GlobalSparsityPattern computeSparsityPatternNonPETSc( NumLib::LocalToGlobalIndexMap const& dof_table, MeshLib::Mesh const& mesh) { MeshLib::NodeAdjacencyTable node_adjacency_table; node_adjacency_table.createTable(mesh.getNodes()); // A mapping mesh node id -> global indices // It acts as a cache for dof table queries. std::vector<std::vector<GlobalIndexType>> global_idcs; global_idcs.reserve(mesh.getNumberOfNodes()); for (std::size_t n = 0; n < mesh.getNumberOfNodes(); ++n) { MeshLib::Location l(mesh.getID(), MeshLib::MeshItemType::Node, n); global_idcs.push_back(dof_table.getGlobalIndices(l)); } GlobalSparsityPattern sparsity_pattern(dof_table.dofSizeWithGhosts()); // Map adjacent mesh nodes to "adjacent global indices". for (std::size_t n = 0; n < mesh.getNumberOfNodes(); ++n) { unsigned n_connected_dof = 0; for (auto an : node_adjacency_table.getAdjacentNodes(n)) n_connected_dof += global_idcs[an].size(); for (auto global_index : global_idcs[n]) sparsity_pattern[global_index] = n_connected_dof; } return sparsity_pattern; }
bool convertMeshToGeo(const MeshLib::Mesh &mesh, GeoLib::GEOObjects &geo_objects, double eps) { if (mesh.getDimension() != 2) { ERR ("Mesh to geometry conversion is only working for 2D meshes."); return false; } // nodes to points conversion std::string mesh_name(mesh.getName()); { auto points = std::make_unique<std::vector<GeoLib::Point*>>(); points->reserve(mesh.getNumberOfNodes()); for (auto node_ptr : mesh.getNodes()) points->push_back(new GeoLib::Point(*node_ptr, node_ptr->getID())); geo_objects.addPointVec(std::move(points), mesh_name, nullptr, eps); } const std::vector<std::size_t> id_map (geo_objects.getPointVecObj(mesh_name)->getIDMap()); // elements to surface triangles conversion std::string const mat_name ("MaterialIDs"); auto bounds (MeshInformation::getValueBounds<int>(mesh, mat_name)); const unsigned nMatGroups(bounds.second-bounds.first+1); auto sfcs = std::make_unique<std::vector<GeoLib::Surface*>>(); sfcs->reserve(nMatGroups); auto const& points = *geo_objects.getPointVec(mesh_name); for (unsigned i=0; i<nMatGroups; ++i) sfcs->push_back(new GeoLib::Surface(points)); const std::vector<MeshLib::Element*> &elements = mesh.getElements(); const std::size_t nElems (mesh.getNumberOfElements()); MeshLib::PropertyVector<int> const*const materialIds = mesh.getProperties().existsPropertyVector<int>("MaterialIDs") ? mesh.getProperties().getPropertyVector<int>("MaterialIDs") : nullptr; for (unsigned i=0; i<nElems; ++i) { auto surfaceId = !materialIds ? 0 : ((*materialIds)[i] - bounds.first); MeshLib::Element* e (elements[i]); if (e->getGeomType() == MeshElemType::TRIANGLE) (*sfcs)[surfaceId]->addTriangle(id_map[e->getNodeIndex(0)], id_map[e->getNodeIndex(1)], id_map[e->getNodeIndex(2)]); if (e->getGeomType() == MeshElemType::QUAD) { (*sfcs)[surfaceId]->addTriangle(id_map[e->getNodeIndex(0)], id_map[e->getNodeIndex(1)], id_map[e->getNodeIndex(2)]); (*sfcs)[surfaceId]->addTriangle(id_map[e->getNodeIndex(0)], id_map[e->getNodeIndex(2)], id_map[e->getNodeIndex(3)]); } // all other element types are ignored (i.e. lines) } std::for_each(sfcs->begin(), sfcs->end(), [](GeoLib::Surface* sfc){ if (sfc->getNumberOfTriangles()==0) delete sfc; sfc = nullptr;}); auto sfcs_end = std::remove(sfcs->begin(), sfcs->end(), nullptr); sfcs->erase(sfcs_end, sfcs->end()); geo_objects.addSurfaceVec(std::move(sfcs), mesh_name); return true; }
