void LOCA::MultiContinuation::ConstrainedGroup::fillB( NOX::Abstract::MultiVector& B) const { std::string callingFunction = "LOCA::MultiContinuation::ConstrainedGroup::fillB"; bool isZeroB = constraintsPtr->isDXZero(); Teuchos::RCP<const NOX::Abstract::MultiVector> my_B; if (!isZeroB) { Teuchos::RCP<const LOCA::MultiContinuation::ConstraintInterfaceMVDX> constraints_mvdx = Teuchos::rcp_dynamic_cast<const LOCA::MultiContinuation::ConstraintInterfaceMVDX>(constraintsPtr); if (constraints_mvdx == Teuchos::null) globalData->locaErrorCheck->throwError( callingFunction, std::string("Constraints object must be of type") + std::string("ConstraintInterfaceMVDX")); my_B = Teuchos::rcp(constraints_mvdx->getDX(),false); } // If the underlying system isn't bordered, we're done if (!isBordered) { if (isZeroB) B.init(0.0); else B = *my_B; return; } // Create views for underlying group int w = bordered_grp->getBorderedWidth(); std::vector<int> idx1(w); for (int i=0; i<w; i++) idx1[i] = i; Teuchos::RCP<NOX::Abstract::MultiVector> underlyingB = B.subView(idx1); // Combine blocks in underlying group bordered_grp->fillB(*underlyingB); // Create views for my blocks std::vector<int> idx2(numParams); for (int i=0; i<numParams; i++) idx2[i] = w+i; Teuchos::RCP<NOX::Abstract::MultiVector> my_B_x = B.subView(idx2); // Extract solution component from my_B and store in B if (isZeroB) my_B_x->init(0.0); else bordered_grp->extractSolutionComponent(*my_B, *my_B_x); }
NOX::Abstract::Group::ReturnType LOCA::Epetra::ModelEvaluatorInterface:: computeDfDp(LOCA::MultiContinuation::AbstractGroup& grp, const vector<int>& param_ids, NOX::Abstract::MultiVector& result, bool isValidF) const { // Break result into f and df/dp NOX::Epetra::Vector& f = dynamic_cast<NOX::Epetra::Vector&>(result[0]); Epetra_Vector& epetra_f = f.getEpetraVector(); std::vector<int> dfdp_index(result.numVectors()-1); for (unsigned int i=0; i<dfdp_index.size(); i++) dfdp_index[i] = i+1; Teuchos::RefCountPtr<NOX::Epetra::MultiVector> dfdp = Teuchos::rcp_dynamic_cast<NOX::Epetra::MultiVector>(result.subView(dfdp_index)); Epetra_MultiVector& epetra_dfdp = dfdp->getEpetraMultiVector(); // Create inargs EpetraExt::ModelEvaluator::InArgs inargs = model_->createInArgs(); const NOX::Epetra::Vector& x = dynamic_cast<const NOX::Epetra::Vector&>(grp.getX()); const Epetra_Vector& epetra_x = x.getEpetraVector(); inargs.set_x(Teuchos::rcp(&epetra_x, false)); inargs.set_p(0, Teuchos::rcp(¶m_vec, false)); if (inargs.supports(EpetraExt::ModelEvaluator::IN_ARG_x_dot)) { // Create x_dot, filled with zeros if (x_dot == NULL) x_dot = new Epetra_Vector(epetra_x.Map()); inargs.set_x_dot(Teuchos::rcp(x_dot, false)); } // Create outargs EpetraExt::ModelEvaluator::OutArgs outargs = model_->createOutArgs(); if (!isValidF) { EpetraExt::ModelEvaluator::Evaluation<Epetra_Vector> eval_f; Teuchos::RefCountPtr<Epetra_Vector> F = Teuchos::rcp(&epetra_f, false); eval_f.reset(F, EpetraExt::ModelEvaluator::EVAL_TYPE_EXACT); outargs.set_f(eval_f); } Teuchos::RefCountPtr<Epetra_MultiVector> DfDp = Teuchos::rcp(&epetra_dfdp, false); Teuchos::Array<int> param_indexes(param_ids.size()); for (unsigned int i=0; i<param_ids.size(); i++) param_indexes[i] = param_ids[i]; EpetraExt::ModelEvaluator::DerivativeMultiVector dmv(DfDp, EpetraExt::ModelEvaluator::DERIV_MV_BY_COL, param_indexes); EpetraExt::ModelEvaluator::Derivative deriv(dmv); outargs.set_DfDp(0, deriv); model_->evalModel(inargs, outargs); return NOX::Abstract::Group::Ok; }
