolizer const& sym,
                                  mapnik::feature_impl & feature,
                                  proj_transform const& prj_trans)
{
    using detector_type = label_collision_detector4;
    cairo_save_restore guard(context_);

    debug_symbolizer_mode_enum mode = get<debug_symbolizer_mode_enum>(sym, keys::mode, feature, common_.vars_, DEBUG_SYM_MODE_COLLISION);

    context_.set_operator(src_over);
    context_.set_color(mapnik::color(255, 0, 0), 1.0);
    context_.set_line_join(MITER_JOIN);
    context_.set_line_cap(BUTT_CAP);
    context_.set_miter_limit(4.0);
    context_.set_line_width(1.0);

    if (mode == DEBUG_SYM_MODE_COLLISION)
    {
        typename detector_type::query_iterator itr = common_.detector_->begin();
        typename detector_type::query_iterator end = common_.detector_->end();
        for ( ;itr!=end; ++itr)
        {
            render_debug_box(context_, itr->box);
        }
    }
    else if (mode == DEBUG_SYM_MODE_VERTEX)
    {
        for (auto const& geom : feature.paths())
        {
            double x;
            double y;
            double z = 0;
            geom.rewind(0);
            unsigned cmd = 1;
            while ((cmd = geom.vertex(&x, &y)) != mapnik::SEG_END)
            {
                if (cmd == SEG_CLOSE) continue;
                prj_trans.backward(x,y,z);
                common_.t_.forward(&x,&y);
                context_.move_to(std::floor(x) - 0.5, std::floor(y) + 0.5);
                context_.line_to(std::floor(x) + 1.5, std::floor(y) + 0.5);
                context_.move_to(std::floor(x) + 0.5, std::floor(y) - 0.5);
                context_.line_to(std::floor(x) + 0.5, std::floor(y) + 1.5);
                context_.stroke();
            }
        }
    }
}
void  grid_renderer<T>::process(shield_symbolizer const& sym,
                                mapnik::feature_impl & feature,
                                proj_transform const& prj_trans)
{
    agg::trans_affine tr;
    auto transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (transform) evaluate_transform(tr, feature, common_.vars_, *transform, common_.scale_factor_);

    text_symbolizer_helper helper(
            sym, feature, common_.vars_, prj_trans,
            common_.width_, common_.height_,
            common_.scale_factor_,
            common_.t_, common_.font_manager_, *common_.detector_,
            common_.query_extent_, tr);
    bool placement_found = false;

    composite_mode_e comp_op = get<composite_mode_e>(sym, keys::comp_op, feature, common_.vars_, src_over);
    double opacity = get<double>(sym, keys::opacity, feature, common_.vars_, 1.0);

    grid_text_renderer<T> ren(pixmap_,
                              comp_op,
                              common_.scale_factor_);

    placements_list const& placements = helper.get();
    value_integer feature_id = feature.id();

    for (auto const& glyphs : placements)
    {
        marker_info_ptr mark = glyphs->get_marker();
        if (mark)
        {
            render_marker(feature,
                          glyphs->marker_pos(),
                          *mark->marker_,
                          mark->transform_,
                          opacity, comp_op);
        }
        ren.render(*glyphs, feature_id);
        placement_found = true;
    }
    if (placement_found)
    {
        pixmap_.add_feature(feature);
    }
}
示例#17
0
void grid_renderer<T>::process(text_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    box2d<double> clip_box = clipping_extent(common_);
    agg::trans_affine tr;
    auto transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (transform) evaluate_transform(tr, feature, common_.vars_, *transform, common_.scale_factor_);
    text_symbolizer_helper helper(
        sym, feature, common_.vars_, prj_trans,
        common_.width_, common_.height_,
        common_.scale_factor_,
        common_.t_, common_.font_manager_, *common_.detector_,
        clip_box, tr, common_.symbol_cache_);
    bool placement_found = false;

    composite_mode_e comp_op = get<composite_mode_e>(sym, keys::comp_op, feature, common_.vars_, src_over);

    grid_text_renderer<T> ren(pixmap_,
                              comp_op,
                              common_.scale_factor_);

    auto halo_transform = get_optional<transform_type>(sym, keys::halo_transform);
    if (halo_transform)
    {
        agg::trans_affine halo_affine_transform;
        evaluate_transform(halo_affine_transform, feature, common_.vars_, *halo_transform, common_.scale_factor_);
        ren.set_halo_transform(halo_affine_transform);
    }

    placements_list const& placements = helper.get();
    value_integer feature_id = feature.id();

    for (auto const& glyphs : placements)
    {
        ren.render(*glyphs, feature_id);
        placement_found = true;
    }
    if (placement_found)
    {
        pixmap_.add_feature(feature);
    }
}
void render_building_symbolizer(mapnik::feature_impl const& feature,
                                double height,
                                F1 face_func, F2 frame_func, F3 roof_func)
{

    auto const& geom = feature.get_geometry();
    if (geom.is<geometry::polygon<double> >())
    {
        auto const& poly = geom.get<geometry::polygon<double> >();
        detail::make_building(poly, height, face_func, frame_func, roof_func);
    }
    else if (geom.is<geometry::multi_polygon<double> >())
    {
        auto const& multi_poly = geom.get<geometry::multi_polygon<double> >();
        for (auto const& poly : multi_poly)
        {
            detail::make_building(poly, height, face_func, frame_func, roof_func);
        }
    }
}
void  grid_renderer<T>::process(shield_symbolizer const& sym,
                                mapnik::feature_impl & feature,
                                proj_transform const& prj_trans)
{
    text_symbolizer_helper helper(
            sym, feature, common_.vars_, prj_trans,
            common_.width_, common_.height_,
            common_.scale_factor_,
            common_.t_, common_.font_manager_, *common_.detector_,
            common_.query_extent_);
    bool placement_found = false;

