int TriKota::ThyraDirectApplicInterface::derived_map_ac(const Dakota::String& ac_name) { if (App != Teuchos::null) { // Test for consistency of problem definition between ModelEval and Dakota TEST_FOR_EXCEPTION(numVars > numParameters, std::logic_error, "TriKota_Dakota Adapter Error: "); TEST_FOR_EXCEPTION(numFns > numResponses, std::logic_error, "TriKota_Dakota Adapter Error: "); TEST_FOR_EXCEPTION(hessFlag, std::logic_error, "TriKota_Dakota Adapter Error: "); MEB::InArgs<double> inArgs = App->createInArgs(); MEB::OutArgs<double> outArgs = App->createOutArgs(); TEST_FOR_EXCEPTION(gradFlag && !supportsSensitivities, std::logic_error, "TriKota_Dakota Adapter Error: "); // Load parameters from Dakota to ModelEval data structure { Thyra::DetachedVectorView<double> my_p(model_p); for (unsigned int i=0; i<numVars; i++) my_p[i]=xC[i]; } // Evaluate model inArgs.set_p(0,model_p); outArgs.set_g(0,model_g); if (gradFlag) outArgs.set_DgDp(0,0, MEB::DerivativeMultiVector<double>(model_dgdp,orientation)); App->evalModel(inArgs, outArgs); Thyra::DetachedVectorView<double> my_g(model_g); for (unsigned int j=0; j<numFns; j++) fnVals[j]= my_g[j]; if (gradFlag) { if (orientation == MEB::DERIV_MV_BY_COL) { for (unsigned int j=0; j<numVars; j++) { Thyra::DetachedVectorView<double> my_dgdp_j(model_dgdp->col(j)); for (unsigned int i=0; i<numFns; i++) fnGrads[i][j]= my_dgdp_j[i]; } } else { for (unsigned int j=0; j<numFns; j++) { Thyra::DetachedVectorView<double> my_dgdp_j(model_dgdp->col(j)); for (unsigned int i=0; i<numVars; i++) fnGrads[j][i]= my_dgdp_j[i]; } } } } else { TEST_FOR_EXCEPTION(parallelLib.parallel_configuration().ea_parallel_level().server_intra_communicator() != MPI_COMM_NULL, std::logic_error, "\nTriKota Parallelism Error: ModelEvaluator=null, but analysis_comm != MPI_COMMM_NULL"); } return 0; }
int main(int argc, char *argv[]) { using std::endl; typedef double Scalar; typedef double ScalarMag; using Teuchos::describe; using Teuchos::RCP; using Teuchos::rcp; using Teuchos::rcp_implicit_cast; using Teuchos::rcp_dynamic_cast; using Teuchos::as; using Teuchos::ParameterList; using Teuchos::CommandLineProcessor; typedef Teuchos::ParameterList::PrintOptions PLPrintOptions; typedef Thyra::ModelEvaluatorBase MEB; typedef Thyra::DefaultMultiVectorProductVectorSpace<Scalar> DMVPVS; using Thyra::productVectorBase; bool result, success = true; Teuchos::GlobalMPISession mpiSession(&argc,&argv); RCP<Epetra_Comm> epetra_comm; #ifdef HAVE_MPI epetra_comm = rcp( new Epetra_MpiComm(MPI_COMM_WORLD) ); #else epetra_comm = rcp( new Epetra_SerialComm ); #endif // HAVE_MPI RCP<Teuchos::FancyOStream> out = Teuchos::VerboseObjectBase::getDefaultOStream(); try { // // Read commandline options // CommandLineProcessor clp; clp.throwExceptions(false); clp.addOutputSetupOptions(true); std::string paramsFileName = ""; clp.setOption( "params-file", ¶msFileName, "File name for XML parameters" ); std::string extraParamsString = ""; clp.setOption( "extra-params", &extraParamsString, "Extra XML parameters" ); std::string extraParamsFile = ""; clp.setOption( "extra-params-file", &extraParamsFile, "File containing extra parameters in XML format."); double maxStateError = 1e-6; clp.setOption( "max-state-error", &maxStateError, "The maximum allowed error in the integrated state in relation to the exact state solution" ); double finalTime = 1e-3; clp.setOption( "final-time", &finalTime, "Final integration time (initial time is 0.0)" ); int numTimeSteps = 10; clp.setOption( "num-time-steps", &numTimeSteps, "Number of (fixed) time steps. If <= 0.0, then variable time steps are taken" ); bool