void LOCA::Homotopy::DeflatedGroup:: fillB(NOX::Abstract::MultiVector& B) const { string callingFunction = "LOCA::Homotopy::DeflatedGroup::fillB"; Teuchos::RCP<const NOX::Abstract::MultiVector> my_B = totalDistMultiVec; // If the underlying system isn't bordered, we're done if (!isBordered) { B = *my_B; return; } // Create views for underlying group int w = bordered_grp->getBorderedWidth(); std::vector<int> idx1(w); for (int i=0; i<w; i++) idx1[i] = i; Teuchos::RCP<NOX::Abstract::MultiVector> underlyingB = B.subView(idx1); // Combine blocks in underlying group bordered_grp->fillB(*underlyingB); // Create views for my blocks std::vector<int> idx2(2); for (int i=0; i<1; i++) idx2[i] = w+i; Teuchos::RCP<NOX::Abstract::MultiVector> my_B_x = B.subView(idx2); // Extract solution component from my_B and store in B bordered_grp->extractSolutionComponent(*my_B, *my_B_x); }
void LOCA::Homotopy::DeflatedGroup:: fillA(NOX::Abstract::MultiVector& A) const { string callingFunction = "LOCA::Homotopy::DeflatedGroup::fillA"; Teuchos::RCP<const NOX::Abstract::MultiVector> my_A = underlyingF; // If the underlying system isn't bordered, we're done if (!isBordered) { A = *my_A; return; } // Create views for underlying group int w = bordered_grp->getBorderedWidth(); std::vector<int> idx1(w); for (int i=0; i<w; i++) idx1[i] = i; Teuchos::RCP<NOX::Abstract::MultiVector> underlyingA = A.subView(idx1); // Fill A block in underlying group bordered_grp->fillA(*underlyingA); // Create views for my blocks std::vector<int> idx2(1); for (int i=0; i<1; i++) idx2[i] = w+i; Teuchos::RCP<NOX::Abstract::MultiVector> my_A_x = A.subView(idx2); // Extract solution component from my_A and store in A bordered_grp->extractSolutionComponent(*my_A, *my_A_x); }
NOX::Abstract::Group::ReturnType LOCA::Homotopy::Group::computeDfDpMulti(const vector<int>& paramIDs, NOX::Abstract::MultiVector& dfdp, bool isValidF) { // g = conParam * f(x) + ((1.0 - conParam) * (x - randomVec)) // dg/dp = f(x) - (x - randomVec) when p = conParam // dg/dp = conParam * df/dp when p != conParam // For simplicity, we always recompute g, even if isValidF is true // Things get kind of messy otherwise // Extract parameter IDs that are not the continuation parameter vector<int> pIDs; vector<int> idx(1); idx[0] = 0; // index 0 corrsponds to f in dfdp for (unsigned int i=0; i<paramIDs.size(); i++) if (paramIDs[i] != conParamID) { pIDs.push_back(paramIDs[i]); idx.push_back(i+1); } // Create view of dfdp for parameters that aren't the continuation parameter Teuchos::RCP<NOX::Abstract::MultiVector> fp = dfdp.subView(idx); // Compute df/dp for non-continuation parameter parameters // We force recomputation of f for simplicity NOX::Abstract::Group::ReturnType status = grpPtr->computeDfDpMulti(pIDs, *fp, false); // Compute conParam * df/dp fp->scale(conParam); // Compute g double v = 1.0-conParam; dfdp[0].update(v, grpPtr->getX(), -v, *randomVecPtr, 1.0); // Compute dg/dp for p = conParam grpPtr->computeF(); for (unsigned int i=0; i<paramIDs.size(); i++) if (paramIDs[i] == conParamID) { dfdp[i+1] = grpPtr->getF(); dfdp[i+1].update(-1.0, grpPtr->getX(), 1.0, *randomVecPtr, 1.0); } return status; }