    composite_mode_e comp_op = get<composite_mode_e>(sym, keys::comp_op, feature, common_.vars_, src_over);
    double opacity = get<double>(sym, keys::opacity, feature, common_.vars_, 1.0);

    grid_text_renderer<T> ren(pixmap_,
                              comp_op,
                              common_.scale_factor_);

    placements_list const& placements = helper.get();
    value_integer feature_id = feature.id();
    
    for (glyph_positions_ptr glyphs : placements)
    {
        if (glyphs->marker())
        {
            render_marker(feature, 
                          pixmap_.get_resolution(),
                          glyphs->marker_pos(),
                          *(glyphs->marker()->marker),
                          glyphs->marker()->transform,
                          opacity, comp_op);
        }
        ren.render(*glyphs, feature_id);
        placement_found = true;
    }
    if (placement_found)
    {
        pixmap_.add_feature(feature);
    }
}
void grid_renderer<T>::process(polygon_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    using renderer_type = agg::renderer_scanline_bin_solid<grid_renderer_base_type>;
    using pixfmt_type = typename grid_renderer_base_type::pixfmt_type;
    using color_type = typename grid_renderer_base_type::pixfmt_type::color_type;
    using vertex_converter_type = vertex_converter<transform2_tag,
                                                   clip_poly_tag,
                                                   transform_tag,
                                                   affine_transform_tag,
                                                   simplify_tag,
                                                   smooth_tag,
                                                   contour_tag>;

    ras_ptr->reset();

    grid_rendering_buffer buf(pixmap_.raw_data(), common_.width_, common_.height_, common_.width_);

    render_polygon_symbolizer<vertex_converter_type>(
      sym, feature, prj_trans, common_, common_.query_extent_, *ras_ptr,
      [&](color const &, double) {
        pixfmt_type pixf(buf);

        grid_renderer_base_type renb(pixf);
        renderer_type ren(renb);

        // render id
        ren.color(color_type(feature.id()));
        agg::scanline_bin sl;
        ras_ptr->filling_rule(agg::fill_non_zero);
        agg::render_scanlines(*ras_ptr, sl, ren);

        // add feature properties to grid cache
        pixmap_.add_feature(feature);
      });
}
示例#21
0
bool svg_renderer<OutputIterator>::process(rule::symbolizers const& syms,
                                           mapnik::feature_impl & feature,
                                           proj_transform const& prj_trans)
{
    // svg renderer supports processing of multiple symbolizers.
    using path_type = transform_path_adapter<view_transform, geometry_type>;

    bool process_path = false;
    // process each symbolizer to collect its (path) information.
    // path information (attributes from line_ and polygon_ symbolizers)
    // is collected with the path_attributes_ data member.
    for (auto const& sym : syms)
    {
        if (is_path_based(sym))
        {
            process_path = true;
        }
        util::apply_visitor(symbolizer_dispatch<svg_renderer<OutputIterator>>(*this, feature, prj_trans), sym);
    }

    if (process_path)
    {
        // generate path output for each geometry of the current feature.
        for (auto & geom : feature.paths())
        {
            if(geom.size() > 0)
            {
                path_type path(common_.t_, geom, prj_trans);
                generate_path(generator_.output_iterator_, path, path_attributes_);
            }
        }
        // set the previously collected values back to their defaults
        // for the feature that will be processed next.
        path_attributes_.reset();
    }
    return true;
}
void cairo_renderer<T>::process(line_symbolizer const& sym,
                                  mapnik::feature_impl & feature,
                                  proj_transform const& prj_trans)
{
    composite_mode_e comp_op = get<composite_mode_e, keys::comp_op>(sym, feature, common_.vars_);
    value_bool clip = get<value_bool, keys::clip>(sym, feature, common_.vars_);
    value_double offset = get<value_double, keys::offset>(sym, feature, common_.vars_);
    value_double simplify_tolerance = get<value_double, keys::simplify_tolerance>(sym, feature, common_.vars_);
    value_double smooth = get<value_double, keys::smooth>(sym, feature, common_.vars_);

    color stroke = get<color, keys::stroke>(sym, feature, common_.vars_);
    value_double stroke_opacity = get<value_double, keys::stroke_opacity>(sym, feature, common_.vars_);
    line_join_enum stroke_join = get<line_join_enum, keys::stroke_linejoin>(sym, feature, common_.vars_);
    line_cap_enum stroke_cap = get<line_cap_enum, keys::stroke_linecap>(sym, feature, common_.vars_);
    value_double miterlimit = get<value_double, keys::stroke_miterlimit>(sym, feature, common_.vars_);
    value_double width = get<value_double, keys::stroke_width>(sym, feature, common_.vars_);

    auto dash = get_optional<dash_array>(sym, keys::stroke_dasharray, feature, common_.vars_);

    cairo_save_restore guard(context_);
    context_.set_operator(comp_op);
    context_.set_color(stroke, stroke_opacity);
    context_.set_line_join(stroke_join);
    context_.set_line_cap(stroke_cap);
    context_.set_miter_limit(miterlimit);
    context_.set_line_width(width * common_.scale_factor_);
    if (dash)
    {
        context_.set_dash(*dash, common_.scale_factor_);
    }