std::unique_ptr<DirichletBoundaryCondition> createDirichletBoundaryCondition( BaseLib::ConfigTree const& config, MeshLib::Mesh const& bc_mesh, NumLib::LocalToGlobalIndexMap const& dof_table_bulk, int const variable_id, int const component_id, const std::vector<std::unique_ptr<ProcessLib::ParameterBase>>& parameters) { DBUG("Constructing DirichletBoundaryCondition from config."); //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type} config.checkConfigParameter("type", "Dirichlet"); //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Dirichlet__parameter} auto const param_name = config.getConfigParameter<std::string>("parameter"); DBUG("Using parameter %s", param_name.c_str()); auto& param = findParameter<double>(param_name, parameters, 1); // In case of partitioned mesh the boundary could be empty, i.e. there is no // boundary condition. #ifdef USE_PETSC // This can be extracted to createBoundaryCondition() but then the config // parameters are not read and will cause an error. // TODO (naumov): Add a function to ConfigTree for skipping the tags of the // subtree and move the code up in createBoundaryCondition(). if (bc_mesh.getDimension() == 0 && bc_mesh.getNumberOfNodes() == 0 && bc_mesh.getNumberOfElements() == 0) { return nullptr; } #endif // USE_PETSC return std::make_unique<DirichletBoundaryCondition>( param, bc_mesh, dof_table_bulk, variable_id, component_id); }
bool MeshLayerMapper::layerMapping(MeshLib::Mesh &new_mesh, GeoLib::Raster const& raster, double noDataReplacementValue = 0.0) { if (new_mesh.getDimension() != 2) { ERR("MshLayerMapper::layerMapping() - requires 2D mesh"); return false; } GeoLib::RasterHeader const& header (raster.getHeader()); const double x0(header.origin[0]); const double y0(header.origin[1]); const double delta(header.cell_size); const std::pair<double, double> xDim(x0, x0 + header.n_cols * delta); // extension in x-dimension const std::pair<double, double> yDim(y0, y0 + header.n_rows * delta); // extension in y-dimension const std::size_t nNodes (new_mesh.getNumberOfNodes()); const std::vector<MeshLib::Node*> &nodes = new_mesh.getNodes(); for (unsigned i = 0; i < nNodes; ++i) { if (!raster.isPntOnRaster(*nodes[i])) { // use either default value or elevation from layer above nodes[i]->updateCoordinates((*nodes[i])[0], (*nodes[i])[1], noDataReplacementValue); continue; } double elevation (raster.interpolateValueAtPoint(*nodes[i])); if (std::abs(elevation - header.no_data) < std::numeric_limits<double>::epsilon()) elevation = noDataReplacementValue; nodes[i]->updateCoordinates((*nodes[i])[0], (*nodes[i])[1], elevation); } return true; }
std::unique_ptr<PythonBoundaryCondition> createPythonBoundaryCondition( BaseLib::ConfigTree const& config, MeshLib::Mesh const& boundary_mesh, NumLib::LocalToGlobalIndexMap const& dof_table, std::size_t bulk_mesh_id, int const variable_id, int const component_id, unsigned const integration_order, unsigned const shapefunction_order, unsigned const global_dim) { //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type} config.checkConfigParameter("type", "Python"); //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Python__bc_object} auto const bc_object = config.getConfigParameter<std::string>("bc_object"); //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Python__flush_stdout} auto const flush_stdout = config.getConfigParameter("flush_stdout", false); // Evaluate Python code in scope of main module pybind11::object scope = pybind11::module::import("__main__").attr("__dict__"); if (!scope.contains(bc_object)) OGS_FATAL( "Function `%s' is not defined in the python script file, or there " "was no python script file specified.", bc_object.c_str()); auto* bc = scope[bc_object.c_str()] .cast<PythonBoundaryConditionPythonSideInterface*>(); if (variable_id >= static_cast<int>(dof_table.getNumberOfVariables()) || component_id >= dof_table.getNumberOfVariableComponents(variable_id)) { OGS_FATAL( "Variable id or component id too high. Actual values: (%d, %d), " "maximum values: (%d, %d).", variable_id, component_id, dof_table.getNumberOfVariables(), dof_table.getNumberOfVariableComponents(variable_id)); } // In case of partitioned mesh the boundary could be empty, i.e. there is no // boundary condition. #ifdef USE_PETSC // This can be extracted to createBoundaryCondition() but then the config // parameters are not read and will cause an error. // TODO (naumov): Add a function to ConfigTree for skipping the tags of the // subtree and move the code up in createBoundaryCondition(). if (boundary_mesh.getDimension() == 0 && boundary_mesh.getNumberOfNodes() == 0 && boundary_mesh.getNumberOfElements() == 0) { return nullptr; } #endif // USE_PETSC return std::make_unique<PythonBoundaryCondition>( PythonBoundaryConditionData{ bc, dof_table, bulk_mesh_id, dof_table.getGlobalComponent(variable_id, component_id), boundary_mesh}, integration_order, shapefunction_order, global_dim, flush_stdout); }
void testZCoords2D(MeshLib::Mesh const& input, MeshLib::Mesh const& output, double height) { std::size_t const nNodes (input.getNumberOfNodes()); for (std::size_t i=0; i<nNodes; ++i) { ASSERT_EQ((*input.getNode(i))[2], (*output.getNode(i))[2]); ASSERT_EQ((*input.getNode(i))[2] + height, (*output.getNode(nNodes+i))[2]); } }
bool MeshLayerMapper::createRasterLayers( MeshLib::Mesh const& mesh, std::vector<GeoLib::Raster const*> const& rasters, double minimum_thickness, double noDataReplacementValue) { const std::size_t nLayers(rasters.size()); if (nLayers < 2 || mesh.getDimension() != 2) { ERR("MeshLayerMapper::createRasterLayers(): A 2D mesh and at least two rasters required as input."); return false; } auto top = std::make_unique<MeshLib::Mesh>(mesh); if (!layerMapping(*top, *rasters.back(), noDataReplacementValue)) return false; auto bottom = std::make_unique<MeshLib::Mesh>(mesh); if (!layerMapping(*bottom, *rasters[0], 0)) { return false; } this->_minimum_thickness = minimum_thickness; std::size_t const nNodes = mesh.getNumberOfNodes(); _nodes.reserve(nLayers * nNodes); // number of triangles in the original mesh std::size_t const nElems (std::count_if(mesh.getElements().begin(), mesh.getElements().end(), [](MeshLib::Element const* elem) { return (elem->getGeomType() == MeshLib::MeshElemType::TRIANGLE);})); _elements.reserve(nElems * (nLayers-1)); _materials.reserve(nElems * (nLayers-1)); // add bottom layer std::vector<MeshLib::Node*> const& nodes = bottom->getNodes(); for (MeshLib::Node* node : nodes) _nodes.push_back(new MeshLib::Node(*node)); // add the other layers for (std::size_t i=0; i<nLayers-1; ++i) addLayerToMesh(*top, i, *rasters[i+1]); return true; }
std::unique_ptr<RobinBoundaryCondition> createRobinBoundaryCondition( BaseLib::ConfigTree const& config, MeshLib::Mesh const& bc_mesh, NumLib::LocalToGlobalIndexMap const& dof_table, int const variable_id, int const component_id, unsigned const integration_order, unsigned const shapefunction_order, unsigned const global_dim, std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters) { DBUG("Constructing RobinBcConfig from config."); //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__type} config.checkConfigParameter("type", "Robin"); //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Robin__alpha} auto const alpha_name = config.getConfigParameter<std::string>("alpha"); //! \ogs_file_param{prj__process_variables__process_variable__boundary_conditions__boundary_condition__Robin__u_0} auto