void mitk::ConnectomicsSimulatedAnnealingPermutationModularity::extractModuleSubgraph( ToModuleMapType *vertexToModuleMap, mitk::ConnectomicsNetwork::Pointer network, int moduleToSplit, mitk::ConnectomicsNetwork::Pointer subNetwork, VertexToVertexMapType* graphToSubgraphVertexMap, VertexToVertexMapType* subgraphToGraphVertexMap ) { const std::vector< VertexDescriptorType > allNodesVector = network->GetVectorOfAllVertexDescriptors(); // add vertices to subgraph for( unsigned int nodeNumber( 0 ); nodeNumber < allNodesVector.size() ; nodeNumber++) { if( moduleToSplit == vertexToModuleMap->find( allNodesVector[ nodeNumber ] )->second ) { int id = network->GetNode( allNodesVector[ nodeNumber ] ).id; VertexDescriptorType newVertex = subNetwork->AddVertex( id ); graphToSubgraphVertexMap->insert( std::pair<VertexDescriptorType, VertexDescriptorType>( allNodesVector[ nodeNumber ], newVertex ) ); subgraphToGraphVertexMap->insert( std::pair<VertexDescriptorType, VertexDescriptorType>( newVertex, allNodesVector[ nodeNumber ] ) ); } } // add edges to subgraph VertexToVertexMapType::iterator iter = graphToSubgraphVertexMap->begin(); VertexToVertexMapType::iterator end = graphToSubgraphVertexMap->end(); while( iter != end ) { const std::vector< VertexDescriptorType > adjacentNodexVector = network->GetVectorOfAdjacentNodes( iter->first ); for( unsigned int adjacentNodeNumber( 0 ); adjacentNodeNumber < adjacentNodexVector.size() ; adjacentNodeNumber++) { // if the adjacent vertex is part of the subgraph, // add edge, if it does not exist yet, else do nothing VertexDescriptorType adjacentVertex = adjacentNodexVector[ adjacentNodeNumber ]; if( graphToSubgraphVertexMap->count( adjacentVertex ) > 0 ) { if( !subNetwork->EdgeExists( iter->second, graphToSubgraphVertexMap->find( adjacentVertex )->second ) ) { //edge exists in parent network, but not yet in sub network const VertexDescriptorType vertexA = iter->second; const VertexDescriptorType vertexB = graphToSubgraphVertexMap->find( adjacentVertex )->second; const int sourceID = network->GetNode( vertexA ).id; const int targetID = network->GetNode( vertexB ).id; const int weight = network->GetEdge( iter->first, graphToSubgraphVertexMap->find( adjacentVertex )->first ).weight; subNetwork->AddEdge( vertexA , vertexB, sourceID, targetID, weight ); } } } iter++; }// end while( iter != end ) }
double mitk::ConnectomicsSimulatedAnnealingCostFunctionModularity::CalculateModularity( mitk::ConnectomicsNetwork::Pointer network, ToModuleMapType* vertexToModuleMap ) const { double modularity( 0.0 ); int numberOfModules = getNumberOfModules( vertexToModuleMap ); if( network->GetNumberOfVertices() != vertexToModuleMap->size() ) { MBI_ERROR << "Number of vertices and vertex to module map size do not match!"; return modularity; } int numberOfLinksInNetwork( 0 ); std::vector< int > numberOfLinksInModule, sumOfDegreesInModule; numberOfLinksInModule.resize( numberOfModules, 0 ); sumOfDegreesInModule.resize( numberOfModules, 0 ); // get vector of all vertex descriptors in the network const std::vector< VertexDescriptorType > allNodesVector = network->GetVectorOfAllVertexDescriptors(); for( int nodeNumber( 0 ); nodeNumber < allNodesVector.size() ; nodeNumber++) { int correspondingModule = vertexToModuleMap->find( allNodesVector[ nodeNumber ] )->second; const std::vector< VertexDescriptorType > adjacentNodexVector = network->GetVectorOfAdjacentNodes( allNodesVector[ nodeNumber ] ); numberOfLinksInNetwork += adjacentNodexVector.size(); sumOfDegreesInModule[ correspondingModule ] += adjacentNodexVector.size(); for( int adjacentNodeNumber( 0 ); adjacentNodeNumber < adjacentNodexVector.size() ; adjacentNodeNumber++) { if( correspondingModule == vertexToModuleMap->find( adjacentNodexVector[ adjacentNodeNumber ] )->second ) { numberOfLinksInModule[ correspondingModule ]++; } } } // the numbers for links have to be halved, as each edge was counted twice numberOfLinksInNetwork = numberOfLinksInNetwork / 2; // if the network contains no links return 0 if( numberOfLinksInNetwork < 1) { return 0; } for( int index( 0 ); index < numberOfModules ; index++) { numberOfLinksInModule[ index ] = numberOfLinksInModule[ index ] / 2; } //Calculate modularity M: //M = sum_{s=1}^{N_{M}} [ (l_{s} / L) - (d_{s} / ( 2L ))^2 ] //where N_{M} is the number of modules //L is the number of links in the network //l_{s} is the number of links between nodes in the module //s is the module //d_{s} is the sum of degrees of the nodes in the module //( taken from Guimera, R. AND Amaral, L. A. N. // Cartography of complex networks: modules and universal roles // Journal of Statistical Mechanics: Theory and Experiment, 2005, 2005, P02001 ) for( int moduleID( 0 ); moduleID < numberOfModules; moduleID++ ) { modularity += (((double) numberOfLinksInModule[ moduleID ]) / ((double) numberOfLinksInNetwork)) - ( (((double) sumOfDegreesInModule[ moduleID ]) / ((double) 2 * numberOfLinksInNetwork) ) * (((double) sumOfDegreesInModule[ moduleID ]) / ((double) 2 * numberOfLinksInNetwork) ) ); } return modularity; }