    agg::trans_affine tr;
    auto geom_transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (geom_transform) { evaluate_transform(tr, feature, common_.vars_, *geom_transform, common_.scale_factor_); }

    box2d<double> clipping_extent = common_.query_extent_;
    if (clip)
    {
        double padding = (double)(common_.query_extent_.width()/common_.width_);
        double half_stroke = width/2.0;
        if (half_stroke > 1)
            padding *= half_stroke;
        if (std::fabs(offset) > 0)
            padding *= std::fabs(offset) * 1.2;
        padding *= common_.scale_factor_;
        clipping_extent.pad(padding);
    }
    using vertex_converter_type =  vertex_converter<clip_line_tag,
                                                    clip_poly_tag,
                                                    transform_tag,
                                                    affine_transform_tag,
                                                    simplify_tag, smooth_tag,
                                                    offset_transform_tag>;

    vertex_converter_type converter(clipping_extent,sym,common_.t_,prj_trans,tr,feature,common_.vars_,common_.scale_factor_);

    if (clip)
    {
        geometry::geometry_types type = geometry::geometry_type(feature.get_geometry());
        if (type == geometry::geometry_types::Polygon || type == geometry::geometry_types::MultiPolygon)
            converter.template set<clip_poly_tag>();
        else if (type == geometry::geometry_types::LineString || type == geometry::geometry_types::MultiLineString)
            converter.template set<clip_line_tag>();
    }
    converter.set<transform_tag>(); // always transform
    if (std::fabs(offset) > 0.0) converter.set<offset_transform_tag>(); // parallel offset
    converter.set<affine_transform_tag>(); // optional affine transform
    if (simplify_tolerance > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (smooth > 0.0) converter.set<smooth_tag>(); // optional smooth converter
    using apply_vertex_converter_type = detail::apply_vertex_converter<vertex_converter_type, cairo_context>;
    using vertex_processor_type = geometry::vertex_processor<apply_vertex_converter_type>;
    apply_vertex_converter_type apply(converter, context_);
    mapnik::util::apply_visitor(vertex_processor_type(apply),feature.get_geometry());
    // stroke
    context_.set_fill_rule(CAIRO_FILL_RULE_WINDING);
    context_.stroke();
}
void grid_renderer<T>::process(markers_symbolizer const& sym,
                               mapnik::feature_impl & feature,
                               proj_transform const& prj_trans)
{
    typedef grid_rendering_buffer buf_type;
    typedef typename grid_renderer_base_type::pixfmt_type pixfmt_type;
    typedef typename grid_renderer_base_type::pixfmt_type::color_type color_type;
    typedef agg::renderer_scanline_bin_solid<grid_renderer_base_type> renderer_type;
    typedef label_collision_detector4 detector_type;
    typedef boost::mpl::vector<clip_line_tag,clip_poly_tag,transform_tag,smooth_tag> conv_types;

    std::string filename = path_processor_type::evaluate(*sym.get_filename(), feature);

    if (!filename.empty())
    {
        boost::optional<marker_ptr> mark = mapnik::marker_cache::instance().find(filename, true);
        if (mark && *mark)
        {
            ras_ptr->reset();
            agg::trans_affine geom_tr;
            evaluate_transform(geom_tr, feature, sym.get_transform());
            agg::trans_affine tr = agg::trans_affine_scaling(scale_factor_*(1.0/pixmap_.get_resolution()));

            if ((*mark)->is_vector())
            {
                using namespace mapnik::svg;
                typedef agg::pod_bvector<path_attributes> svg_attribute_type;
                typedef svg_renderer_agg<svg_path_adapter,
                                     svg_attribute_type,
                                     renderer_type,
                                     pixfmt_type > svg_renderer_type;
                typedef vector_markers_rasterizer_dispatch_grid<buf_type,
                                     svg_renderer_type,
                                     grid_rasterizer,
                                     detector_type,
                                     mapnik::grid > dispatch_type;
                boost::optional<svg_path_ptr> const& stock_vector_marker = (*mark)->get_vector_data();
                expression_ptr const& width_expr = sym.get_width();
                expression_ptr const& height_expr = sym.get_height();