NOX::Abstract::Group::ReturnType LOCA::Thyra::Group::computeDfDpMulti(const std::vector<int>& paramIDs, NOX::Abstract::MultiVector& fdfdp, bool isValidF) { // Currently this does not work because the thyra modelevaluator is not // setting the parameter names correctly in the epetraext modelevalator, // so we are disabling this for now implement_dfdp = false; // Use default implementation if we don't want to use model evaluator, or // it doesn't support it if (!implement_dfdp || !out_args_.supports(::Thyra::ModelEvaluatorBase::OUT_ARG_DfDp, param_index).supports(::Thyra::ModelEvaluatorBase::DERIV_MV_BY_COL)) { NOX::Abstract::Group::ReturnType res = LOCA::Abstract::Group::computeDfDpMulti(paramIDs, fdfdp, isValidF); return res; } // Split fdfdp into f and df/dp int num_vecs = fdfdp.numVectors()-1; std::vector<int> index_dfdp(num_vecs); for (int i=0; i<num_vecs; i++) index_dfdp[i] = i+1; NOX::Thyra::Vector& f = dynamic_cast<NOX::Thyra::Vector&>(fdfdp[0]); Teuchos::RCP<NOX::Abstract::MultiVector> dfdp = fdfdp.subView(index_dfdp); // Right now this isn't very efficient because we have to compute // derivatives with respect to all of the parameters, not just // paramIDs. Will have to work out with Ross how to selectively get // parameter derivatives int np = params.length(); Teuchos::RCP<NOX::Thyra::MultiVector> dfdp_full = Teuchos::rcp_dynamic_cast<NOX::Thyra::MultiVector>(dfdp->clone(np)); ::Thyra::ModelEvaluatorBase::DerivativeMultiVector<double> dmv(dfdp_full->getThyraMultiVector(), ::Thyra::ModelEvaluatorBase::DERIV_MV_BY_COL); ::Thyra::ModelEvaluatorBase::Derivative<double> deriv(dmv); in_args_.set_x(x_vec_->getThyraRCPVector().assert_not_null()); if (in_args_.supports(::Thyra::ModelEvaluatorBase::IN_ARG_x_dot)) in_args_.set_x_dot(x_dot_vec); in_args_.set_p(param_index, param_thyra_vec); if (!isValidF) out_args_.set_f(f.getThyraRCPVector().assert_not_null()); out_args_.set_DfDp(param_index, deriv); // Evaluate model model_->evalModel(in_args_, out_args_); // Copy back dfdp for (int i=0; i<num_vecs; i++) (*dfdp)[i] = (*dfdp_full)[paramIDs[i]]; // Reset inargs/outargs in_args_.set_x(Teuchos::null); in_args_.set_p(param_index, Teuchos::null); out_args_.set_f(Teuchos::null); out_args_.set_DfDp(param_index, ::Thyra::ModelEvaluatorBase::Derivative<double>()); if (out_args_.isFailed()) return NOX::Abstract::Group::Failed; return NOX::Abstract::Group::Ok; }
// Solves turning point equations via classic Salinger bordering // The first m columns of input_x and input_null store the RHS while // the last column stores df/dp, d(Jn)/dp respectively. Note however // input_param has only m columns (not m+1). result_x, result_null, // are result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::TurningPoint::MooreSpence::PhippsBordering::solveTransposeContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_null, const NOX::Abstract::MultiVector::DenseMatrix& input_param, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_null, NOX::Abstract::MultiVector::DenseMatrix& result_param) const { std::string callingFunction = "LOCA::TurningPoint::MooreSpence::PhippsBordering::solveTransposeContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-2; std::vector<int> index_input(m); std::vector<int> index_input_dp(m+1); std::vector<int> index_null(1); std::vector<int> index_dp(1); for (int i=0; i<m; i++) { index_input[i] = i; index_input_dp[i] = i; } index_input_dp[m] = m; index_dp[0] = m; index_null[0] = m+1; NOX::Abstract::MultiVector::DenseMatrix tmp_mat_1(1, m+1); NOX::Abstract::MultiVector::DenseMatrix tmp_mat_2(1, m+2); // Create view of first m+1 columns of input_null, result_null Teuchos::RCP<NOX::Abstract::MultiVector> input_null_view = input_null.subView(index_input_dp); Teuchos::RCP<NOX::Abstract::MultiVector> result_null_view = result_null.subView(index_input_dp); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J^T v||A B| = |G -phi| // |u^T 0||a b| |0 0 | status = transposeBorderedSolver->applyInverseTranspose(params, input_null_view.get(), NULL, *result_null_view, tmp_mat_1); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_null.