useBDF = false; clp.setOption( "use-BDF", "use-BE", &useBDF, "Use BDF or Backward Euler (BE)" ); bool useIRK = false; clp.setOption( "use-IRK", "use-other", &useIRK, "Use IRK or something" ); bool doFwdSensSolve = false; clp.setOption( "fwd-sens-solve", "state-solve", &doFwdSensSolve, "Do the forward sensitivity solve or just the state solve" ); bool doFwdSensErrorControl = false; clp.setOption( "fwd-sens-err-cntrl", "no-fwd-sens-err-cntrl", &doFwdSensErrorControl, "Do error control on the forward sensitivity solve or not" ); double maxRestateError = 0.0; clp.setOption( "max-restate-error", &maxRestateError, "The maximum allowed error between the state integrated by itself verses integrated along with DxDp" ); double maxSensError = 1e-4; clp.setOption( "max-sens-error", &maxSensError, "The maximum allowed error in the integrated sensitivity in relation to" " the finite-difference sensitivity" ); Teuchos::EVerbosityLevel verbLevel = Teuchos::VERB_DEFAULT; setVerbosityLevelOption( "verb-level", &verbLevel, "Top-level verbosity level. By default, this gets deincremented as you go deeper into numerical objects.", &clp ); bool testExactSensitivity = false; clp.setOption( "test-exact-sens", "no-test-exact-sens", &testExactSensitivity, "Test the exact sensitivity with finite differences or not." ); bool dumpFinalSolutions = false; clp.setOption( "dump-final-solutions", "no-dump-final-solutions", &dumpFinalSolutions, "Determine if the final solutions are dumpped or not." ); CommandLineProcessor::EParseCommandLineReturn parse_return = clp.parse(argc,argv); if( parse_return != CommandLineProcessor::PARSE_SUCCESSFUL ) return parse_return; if ( Teuchos::VERB_DEFAULT == verbLevel ) verbLevel = Teuchos::VERB_LOW; const Teuchos::EVerbosityLevel solnVerbLevel = ( dumpFinalSolutions ? Teuchos::VERB_EXTREME : verbLevel ); // // Get the base parameter list that all other parameter lists will be read // from. // RCP<ParameterList> paramList = Teuchos::parameterList(); if (paramsFileName.length()) updateParametersFromXmlFile( paramsFileName, paramList.ptr() ); if(extraParamsFile.length()) Teuchos::updateParametersFromXmlFile( "./"+extraParamsFile, paramList.ptr() ); if (extraParamsString.length()) updateParametersFromXmlString( extraParamsString, paramList.ptr() ); if (testExactSensitivity) { paramList->sublist(DiagonalTransientModel_name).set("Exact Solution as Response",true); } paramList->validateParameters(*getValidParameters(),0); // Only validate top level lists! // // Create the Stratimikos linear solver factory. // // This is the linear solve strategy that will be used to solve for the // linear system with the W. // Stratimikos::DefaultLinearSolverBuilder linearSolverBuilder; linearSolverBuilder.setParameterList(sublist(paramList,Stratimikos_name)); RCP<Thyra::LinearOpWithSolveFactoryBase<Scalar> > W_factory = createLinearSolveStrategy(linearSolverBuilder); // // Create the underlying EpetraExt::ModelEvaluator // RCP<EpetraExt::DiagonalTransientModel> epetraStateModel = EpetraExt::diagonalTransientModel( epetra_comm, sublist(paramList,DiagonalTransientModel_name) ); *out <<"\nepetraStateModel valid options:\n"; epetraStateModel->getValidParameters()->print( *out, PLPrintOptions().indent(2).showTypes(true).showDoc(true) ); // // Create the Thyra-wrapped ModelEvaluator // RCP<Thyra::ModelEvaluator<double> > stateModel = epetraModelEvaluator(epetraStateModel,W_factory); *out << "\nParameter names = " << *stateModel->get_p_names(0) << "\n"; // // Create the Rythmos stateStepper // RCP<Rythmos::TimeStepNonlinearSolver<double> > nonlinearSolver = Rythmos::timeStepNonlinearSolver<double>(); RCP<ParameterList> nonlinearSolverPL = sublist(paramList,TimeStepNonlinearSolver_name); nonlinearSolverPL->get("Default Tol",1e-3*maxStateError); // Set default if not set nonlinearSolver->setParameterList(nonlinearSolverPL); RCP<Rythmos::StepperBase<Scalar> > stateStepper; if (useBDF) { stateStepper = rcp( new Rythmos::ImplicitBDFStepper<double>( stateModel, nonlinearSolver ) ); } else if (useIRK) { // We need a separate LOWSFB object for the IRK stepper RCP<Thyra::LinearOpWithSolveFactoryBase<Scalar> > irk_W_factory = createLinearSolveStrategy(linearSolverBuilder); RCP<Rythmos::RKButcherTableauBase<double> > irkbt = Rythmos::createRKBT<double>("Backward Euler"); stateStepper = Rythmos::implicitRKStepper<double>( stateModel, nonlinearSolver, irk_W_factory, irkbt ); } else { stateStepper = rcp( new Rythmos::BackwardEulerStepper<double>( stateModel, nonlinearSolver ) ); } *out <<"\nstateStepper:\n" << describe(*stateStepper,verbLevel); *out <<"\nstateStepper valid options:\n"; stateStepper->getValidParameters()->print( *out, PLPrintOptions().indent(2).showTypes(true).showDoc(true) ); stateStepper->setParameterList(sublist(paramList,RythmosStepper_name)); // // Setup finite difference objects that will be used for tests // Thyra::DirectionalFiniteDiffCalculator<Scalar> fdCalc; fdCalc.setParameterList(sublist(paramList,FdCalc_name)); fdCalc.setOStream(out); fdCalc.setVerbLevel(verbLevel); // // Use a StepperAsModelEvaluator to integrate the state // const MEB::InArgs<Scalar> state_ic = stateModel->getNominalValues(); *out << "\nstate_ic:\n" << describe(state_ic,verbLevel); RCP<Rythmos::IntegratorBase<Scalar> > integrator; { RCP<ParameterList> integratorPL = sublist(paramList,RythmosIntegrator_name); integratorPL->set( "Take Variable Steps", as<bool>(numTimeSteps < 0) ); integratorPL->set( "Fixed dt", as<double>((finalTime - state_ic.get_t())/numTimeSteps) ); RCP<Rythmos::IntegratorBase<Scalar> > defaultIntegrator = Rythmos::controlledDefaultIntegrator<Scalar>( Rythmos::simpleIntegrationControlStrategy<Scalar>(integratorPL) ); integrator = defaultIntegrator; } RCP<Rythmos::StepperAsModelEvaluator<Scalar> > stateIntegratorAsModel = Rythmos::stepperAsModelEvaluator( stateStepper, integrator, state_ic ); stateIntegratorAsModel->setVerbLevel(verbLevel); *out << "\nUse the StepperAsModelEvaluator to integrate state x(p,finalTime) ... \n"; RCP<Thyra::VectorBase<Scalar> > x_final; { Teuchos::OSTab tab(out); x_final = createMember(stateIntegratorAsModel->get_g_space(0)); eval_g( *stateIntegratorAsModel, 0, *state_ic.get_p(0), finalTime, 0, &*x_final ); *out << "\nx_final = x(p,finalTime) evaluated using stateIntegratorAsModel:\n" << describe(*x_final,solnVerbLevel); } // // Test the integrated state against the exact analytical state solution // RCP<const Thyra::VectorBase<Scalar> > exact_x_final = create_Vector( epetraStateModel->getExactSolution(finalTime), stateModel->get_x_space() ); result = Thyra::testRelNormDiffErr( "exact_x_final", *exact_x_final, "x_final", *x_final, "maxStateError", maxStateError, "warningTol", 1.0, // Don't warn &*out, solnVerbLevel ); if (!result) success = false; // // Solve and test the forward sensitivity computation // if (doFwdSensSolve) { // // Create the forward sensitivity stepper // RCP<Rythmos::ForwardSensitivityStepper<Scalar> > stateAndSensStepper = Rythmos::forwardSensitivityStepper<Scalar>(); if (doFwdSensErrorControl) { stateAndSensStepper->initializeDecoupledSteppers( stateModel, 0, stateModel->getNominalValues(), stateStepper, nonlinearSolver, integrator->cloneIntegrator(), finalTime ); } else { stateAndSensStepper->initializeSyncedSteppers( stateModel, 0, stateModel->getNominalValues(), stateStepper, nonlinearSolver ); // The above call will result in stateStepper and nonlinearSolver being // cloned. This helps to ensure consistency between the state and // sensitivity computations! } // // Set the initial condition for the state and forward sensitivities // RCP<Thyra::VectorBase<Scalar> > s_bar_init = createMember(stateAndSensStepper->getFwdSensModel()->get_x_space()); assign( s_bar_init.ptr(), 0.0 ); RCP<Thyra::VectorBase<Scalar> > s_bar_dot_init = createMember(stateAndSensStepper->getFwdSensModel()->get_x_space()); assign( s_bar_dot_init.ptr(), 0.0 ); // Above, I believe that these are the correct initial conditions for // s_bar and s_bar_dot given how the EpetraExt::DiagonalTransientModel // is currently implemented! RCP<const Rythmos::StateAndForwardSensitivityModelEvaluator<Scalar> > stateAndSensModel = stateAndSensStepper->getStateAndFwdSensModel(); MEB::InArgs<Scalar> state_and_sens_ic = stateAndSensStepper->getModel()->createInArgs(); // Copy time, parameters etc. state_and_sens_ic.setArgs(state_ic); // Set initial condition for x_bar = [ x; s_bar ] state_and_sens_ic.set_x( stateAndSensModel->create_x_bar_vec(state_ic.get_x(),s_bar_init) ); // Set initial condition for x_bar_dot = [ x_dot; s_bar_dot ] state_and_sens_ic.set_x_dot( stateAndSensModel->create_x_bar_vec(state_ic.get_x_dot(),s_bar_dot_init) ); *out << "\nstate_and_sens_ic:\n" << describe(state_and_sens_ic,verbLevel); stateAndSensStepper->setInitialCondition(state_and_sens_ic); // // Use a StepperAsModelEvaluator to integrate the state+sens // RCP<Rythmos::StepperAsModelEvaluator<Scalar> > stateAndSensIntegratorAsModel = Rythmos::stepperAsModelEvaluator( rcp_implicit_cast<Rythmos::StepperBase<Scalar> >(stateAndSensStepper), integrator, state_and_sens_ic ); stateAndSensIntegratorAsModel->setVerbLevel(verbLevel); *out << "\nUse the StepperAsModelEvaluator to integrate state + sens x_bar(p,finalTime) ... \n"; RCP<Thyra::VectorBase<Scalar> > x_bar_final; { Teuchos::OSTab tab(out); x_bar_final = createMember(stateAndSensIntegratorAsModel->get_g_space(0)); eval_g( *stateAndSensIntegratorAsModel, 0, *state_ic.get_p(0), finalTime, 0, &*x_bar_final ); *out << "\nx_bar_final = x_bar(p,finalTime) evaluated using stateAndSensIntegratorAsModel:\n" << describe(*x_bar_final,solnVerbLevel); } // // Test that the state computed above is same as computed initially! // *out << "\nChecking that x(p,finalTime) computed as part of x_bar above is the same ...\n"; { Teuchos::OSTab tab(out); RCP<const Thyra::VectorBase<Scalar> > x_in_x_bar_final = productVectorBase<Scalar>(x_bar_final)->getVectorBlock(0); result = Thyra::testRelNormDiffErr<Scalar>( "x_final", *x_final, "x_in_x_bar_final", *x_in_x_bar_final, "maxRestateError", maxRestateError, "warningTol", 1.0, // Don't warn &*out, solnVerbLevel ); if (!result) success = false; } // // Compute DxDp using finite differences // *out << "\nApproximating DxDp(p,t) using directional finite differences of integrator for x(p,t) ...