                // special case for simple ellipse markers
                // to allow for full control over rx/ry dimensions
                if (filename == "shape://ellipse"
                   && (width_expr || height_expr))
                {
                    svg_storage_type marker_ellipse;
                    vertex_stl_adapter<svg_path_storage> stl_storage(marker_ellipse.source());
                    svg_path_adapter svg_path(stl_storage);
                    // TODO - clamping to >= 4 pixels
                    build_ellipse(sym, feature, marker_ellipse, svg_path);
                    svg_attribute_type attributes;
                    bool result = push_explicit_style( (*stock_vector_marker)->attributes(), attributes, sym);
                    svg_renderer_type svg_renderer(svg_path, result ? attributes : (*stock_vector_marker)->attributes());
                    evaluate_transform(tr, feature, sym.get_image_transform());
                    box2d<double> bbox = marker_ellipse.bounding_box();
                    coord2d center = bbox.center();
                    agg::trans_affine_translation recenter(-center.x, -center.y);
                    agg::trans_affine marker_trans = recenter * tr;
                    buf_type render_buf(pixmap_.raw_data(), width_, height_, width_);
                    dispatch_type rasterizer_dispatch(render_buf,
                                                      svg_renderer,
                                                      *ras_ptr,
                                                      bbox,
                                                      marker_trans,
                                                      sym,
                                                      *detector_,
                                                      scale_factor_,
                                                      feature,
                                                      pixmap_);
                    vertex_converter<box2d<double>, dispatch_type, markers_symbolizer,
                                     CoordTransform, proj_transform, agg::trans_affine, conv_types>
                        converter(query_extent_, rasterizer_dispatch, sym,t_,prj_trans,tr,scale_factor_);
                    if (sym.clip() && feature.paths().size() > 0) // optional clip (default: true)
                    {
                        eGeomType type = feature.paths()[0].type();
                        if (type == Polygon)
                            converter.template set<clip_poly_tag>();
                        // line clipping disabled due to https://github.com/mapnik/mapnik/issues/1426
                        //else if (type == LineString)
                        //    converter.template set<clip_line_tag>();
                        // don't clip if type==Point
                    }
                    converter.template set<transform_tag>(); //always transform
                    if (sym.smooth() > 0.0) converter.template set<smooth_tag>(); // optional smooth converter
                    apply_markers_multi(feature, converter, sym);
                }
                else
                {
                    box2d<double> const& bbox = (*mark)->bounding_box();
                    setup_transform_scaling(tr, bbox.width(), bbox.height(), feature, sym);
                    evaluate_transform(tr, feature, sym.get_image_transform());
                    // TODO - clamping to >= 4 pixels
                    coord2d center = bbox.center();
                    agg::trans_affine_translation recenter(-center.x, -center.y);
                    agg::trans_affine marker_trans = recenter * tr;
                    vertex_stl_adapter<svg_path_storage> stl_storage((*stock_vector_marker)->source());
                    svg_path_adapter svg_path(stl_storage);
                    svg_attribute_type attributes;
                    bool result = push_explicit_style( (*stock_vector_marker)->attributes(), attributes, sym);
                    svg_renderer_type svg_renderer(svg_path, result ? attributes : (*stock_vector_marker)->attributes());
                    buf_type render_buf(pixmap_.raw_data(), width_, height_, width_);
                    dispatch_type rasterizer_dispatch(render_buf,
                                                      svg_renderer,
                                                      *ras_ptr,
                                                      bbox,
                                                      marker_trans,
                                                      sym,
                                                      *detector_,
                                                      scale_factor_,
                                                      feature,
                                                      pixmap_);
                    vertex_converter<box2d<double>, dispatch_type, markers_symbolizer,
                                     CoordTransform, proj_transform, agg::trans_affine, conv_types>
                        converter(query_extent_, rasterizer_dispatch, sym,t_,prj_trans,tr,scale_factor_);
                    if (sym.clip() && feature.paths().size() > 0) // optional clip (default: true)
                    {
                        eGeomType type = feature.paths()[0].type();
                        if (type == Polygon)
                            converter.template set<clip_poly_tag>();
                        // line clipping disabled due to https://github.com/mapnik/mapnik/issues/1426
                        //else if (type == LineString)
                        //    converter.template set<clip_line_tag>();
                        // don't clip if type==Point
                    }
                    converter.template set<transform_tag>(); //always transform
                    if (sym.smooth() > 0.0) converter.template set<smooth_tag>(); // optional smooth converter
                    apply_markers_multi(feature, converter, sym);
                }
            }
            else // raster markers
            {
                setup_transform_scaling(tr, (*mark)->width(), (*mark)->height(), feature, sym);
                evaluate_transform(tr, feature, sym.get_image_transform());
                box2d<double> const& bbox = (*mark)->bounding_box();
                // - clamp sizes to > 4 pixels of interactivity
                coord2d center = bbox.center();
                agg::trans_affine_translation recenter(-center.x, -center.y);
                agg::trans_affine marker_trans = recenter * tr;
                boost::optional<mapnik::image_ptr> marker = (*mark)->get_bitmap_data();
                typedef raster_markers_rasterizer_dispatch_grid<buf_type,
                                                            grid_rasterizer,
                                                            pixfmt_type,
                                                            grid_renderer_base_type,
                                                            renderer_type,
                                                            detector_type,
                                                            mapnik::grid > dispatch_type;
                buf_type render_buf(pixmap_.raw_data(), width_, height_, width_);
                dispatch_type rasterizer_dispatch(render_buf,
                                                  *ras_ptr,
                                                  **marker,
                                                  marker_trans,
                                                  sym,
                                                  *detector_,
                                                  scale_factor_,
                                                  feature,
                                                  pixmap_);
                vertex_converter<box2d<double>, dispatch_type, markers_symbolizer,
                                 CoordTransform, proj_transform, agg::trans_affine, conv_types>
                    converter(query_extent_, rasterizer_dispatch, sym,t_,prj_trans,tr,scale_factor_);
                if (sym.clip() && feature.paths().size() > 0) // optional clip (default: true)
                {
                    eGeomType type = feature.paths()[0].type();
                    if (type == Polygon)
                        converter.template set<clip_poly_tag>();
                    // line clipping disabled due to https://github.com/mapnik/mapnik/issues/1426
                    //else if (type == LineString)
                    //    converter.template set<clip_line_tag>();
                    // don't clip if type==Point
                }
                converter.template set<transform_tag>(); //always transform
                if (sym.smooth() > 0.0) converter.template set<smooth_tag>(); // optional smooth converter
                apply_markers_multi(feature, converter, sym);
            }
        }
    }
}
示例#24
0
void grid_renderer<T>::render_marker(mapnik::feature_impl & feature, unsigned int step, pixel_position const& pos, marker const& marker, agg::trans_affine const& tr, double opacity, composite_mode_e comp_op)
{
    if (marker.is_vector())
    {
        typedef coord_transform<CoordTransform,geometry_type> path_type;
        typedef agg::renderer_base<mapnik::pixfmt_gray32> ren_base;
        typedef agg::renderer_scanline_bin_solid<ren_base> renderer;
        agg::scanline_bin sl;