const u_0_name = config.getConfigParameter<std::string>("u_0"); auto const& alpha = ParameterLib::findParameter<double>(alpha_name, parameters, 1); auto const& u_0 = ParameterLib::findParameter<double>(u_0_name, parameters, 1); // In case of partitioned mesh the boundary could be empty, i.e. there is no // boundary condition. #ifdef USE_PETSC // This can be extracted to createBoundaryCondition() but then the config // parameters are not read and will cause an error. // TODO (naumov): Add a function to ConfigTree for skipping the tags of the // subtree and move the code up in createBoundaryCondition(). if (bc_mesh.getDimension() == 0 && bc_mesh.getNumberOfNodes() == 0 && bc_mesh.getNumberOfElements() == 0) { return nullptr; } #endif // USE_PETSC return std::make_unique<RobinBoundaryCondition>( integration_order, shapefunction_order, dof_table, variable_id, component_id, global_dim, bc_mesh, RobinBoundaryConditionData{alpha, u_0}); }
int main (int argc, char* argv[]) { ApplicationsLib::LogogSetup logog_setup; TCLAP::CmdLine cmd("Converts VTK mesh into OGS mesh.", ' ', "0.1"); TCLAP::ValueArg<std::string> mesh_in("i", "mesh-input-file", "the name of the file containing the input mesh", true, "", "file name of input mesh"); cmd.add(mesh_in); TCLAP::ValueArg<std::string> mesh_out("o", "mesh-output-file", "the name of the file the mesh will be written to", true, "", "file name of output mesh"); cmd.add(mesh_out); cmd.parse(argc, argv); MeshLib::Mesh* mesh (MeshLib::IO::VtuInterface::readVTUFile(mesh_in.getValue())); INFO("Mesh read: %d nodes, %d elements.", mesh->getNumberOfNodes(), mesh->getNumberOfElements()); MeshLib::IO::Legacy::MeshIO meshIO; meshIO.setMesh(mesh); meshIO.writeToFile(mesh_out.getValue()); return EXIT_SUCCESS; }
void ElementTreeModel::setMesh(MeshLib::Mesh const& mesh) { this->clearView(); QList<QVariant> mesh_name; mesh_name << "Name:" << QString::fromStdString(mesh.getName()) << "" << "" << ""; TreeItem* name_item = new TreeItem(mesh_name, _rootItem); _rootItem->appendChild(name_item); QList<QVariant> nodes_number; nodes_number << "#Nodes: " << QString::number(mesh.getNumberOfNodes()) << "" << ""; TreeItem* nodes_item = new TreeItem(nodes_number, _rootItem); _rootItem->appendChild(nodes_item); QList<QVariant> elements_number; elements_number << "#Elements: " << QString::number(mesh.getNumberOfElements()) << "" << ""; TreeItem* elements_item = new TreeItem(elements_number, _rootItem); _rootItem->appendChild(elements_item); const std::array<QString, 7> n_element_names = {{ "Lines:", "Triangles:", "Quads:", "Tetrahedra:", "Hexahedra:", "Pyramids:", "Prisms:" }}; const std::array<unsigned, 7>& n_element_types (MeshLib::MeshInformation::getNumberOfElementTypes(mesh)); for (std::size_t i=0; i<n_element_types.size(); ++i) { if (n_element_types[i]) { QList<QVariant> elements_number; elements_number << n_element_names[i] << QString::number(n_element_types[i]) << "" << ""; TreeItem* type_item = new TreeItem(elements_number, elements_item); elements_item->appendChild(type_item); } } QList<QVariant> bounding_box; bounding_box << "Bounding Box" << "" << "" << ""; TreeItem* aabb_item = new TreeItem(bounding_box, _rootItem); _rootItem->appendChild(aabb_item); const GeoLib::AABB aabb (MeshLib::MeshInformation::getBoundingBox(mesh)); auto const& min = aabb.getMinPoint(); auto const& max = aabb.getMaxPoint(); QList<QVariant> min_aabb; min_aabb << "Min:" << QString::number(min[0], 'f') << QString::number(min[1], 'f') << QString::number(min[2], 'f'); TreeItem* min_item = new