bool MAST::HeatConductionElementBase::internal_residual (bool request_jacobian, RealVectorX& f, RealMatrixX& jac) { const std::vector<Real>& JxW = _fe->get_JxW(); const std::vector<libMesh::Point>& xyz = _fe->get_xyz(); const unsigned int n_phi = _fe->n_shape_functions(), dim = _elem.dim(); RealMatrixX material_mat = RealMatrixX::Zero(dim, dim), dmaterial_mat = RealMatrixX::Zero(dim, dim), // for calculation of Jac when k is temp. dep. mat_n2n2 = RealMatrixX::Zero(n_phi, n_phi); RealVectorX vec1 = RealVectorX::Zero(1), vec2_n2 = RealVectorX::Zero(n_phi), flux = RealVectorX::Zero(dim); std::auto_ptr<MAST::FieldFunction<RealMatrixX> > conductance = _property.thermal_conductance_matrix(*this); libMesh::Point p; std::vector<MAST::FEMOperatorMatrix> dBmat(dim); MAST::FEMOperatorMatrix Bmat; // for calculation of Jac when k is temp. dep. for (unsigned int qp=0; qp<JxW.size(); qp++) { // initialize the Bmat operator for this term _initialize_mass_fem_operator(qp, Bmat); Bmat.right_multiply(vec1, _sol); if (_active_sol_function) dynamic_cast<MAST::MeshFieldFunction<RealVectorX>*> (_active_sol_function)->set_element_quadrature_point_solution(vec1); _local_elem->global_coordinates_location(xyz[qp], p); (*conductance)(p, _time, material_mat); _initialize_flux_fem_operator(qp, dBmat); // calculate the flux for each dimension and add its weighted // component to the residual flux.setZero(); for (unsigned int j=0; j<dim; j++) { dBmat[j].right_multiply(vec1, _sol); // dT_dxj for (unsigned int i=0; i<dim; i++) flux(i) += vec1(0) * material_mat(i,j); // q_i = k_ij dT_dxj } // now add to the residual vector for (unsigned int i=0; i<dim; i++) { vec1(0) = flux(i); dBmat[i].vector_mult_transpose(vec2_n2, vec1); f += JxW[qp] * vec2_n2; } if (request_jacobian) { // Jacobian contribution from int_omega dB_dxi^T k_ij dB_dxj for (unsigned int i=0; i<dim; i++) for (unsigned int j=0; j<dim; j++) { dBmat[i].right_multiply_transpose(mat_n2n2, dBmat[j]); jac += JxW[qp] * material_mat(i,j) * mat_n2n2; } // Jacobian contribution from int_omega dB_dxi dT_dxj dk_ij/dT B if (_active_sol_function) { // get derivative of the conductance matrix wrt temperature conductance->derivative(MAST::PARTIAL_DERIVATIVE, *_active_sol_function, p, _time, dmaterial_mat); for (unsigned int j=0; j<dim; j++) { dBmat[j].right_multiply(vec1, _sol); // dT_dxj for (unsigned int i=0; i<dim; i++) if (dmaterial_mat(i,j) != 0.) { // no need to process for zero terms // dB_dxi^T B dBmat[i].right_multiply_transpose(mat_n2n2, Bmat); // dB_dxi^T (dT_dxj dk_ij/dT) B jac += JxW[qp] * vec1(0) * dmaterial_mat(i,j) * mat_n2n2; } } } } } if (_active_sol_function) dynamic_cast<MAST::MeshFieldFunction<RealVectorX>*> (_active_sol_function)->clear_element_quadrature_point_solution(); return request_jacobian; }
bool MAST::HeatConductionElementBase::velocity_residual (bool request_jacobian, RealVectorX& f, RealMatrixX& jac_xdot, RealMatrixX& jac) { MAST::FEMOperatorMatrix Bmat; const std::vector<Real>& JxW = _fe->get_JxW(); const std::vector<libMesh::Point>& xyz = _fe->get_xyz(); const unsigned int n_phi = _fe->n_shape_functions(), dim = _elem.dim(); RealMatrixX material_mat = RealMatrixX::Zero(dim, dim), mat_n2n2 = RealMatrixX::Zero(n_phi, n_phi); RealVectorX vec1 = RealVectorX::Zero(1), vec2_n2 = RealVectorX::Zero(n_phi); std::auto_ptr<MAST::FieldFunction<RealMatrixX> > capacitance = _property.thermal_capacitance_matrix(*this); libMesh::Point p; for (unsigned int qp=0; qp<JxW.size(); qp++) { _initialize_mass_fem_operator(qp, Bmat); Bmat.right_multiply(vec1, _sol); // B * T if (_active_sol_function) dynamic_cast<MAST::MeshFieldFunction<RealVectorX>*> (_active_sol_function)->set_element_quadrature_point_solution(vec1); _local_elem->global_coordinates_location(xyz[qp], p); (*capacitance)(p, _time, material_mat); Bmat.right_multiply(vec1, _vel); // B * T_dot Bmat.vector_mult_transpose(vec2_n2, vec1); // B^T * B * T_dot f += JxW[qp] * material_mat(0,0) * vec2_n2; // (rho*cp)*JxW B^T B T_dot if (request_jacobian) { Bmat.right_multiply_transpose(mat_n2n2, Bmat); // B^T B jac_xdot += JxW[qp] * material_mat(0,0) * mat_n2n2; // B^T B * JxW (rho*cp) // Jacobian contribution from int_omega B T d(rho*cp)/dT B if (_active_sol_function) { // get derivative of the conductance matrix wrt temperature capacitance->derivative(MAST::PARTIAL_DERIVATIVE, *_active_sol_function, p, _time, material_mat); if (material_mat(0,0) != 0.) { // no need to process for zero terms // B^T (T d(rho cp)/dT) B jac += JxW[qp] * vec1(0) * material_mat(0,0) * mat_n2n2; } } } } if (_active_sol_function) dynamic_cast<MAST::MeshFieldFunction<RealVectorX>*> (_active_sol_function)->clear_element_quadrature_point_solution(); return request_jacobian; }