        grid_rendering_buffer buf(pixmap_.raw_data(), width_, height_, width_);
        mapnik::pixfmt_gray32 pixf(buf);

        ren_base renb(pixf);
        renderer ren(renb);

        ras_ptr->reset();

        box2d<double> const& bbox = (*marker.get_vector_data())->bounding_box();
        coord<double,2> c = bbox.center();
        // center the svg marker on '0,0'
        agg::trans_affine mtx = agg::trans_affine_translation(-c.x,-c.y);
        // apply symbol transformation to get to map space
        mtx *= tr;
        mtx *= agg::trans_affine_scaling(scale_factor_*(1.0/step));
        // render the marker at the center of the marker box
        mtx.translate(pos.x, pos.y);
        using namespace mapnik::svg;
        vertex_stl_adapter<svg_path_storage> stl_storage((*marker.get_vector_data())->source());
        svg_path_adapter svg_path(stl_storage);
        svg_renderer_agg<svg_path_adapter,
            agg::pod_bvector<path_attributes>,
            renderer,
            mapnik::pixfmt_gray32> svg_renderer(svg_path,
                                                (*marker.get_vector_data())->attributes());

        svg_renderer.render_id(*ras_ptr, sl, renb, feature.id(), mtx, opacity, bbox);

    }
    else
    {
        image_data_32 const& data = **marker.get_bitmap_data();
        double width = data.width();
        double height = data.height();
        double cx = 0.5 * width;
        double cy = 0.5 * height;
        if (step == 1 && (std::fabs(1.0 - scale_factor_) < 0.001 && tr.is_identity()))
        {
            // TODO - support opacity
            pixmap_.set_rectangle(feature.id(), data,
                                  boost::math::iround(pos.x - cx),
                                  boost::math::iround(pos.y - cy));
        }
        else
        {
            // TODO - remove support for step != or add support for agg scaling with opacity
            double ratio = (1.0/step);
            image_data_32 target(ratio * data.width(), ratio * data.height());
            mapnik::scale_image_agg<image_data_32>(target,data, SCALING_NEAR,
                                                   scale_factor_, 0.0, 0.0, 1.0, ratio);
            pixmap_.set_rectangle(feature.id(), target,
                                  boost::math::iround(pos.x - cx),
                                  boost::math::iround(pos.y - cy));
        }
    }
    pixmap_.add_feature(feature);
}
void render_building_symbolizer(mapnik::feature_impl &feature,
                                double height,
                                F1 face_func, F2 frame_func, F3 roof_func)
{
    for (auto const& geom : feature.paths())
    {
        if (geom.size() > 2)
        {
            const std::unique_ptr<geometry_type> frame(new geometry_type(geometry_type::types::LineString));
            const std::unique_ptr<geometry_type> roof(new geometry_type(geometry_type::types::Polygon));
            std::deque<segment_t> face_segments;
            double x0 = 0;
            double y0 = 0;
            double x,y;
            geom.rewind(0);
            for (unsigned cm = geom.vertex(&x, &y); cm != SEG_END;
                 cm = geom.vertex(&x, &y))
            {
                if (cm == SEG_MOVETO)
                {
                    frame->move_to(x,y);
                }
                else if (cm == SEG_LINETO)
                {
                    frame->line_to(x,y);
                    face_segments.push_back(segment_t(x0,y0,x,y));
                }
                else if (cm == SEG_CLOSE)
                {
                    frame->close_path();
                }
                x0 = x;
                y0 = y;
            }

            std::sort(face_segments.begin(),face_segments.end(), y_order);
            for (auto const& seg : face_segments)
            {
                const std::unique_ptr<geometry_type> faces(new geometry_type(geometry_type::types::Polygon));
                faces->move_to(std::get<0>(seg),std::get<1>(seg));
                faces->line_to(std::get<2>(seg),std::get<3>(seg));
                faces->line_to(std::get<2>(seg),std::get<3>(seg) + height);
                faces->line_to(std::get<0>(seg),std::get<1>(seg) + height);

                face_func(*faces);
                //
                frame->move_to(std::get<0>(seg),std::get<1>(seg));
                frame->line_to(std::get<0>(seg),std::get<1>(seg)+height);