TreeItem(min_aabb, aabb_item); aabb_item->appendChild(min_item); QList<QVariant> max_aabb; max_aabb << "Max:" << QString::number(max[0], 'f') << QString::number(max[1], 'f') << QString::number(max[2], 'f'); TreeItem* max_item = new TreeItem(max_aabb, aabb_item); aabb_item->appendChild(max_item); QList<QVariant> edges; edges << "Edge Length: " << "[" + QString::number(mesh.getMinEdgeLength(), 'f') + "," << QString::number(mesh.getMaxEdgeLength(), 'f') + "]" << ""; TreeItem* edge_item = new TreeItem(edges, _rootItem); _rootItem->appendChild(edge_item); std::vector<std::string> const& vec_names (mesh.getProperties().getPropertyVectorNames()); for (std::size_t i=0; i<vec_names.size(); ++i) { QList<QVariant> array_info; array_info << QString::fromStdString(vec_names[i]) + ": "; auto vec_bounds (MeshLib::MeshInformation::getValueBounds<int>(mesh, vec_names[i])); if (vec_bounds.second != std::numeric_limits<int>::max()) array_info << "[" + QString::number(vec_bounds.first) + "," << QString::number(vec_bounds.second) + "]" << ""; else { auto vec_bounds (MeshLib::MeshInformation::getValueBounds<double>(mesh, vec_names[i])); if (vec_bounds.second != std::numeric_limits<double>::max()) array_info << "[" + QString::number(vec_bounds.first) + "," << QString::number(vec_bounds.second) + "]" << ""; } if (array_info.size() == 1) array_info << "[ ?" << "? ]" << ""; TreeItem* vec_item = new TreeItem(array_info, _rootItem); _rootItem->appendChild(vec_item); } reset(); }
void MeshLayerMapper::addLayerToMesh(const MeshLib::Mesh &dem_mesh, unsigned layer_id, GeoLib::Raster const& raster) { const unsigned pyramid_base[3][4] = { {1, 3, 4, 2}, // Point 4 missing {2, 4, 3, 0}, // Point 5 missing {0, 3, 4, 1}, // Point 6 missing }; std::size_t const nNodes = dem_mesh.getNumberOfNodes(); std::vector<MeshLib::Node*> const& nodes = dem_mesh.getNodes(); int const last_layer_node_offset = layer_id * nNodes; // add nodes for new layer for (std::size_t i=0; i<nNodes; ++i) _nodes.push_back(getNewLayerNode(*nodes[i], *_nodes[last_layer_node_offset + i], raster, _nodes.size())); std::vector<MeshLib::Element*> const& elems = dem_mesh.getElements(); std::size_t const nElems (dem_mesh.getNumberOfElements()); for (std::size_t i=0; i<nElems; ++i) { MeshLib::Element* elem (elems[i]); if (elem->getGeomType() != MeshLib::MeshElemType::TRIANGLE) continue; unsigned node_counter(3), missing_idx(0); std::array<MeshLib::Node*, 6> new_elem_nodes; for (unsigned j=0; j<3; ++j) { new_elem_nodes[j] = _nodes[_nodes[last_layer_node_offset + elem->getNodeIndex(j)]->getID()]; new_elem_nodes[node_counter] = (_nodes[last_layer_node_offset + elem->getNodeIndex(j) + nNodes]); if (new_elem_nodes[j]->getID() != new_elem_nodes[node_counter]->getID()) node_counter++; else missing_idx = j; } switch (node_counter) { case 6: _elements.push_back(new MeshLib::Prism(new_elem_nodes)); _materials.push_back(layer_id); break; case 5: std::array<MeshLib::Node*, 5> pyramid_nodes; pyramid_nodes[0] = new_elem_nodes[pyramid_base[missing_idx][0]]; pyramid_nodes[1] = new_elem_nodes[pyramid_base[missing_idx][1]]; pyramid_nodes[2] = new_elem_nodes[pyramid_base[missing_idx][2]]; pyramid_nodes[3] = new_elem_nodes[pyramid_base[missing_idx][3]]; pyramid_nodes[4] = new_elem_nodes[missing_idx]; _elements.push_back(new MeshLib::Pyramid(pyramid_nodes)); _materials.push_back(layer_id); break; case 4: std::array<MeshLib::Node*, 4> tet_nodes; std::copy(new_elem_nodes.begin(), new_elem_nodes.begin() + node_counter, tet_nodes.begin()); _elements.push_back(new MeshLib::Tet(tet_nodes)); _materials.push_back(layer_id); break; default: continue; } } }