\n"; RCP<Thyra::MultiVectorBase<Scalar> > DxDp_fd_final; { Teuchos::OSTab tab(out); MEB::InArgs<Scalar> fdBasePoint = stateIntegratorAsModel->createInArgs(); fdBasePoint.set_t(finalTime); fdBasePoint.set_p(0,stateModel->getNominalValues().get_p(0)); DxDp_fd_final = createMembers( stateIntegratorAsModel->get_g_space(0), stateIntegratorAsModel->get_p_space(0)->dim() ); typedef Thyra::DirectionalFiniteDiffCalculatorTypes::SelectedDerivatives SelectedDerivatives; MEB::OutArgs<Scalar> fdOutArgs = fdCalc.createOutArgs( *stateIntegratorAsModel, SelectedDerivatives().supports(MEB::OUT_ARG_DgDp,0,0) ); fdOutArgs.set_DgDp(0,0,DxDp_fd_final); // Silence the model evaluators that are called. The fdCal object // will show all of the inputs and outputs for each call. stateStepper->setVerbLevel(Teuchos::VERB_NONE); stateIntegratorAsModel->setVerbLevel(Teuchos::VERB_NONE); fdCalc.calcDerivatives( *stateIntegratorAsModel, fdBasePoint, stateIntegratorAsModel->createOutArgs(), // Don't bother with function value fdOutArgs ); *out << "\nFinite difference DxDp_fd_final = DxDp(p,finalTime): " << describe(*DxDp_fd_final,solnVerbLevel); } // // Test that the integrated sens and the F.D. sens are similar // *out << "\nChecking that integrated DxDp(p,finalTime) and finite-diff DxDp(p,finalTime) are similar ...\n"; { Teuchos::OSTab tab(out); RCP<const Thyra::VectorBase<Scalar> > DxDp_vec_final = Thyra::productVectorBase<Scalar>(x_bar_final)->getVectorBlock(1); RCP<const Thyra::VectorBase<Scalar> > DxDp_fd_vec_final = Thyra::multiVectorProductVector( rcp_dynamic_cast<const Thyra::DefaultMultiVectorProductVectorSpace<Scalar> >( DxDp_vec_final->range() ), DxDp_fd_final ); result = Thyra::testRelNormDiffErr( "DxDp_vec_final", *DxDp_vec_final, "DxDp_fd_vec_final", *DxDp_fd_vec_final, "maxSensError", maxSensError, "warningTol", 1.0, // Don't warn &*out, solnVerbLevel ); if (!result) success = false; } } } TEUCHOS_STANDARD_CATCH_STATEMENTS(true,*out,success); if(success) *out << "\nEnd Result: TEST PASSED" << endl; else *out << "\nEnd Result: TEST FAILED" << endl; return ( success ? 0 : 1 ); } // end main() [Doxygen looks for this!]
void ModelEvaluatorDefaultBase<Scalar>::evalModel( const ModelEvaluatorBase::InArgs<Scalar> &inArgs, const ModelEvaluatorBase::OutArgs<Scalar> &outArgs ) const { using Teuchos::outArg; typedef ModelEvaluatorBase MEB; lazyInitializeDefaultBase(); const int l_Np = outArgs.Np(); const int l_Ng = outArgs.Ng(); // // A) Assert that the inArgs and outArgs object match this class! // #ifdef TEUCHOS_DEBUG assertInArgsEvalObjects(*this,inArgs); assertOutArgsEvalObjects(*this,outArgs,&inArgs); #endif // // B) Setup the OutArgs object for the underlying implementation's // evalModelImpl(...) function // MEB::OutArgs<Scalar> outArgsImpl = this->createOutArgsImpl(); Array<MultiVectorAdjointPair> DgDp_temp_adjoint_copies; { outArgsImpl.setArgs(outArgs,true); // DfDp(l) if (outArgsImpl.supports(MEB::OUT_ARG_f)) { for ( int l = 0; l < l_Np; ++l ) { const DefaultDerivLinearOpSupport defaultLinearOpSupport = DfDp_default_op_support_[l]; if (defaultLinearOpSupport.provideDefaultLinearOp()) { outArgsImpl.set_DfDp( l, getOutArgImplForDefaultLinearOpSupport( outArgs.get_DfDp(l), defaultLinearOpSupport ) ); } else { // DfDp(l) already set by outArgsImpl.setArgs(...)! } } } // DgDx_dot(j) for ( int j = 0; j < l_Ng; ++j ) { const DefaultDerivLinearOpSupport defaultLinearOpSupport = DgDx_dot_default_op_support_[j]; if (defaultLinearOpSupport.provideDefaultLinearOp()) { outArgsImpl.set_DgDx_dot( j, getOutArgImplForDefaultLinearOpSupport( outArgs.get_DgDx_dot(j), defaultLinearOpSupport ) ); } else { // DgDx_dot(j) already set by outArgsImpl.setArgs(...)! } } // DgDx(j) for ( int j = 0; j < l_Ng; ++j ) { const DefaultDerivLinearOpSupport defaultLinearOpSupport = DgDx_default_op_support_[j]; if (defaultLinearOpSupport.provideDefaultLinearOp()) { outArgsImpl.set_DgDx( j, getOutArgImplForDefaultLinearOpSupport( outArgs.get_DgDx(j), defaultLinearOpSupport ) ); } else { // DgDx(j) already set by outArgsImpl.setArgs(...)