            }

            geom.rewind(0);
            for (unsigned cm = geom.vertex(&x, &y); cm != SEG_END;
                 cm = geom.vertex(&x, &y))
            {
                if (cm == SEG_MOVETO)
                {
                    frame->move_to(x,y+height);
                    roof->move_to(x,y+height);
                }
                else if (cm == SEG_LINETO)
                {
                    frame->line_to(x,y+height);
                    roof->line_to(x,y+height);
                }
                else if (cm == SEG_CLOSE)
                {
                    frame->close_path();
                    roof->close_path();
                }
            }

            frame_func(*frame);
            roof_func(*roof);
        }
    }
}
void cairo_renderer<T>::process(polygon_pattern_symbolizer const& sym,
                                mapnik::feature_impl & feature,
                                proj_transform const& prj_trans)
{
    composite_mode_e comp_op = get<composite_mode_e, keys::comp_op>(sym, feature, common_.vars_);
    std::string filename = get<std::string, keys::file>(sym, feature, common_.vars_);
    value_bool clip = get<value_bool, keys::clip>(sym, feature, common_.vars_);
    value_double simplify_tolerance = get<value_double, keys::simplify_tolerance>(sym, feature, common_.vars_);
    value_double smooth = get<value_double, keys::smooth>(sym, feature, common_.vars_);
    value_double opacity = get<value_double, keys::opacity>(sym, feature, common_.vars_);
    agg::trans_affine image_tr = agg::trans_affine_scaling(common_.scale_factor_);
    auto image_transform = get_optional<transform_type>(sym, keys::image_transform);
    if (image_transform) evaluate_transform(image_tr, feature, common_.vars_, *image_transform);

    cairo_save_restore guard(context_);
    context_.set_operator(comp_op);

    boost::optional<mapnik::marker_ptr> marker = mapnik::marker_cache::instance().find(filename,true);
    if (!marker || !(*marker)) return;

    unsigned offset_x=0;
    unsigned offset_y=0;
    box2d<double> const& clip_box = clipping_extent(common_);
    pattern_alignment_enum alignment = get<pattern_alignment_enum, keys::alignment>(sym, feature, common_.vars_);
    if (alignment == LOCAL_ALIGNMENT)
    {
        double x0 = 0.0;
        double y0 = 0.0;

        if (feature.num_geometries() > 0)
        {
            using clipped_geometry_type = agg::conv_clip_polygon<geometry_type>;
            using path_type = transform_path_adapter<view_transform,clipped_geometry_type>;
            clipped_geometry_type clipped(feature.get_geometry(0));
            clipped.clip_box(clip_box.minx(), clip_box.miny(),
                             clip_box.maxx(), clip_box.maxy());
            path_type path(common_.t_, clipped, prj_trans);
            path.vertex(&x0, &y0);
        }
        offset_x = std::abs(clip_box.width() - x0);
        offset_y = std::abs(clip_box.height() - y0);
    }

    if ((*marker)->is_bitmap())
    {
        cairo_pattern pattern(**((*marker)->get_bitmap_data()), opacity);
        pattern.set_extend(CAIRO_EXTEND_REPEAT);
        pattern.set_origin(offset_x, offset_y);
        context_.set_pattern(pattern);
    }
    else
    {
        mapnik::rasterizer ras;
        image_ptr image = render_pattern(ras, **marker, image_tr, 1.0); //
        cairo_pattern pattern(*image, opacity);
        pattern.set_extend(CAIRO_EXTEND_REPEAT);
        pattern.set_origin(offset_x, offset_y);
        context_.set_pattern(pattern);
    }

    agg::trans_affine tr;
    auto geom_transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (geom_transform) {
        evaluate_transform(tr, feature, common_.vars_, *geom_transform, common_.scale_factor_);
    }

    vertex_converter<cairo_context,clip_poly_tag,transform_tag,affine_transform_tag,simplify_tag,smooth_tag>
    converter(clip_box, context_,sym,common_.t_,prj_trans,tr,feature,common_.vars_,common_.scale_factor_);

    if (prj_trans.equal() && clip) converter.set<clip_poly_tag>(); //optional clip (default: true)
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>();
    if (simplify_tolerance > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (smooth > 0.0) converter.set<smooth_tag>(); // optional smooth converter

    for ( geometry_type & geom : feature.paths())
    {
        if (geom.size() > 2)
        {
            converter.apply(geom);
        }
    }
    // fill polygon
    context_.set_fill_rule(CAIRO_FILL_RULE_EVEN_ODD);
    context_.fill();
}
示例#27
0
coord<unsigned, 2> offset(Sym const & sym,
                          mapnik::feature_impl const & feature,
                          proj_transform const & prj_trans,
                          renderer_common const & common,
                          box2d<double> const & clip_box)
{
    coord<unsigned, 2> off(0, 0);
    pattern_alignment_enum alignment = get<pattern_alignment_enum, keys::alignment>(sym, feature, common.vars_);
    if (alignment == LOCAL_ALIGNMENT)
    {
        coord<double, 2> alignment(0, 0);
        apply_local_alignment apply(common.t_, prj_trans, clip_box, alignment.x, alignment.y);
        util::apply_visitor(geometry::vertex_processor<apply_local_alignment>(apply), feature.get_geometry());
        off.x = std::abs(clip_box.width() - alignment.x);
        off.y = std::abs(clip_box.height() - alignment.y);
    }
    return off;
}
void cairo_renderer<T>::process(line_symbolizer const& sym,
                                  mapnik::feature_impl & feature,
                                  proj_transform const& prj_trans)
{
    composite_mode_e comp_op = get<composite_mode_e, keys::comp_op>(sym, feature, common_.vars_);
    value_bool clip = get<value_bool, keys::clip>(sym, feature, common_.vars_);
    value_double offset = get<value_double, keys::offset>(sym, feature, common_.vars_);
    value_double simplify_tolerance = get<value_double, keys::simplify_tolerance>(sym, feature, common_.vars_);
    value_double smooth = get<value_double, keys::smooth>(sym, feature, common_.vars_);

    color stroke = get<color, keys::stroke>(sym, feature, common_.vars_);
    value_double stroke_opacity = get<value_double, keys::stroke_opacity>(sym, feature, common_.vars_);
    line_join_enum stroke_join = get<line_join_enum, keys::stroke_linejoin>(sym, feature, common_.vars_);
    line_cap_enum stroke_cap = get<line_cap_enum, keys::stroke_linecap>(sym, feature, common_.vars_);
    value_double miterlimit = get<value_double, keys::stroke_miterlimit>(sym, feature, common_.vars_);
    value_double width = get<value_double, keys::stroke_width>(sym, feature, common_.vars_);

    auto dash = get_optional<dash_array>(sym, keys::stroke_dasharray, feature, common_.vars_);

    cairo_save_restore guard(context_);
    context_.set_operator(comp_op);
    context_.set_color(stroke, stroke_opacity);
    context_.set_line_join(stroke_join);
    context_.set_line_cap(stroke_cap);
    context_.set_miter_limit(miterlimit);
    context_.set_line_width(width * common_.scale_factor_);
    if (dash)
    {
        context_.set_dash(*dash, common_.scale_factor_);
    }

    agg::trans_affine tr;
    auto geom_transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (geom_transform) { evaluate_transform(tr, feature, common_.vars_, *geom_transform, common_.scale_factor_); }

    box2d<double> clipping_extent = common_.query_extent_;
    if (clip)
    {
        double padding = (double)(common_.query_extent_.width()/common_.width_);
        double half_stroke = width/2.0;
        if (half_stroke > 1)
            padding *= half_stroke;
        if (std::fabs(offset) > 0)
            padding *= std::fabs(offset) * 1.2;
        padding *= common_.scale_factor_;
        clipping_extent.pad(padding);
    }
    vertex_converter<cairo_context,
                     clip_line_tag,
                     transform_tag,
                     affine_transform_tag,
                     simplify_tag, smooth_tag,
                     offset_transform_tag,
                     dash_tag, stroke_tag>
        converter(clipping_extent,context_,sym,common_.t_,prj_trans,tr,feature,common_.vars_,common_.scale_factor_);

    if (clip) converter.set<clip_line_tag>(); // optional clip (default: true)
    converter.set<transform_tag>(); // always transform
    if (std::fabs(offset) > 0.0) converter.set<offset_transform_tag>(); // parallel offset
    converter.set<affine_transform_tag>(); // optional affine transform
    if (simplify_tolerance > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (smooth > 0.0) converter.set<smooth_tag>(); // optional smooth converter

    for (geometry_type & geom : feature.paths())
    {
        if (geom.size() > 1)
        {
            converter.apply(geom);
        }
    }
    // stroke
    context_.set_fill_rule(CAIRO_FILL_RULE_WINDING);
    context_.stroke();
}
void cairo_renderer<T>::process(line_pattern_symbolizer const& sym,
                                  mapnik::feature_impl & feature,
                                  proj_transform const& prj_trans)
{
    std::string filename = get<std::string, keys::file>(sym, feature, common_.vars_);
    composite_mode_e comp_op = get<composite_mode_e, keys::comp_op>(sym, feature, common_.vars_);
    value_bool clip = get<value_bool, keys::clip>(sym, feature, common_.vars_);
    value_double offset = get<value_double, keys::offset>(sym, feature, common_.vars_);
    value_double simplify_tolerance = get<value_double, keys::simplify_tolerance>(sym, feature, common_.vars_);
    value_double smooth = get<value_double, keys::smooth>(sym, feature, common_.vars_);

    if (filename.empty())
    {
        return;
    }

    std::shared_ptr<mapnik::marker const> marker = marker_cache::instance().find(filename, true);

    if (marker->is<mapnik::marker_null>()) return;

    unsigned width = marker->width();
    unsigned height = marker->height();

    cairo_save_restore guard(context_);
    context_.set_operator(comp_op);
    // TODO - re-implement at renderer level like polygon_pattern symbolizer
    cairo_renderer_process_visitor_l visit(common_,
                                           sym,
                                           feature,
                                           width,
                                           height);
    std::shared_ptr<cairo_pattern> pattern = util::apply_visitor(visit, *marker);

    context_.set_line_width(height);

    pattern->set_extend(CAIRO_EXTEND_REPEAT);
    pattern->set_filter(CAIRO_FILTER_BILINEAR);

    agg::trans_affine tr;
    auto geom_transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (geom_transform) { evaluate_transform(tr, feature, common_.vars_, *geom_transform, common_.scale_factor_); }

    box2d<double> clipping_extent = common_.query_extent_;
    if (clip)
    {
        double padding = (double)(common_.query_extent_.width()/common_.width_);
        double half_stroke = width/2.0;
        if (half_stroke > 1)
            padding *= half_stroke;
        if (std::fabs(offset) > 0)
            padding *= std::fabs(offset) * 1.2;
        padding *= common_.scale_factor_;
        clipping_extent.pad(padding);
    }

    using rasterizer_type = line_pattern_rasterizer<cairo_context>;
    rasterizer_type ras(context_, *pattern, width, height);
    using vertex_converter_type = vertex_converter<clip_line_tag, transform_tag,
                                                   affine_transform_tag,
                                                   simplify_tag, smooth_tag,
                                                   offset_transform_tag>;

    vertex_converter_type converter(clipping_extent,sym, common_.t_, prj_trans, tr, feature, common_.vars_, common_.scale_factor_);