! } } // DgDp(j,l) for ( int j = 0; j < l_Ng; ++j ) { const Array<DefaultDerivLinearOpSupport> &DgDp_default_op_support_j = DgDp_default_op_support_[j]; const Array<DefaultDerivMvAdjointSupport> &DgDp_default_mv_support_j = DgDp_default_mv_support_[j]; for ( int l = 0; l < l_Np; ++l ) { const DefaultDerivLinearOpSupport defaultLinearOpSupport = DgDp_default_op_support_j[l]; const DefaultDerivMvAdjointSupport defaultMvAdjointSupport = DgDp_default_mv_support_j[l]; MEB::Derivative<Scalar> DgDp_j_l; if (!outArgs.supports(MEB::OUT_ARG_DgDp,j,l).none()) DgDp_j_l = outArgs.get_DgDp(j,l); if ( defaultLinearOpSupport.provideDefaultLinearOp() && !is_null(DgDp_j_l.getLinearOp()) ) { outArgsImpl.set_DgDp( j, l, getOutArgImplForDefaultLinearOpSupport( DgDp_j_l, defaultLinearOpSupport ) ); } else if ( defaultMvAdjointSupport.provideDefaultAdjoint() && !is_null(DgDp_j_l.getMultiVector()) ) { const RCP<MultiVectorBase<Scalar> > DgDp_j_l_mv = DgDp_j_l.getMultiVector(); if ( defaultMvAdjointSupport.mvAdjointCopyOrientation() == DgDp_j_l.getMultiVectorOrientation() ) { // The orientation of the multi-vector is different so we need to // create a temporary copy to pass to evalModelImpl(...) and then // copy it back again! const RCP<MultiVectorBase<Scalar> > DgDp_j_l_mv_adj = createMembers(DgDp_j_l_mv->domain(), DgDp_j_l_mv->range()->dim()); outArgsImpl.set_DgDp( j, l, MEB::Derivative<Scalar>( DgDp_j_l_mv_adj, getOtherDerivativeMultiVectorOrientation( defaultMvAdjointSupport.mvAdjointCopyOrientation() ) ) ); // Remember these multi-vectors so that we can do the transpose copy // back after the evaluation! DgDp_temp_adjoint_copies.push_back( MultiVectorAdjointPair(DgDp_j_l_mv, DgDp_j_l_mv_adj) ); } else { // The form of the multi-vector is supported by evalModelImpl(..) // and is already set on the outArgsImpl object. } } else { // DgDp(j,l) already set by outArgsImpl.setArgs(...)! } } } // W { RCP<LinearOpWithSolveBase<Scalar> > W; if ( default_W_support_ && !is_null(W=outArgs.get_W()) ) { const RCP<const LinearOpWithSolveFactoryBase<Scalar> > W_factory = this->get_W_factory(); // Extract the underlying W_op object (if it exists) RCP<const LinearOpBase<Scalar> > W_op_const; uninitializeOp<Scalar>(*W_factory, W.ptr(), outArg(W_op_const)); RCP<LinearOpBase<Scalar> > W_op; if (!is_null(W_op_const)) { // Here we remove the const. This is perfectly safe since // w.r.t. this class, we put a non-const object in there and we can // expect to change that object after the fact. That is our // prerogative. W_op = Teuchos::rcp_const_cast<LinearOpBase<Scalar> >(W_op_const); } else { // The W_op object has not been initialized yet so create it. The // next time through, we should not have to do this! W_op = this->create_W_op(); } outArgsImpl.set_W_op(W_op); } } } // // C) Evaluate the underlying model implementation! // this->evalModelImpl( inArgs, outArgsImpl ); // // D) Post-process the output arguments // // Do explicit transposes for DgDp(j,l) if needed const int numMvAdjointCopies = DgDp_temp_adjoint_copies.size(); for ( int adj_copy_i = 0; adj_copy_i < numMvAdjointCopies; ++adj_copy_i ) { const MultiVectorAdjointPair adjPair = DgDp_temp_adjoint_copies[adj_copy_i]; doExplicitMultiVectorAdjoint( *adjPair.mvImplAdjoint, &*adjPair.mvOuter ); } // Update W given W_op and W_factory { RCP<LinearOpWithSolveBase<Scalar> > W; if ( default_W_support_ && !is_null(W=outArgs.get_W()) ) { const RCP<const LinearOpWithSolveFactoryBase<Scalar> > W_factory = this->get_W_factory(); W_factory->setOStream(this->getOStream()); W_factory->setVerbLevel(this->getVerbLevel()); initializeOp<Scalar>(*W_factory, outArgsImpl.get_W_op().getConst(), W.ptr()); } } }