    if (clip) converter.set<clip_line_tag>(); // optional clip (default: true)
    converter.set<transform_tag>(); // always transform
    if (std::fabs(offset) > 0.0) converter.set<offset_transform_tag>(); // parallel offset
    converter.set<affine_transform_tag>(); // optional affine transform
    if (simplify_tolerance > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (smooth > 0.0) converter.set<smooth_tag>(); // optional smooth converter

    using apply_vertex_converter_type = detail::apply_vertex_converter<vertex_converter_type, rasterizer_type>;
    using vertex_processor_type = geometry::vertex_processor<apply_vertex_converter_type>;
    apply_vertex_converter_type apply(converter, ras);
    mapnik::util::apply_visitor(vertex_processor_type(apply), feature.get_geometry());
}
示例#30
0
void agg_renderer<T0,T1>::process(polygon_pattern_symbolizer const& sym,
                                  mapnik::feature_impl & feature,
                                  proj_transform const& prj_trans)
{
    std::string filename = get<std::string, keys::file>(sym, feature, common_.vars_);
    if (filename.empty()) return;
    std::shared_ptr<mapnik::marker const> marker = marker_cache::instance().find(filename, true);

    buffer_type & current_buffer = buffers_.top().get();
    agg::rendering_buffer buf(current_buffer.bytes(), current_buffer.width(),
                              current_buffer.height(), current_buffer.row_size());
    ras_ptr->reset();
    value_double gamma = get<value_double, keys::gamma>(sym, feature, common_.vars_);
    gamma_method_enum gamma_method = get<gamma_method_enum, keys::gamma_method>(sym, feature, common_.vars_);
    if (gamma != gamma_ || gamma_method != gamma_method_)
    {
        set_gamma_method(ras_ptr, gamma, gamma_method);
        gamma_method_ = gamma_method;
        gamma_ = gamma;
    }

    value_bool clip = get<value_bool, keys::clip>(sym, feature, common_.vars_);
    value_double opacity = get<double, keys::opacity>(sym, feature, common_.vars_);
    value_double simplify_tolerance = get<value_double, keys::simplify_tolerance>(sym, feature, common_.vars_);
    value_double smooth = get<value_double, keys::smooth>(sym, feature, common_.vars_);

    using color = agg::rgba8;
    using order = agg::order_rgba;
    using blender_type = agg::comp_op_adaptor_rgba_pre<color, order>;
    using pixfmt_type = agg::pixfmt_custom_blend_rgba<blender_type, agg::rendering_buffer>;

    using wrap_x_type = agg::wrap_mode_repeat;
    using wrap_y_type = agg::wrap_mode_repeat;
    using img_source_type = agg::image_accessor_wrap<agg::pixfmt_rgba32_pre,
                                                     wrap_x_type,
                                                     wrap_y_type>;

    using span_gen_type = agg::span_pattern_rgba<img_source_type>;
    using ren_base = agg::renderer_base<pixfmt_type>;

    using renderer_type = agg::renderer_scanline_aa_alpha<ren_base,
                                                          agg::span_allocator<agg::rgba8>,
                                                          span_gen_type>;

    pixfmt_type pixf(buf);
    pixf.comp_op(static_cast<agg::comp_op_e>(get<composite_mode_e, keys::comp_op>(sym, feature, common_.vars_)));
    ren_base renb(pixf);

    common_pattern_process_visitor<polygon_pattern_symbolizer, rasterizer> visitor(*ras_ptr, common_, sym, feature);
    image_rgba8 image(util::apply_visitor(visitor, *marker));

    unsigned w = image.width();
    unsigned h = image.height();
    agg::rendering_buffer pattern_rbuf((agg::int8u*)image.bytes(),w,h,w*4);
    agg::pixfmt_rgba32_pre pixf_pattern(pattern_rbuf);
    img_source_type img_src(pixf_pattern);

    box2d<double> clip_box = clipping_extent(common_);
    coord<unsigned, 2> offset(detail::offset(sym, feature, prj_trans, common_, clip_box));
    span_gen_type sg(img_src, offset.x, offset.y);

    agg::span_allocator<agg::rgba8> sa;
    renderer_type rp(renb,sa, sg, unsigned(opacity * 255));

    agg::trans_affine tr;
    auto transform = get_optional<transform_type>(sym, keys::geometry_transform);
    if (transform) evaluate_transform(tr, feature, common_.vars_, *transform, common_.scale_factor_);
    using vertex_converter_type = vertex_converter<clip_poly_tag,
                                                   transform_tag,
                                                   affine_transform_tag,
                                                   simplify_tag,
                                                   smooth_tag>;

    vertex_converter_type converter(clip_box, sym,common_.t_,prj_trans,tr,feature,common_.vars_,common_.scale_factor_);

    if (prj_trans.equal() && clip) converter.set<clip_poly_tag>();
    converter.set<transform_tag>(); //always transform
    converter.set<affine_transform_tag>(); // optional affine transform
    if (simplify_tolerance > 0.0) converter.set<simplify_tag>(); // optional simplify converter
    if (smooth > 0.0) converter.set<smooth_tag>(); // optional smooth converter

    using apply_vertex_converter_type = detail::apply_vertex_converter<vertex_converter_type, rasterizer>;
    using vertex_processor_type = geometry::vertex_processor<apply_vertex_converter_type>;
    apply_vertex_converter_type apply(converter, *ras_ptr);
    mapnik::util::apply_visitor(vertex_processor_type(apply),feature.get_geometry());
    agg::scanline_u8 sl;
    ras_ptr->filling_rule(agg::fill_even_odd);
    agg::render_scanlines(*ras_ptr, sl, rp);
}