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> B = result_null.subView(index_dp); double b = tmp_mat_1(0,m); // compute (Jv)_x^T[A B u] result_null[m+1] = *uVector; Teuchos::RCP<NOX::Abstract::MultiVector> tmp = result_null.clone(NOX::ShapeCopy); status = group->computeDwtJnDxMulti(result_null, *nullVector, *tmp); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute [F 0 0] - (Jv)_x^T[A B u] tmp->update(1.0, input_x, -1.0); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J^T v||C D E| = |F - (Jv)_x^T A -(Jv)_x^T B -(Jv)_x^T u| // |u^T 0||c d e| | 0 0 0 | status = transposeBorderedSolver->applyInverseTranspose(params, tmp.get(), NULL, result_x, tmp_mat_2); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_x.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> E = result_x.subView(index_null); double d = tmp_mat_2(0, m); double e = tmp_mat_2(0, m+1); // compute (Jv)_p^T*[A B u] NOX::Abstract::MultiVector::DenseMatrix t1(1,m+2); result_null.multiply(1.0, *dJndp, t1); // compute f_p^T*[C D E] NOX::Abstract::MultiVector::DenseMatrix t2(1,m+2); result_x.multiply(1.0, *dfdp, t2); // compute f_p^T*u double fptu = uVector->innerProduct((*dfdp)[0]); // Fill coefficient arrays double M[9]; M[0] = st; M[1] = -e; M[2] = t1(0,m+1) + t2(0,m+1); M[3] = 0.0; M[4] = st; M[5] = fptu; M[6] = -b; M[7] = -d; M[8] = t1(0,m) + t2(0,m); // Compute RHS double *R = new double[3*m]; for (int i=0; i<m; i++) { R[3*i] = tmp_mat_1(0,i); R[3*i+1] = tmp_mat_2(0,i); R[3*i+2] = result_param(0,i) - t1(0,i) - t2(0,i); } // Solve M*P = R int three = 3; int piv[3]; int info; Teuchos::LAPACK<int,double> L; L.GESV(three, m, M, three, piv, R, three, &info); if (info != 0) { globalData->locaErrorCheck->throwError( callingFunction, "Solve of 3x3 coefficient matrix failed!"); return NOX::Abstract::Group::Failed; } NOX::Abstract::MultiVector::DenseMatrix alpha(1,m); NOX::Abstract::MultiVector::DenseMatrix beta(1,m); for (int i=0; i<m; i++) { alpha(0,i) = R[3*i]; beta(0,i) = R[3*i+1]; result_param(0,i) = R[3*i+2]; } // compute A = A + B*z + alpha*u (remember A is a sub-view of result_null) A->update(Teuchos::NO_TRANS, 1.0, *B, result_param, 1.0); A->update(Teuchos::NO_TRANS, 1.0, *uMultiVector, alpha, 1.0); // compute C = C + D*z + alpha*E + beta*u // (remember C is a sub-view of result_x) C->update(Teuchos::NO_TRANS, 1.0, *D, result_param, 1.0); C->update(Teuchos::NO_TRANS, 1.0, *E, alpha, 1.0); C->update(Teuchos::NO_TRANS, 1.0, *uMultiVector, beta, 1.0); delete [] R; return finalStatus; }
// Solves turning point equations via Phipps modified bordering // The first m columns of input_x and input_null store the RHS while // the last column stores df/dp, d(Jn)/dp respectively. Note however // input_param has only m columns (not m+1). result_x, result_null, // are result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::TurningPoint::MooreSpence::PhippsBordering::solveContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_null, const NOX::Abstract::MultiVector::DenseMatrix& input_param, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_null, NOX::Abstract::MultiVector::DenseMatrix& result_param) const { std::string callingFunction = "LOCA::TurningPoint::MooreSpence::PhippsBordering::solveContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-2; std::vector<int> index_input(m); std::vector<int> index_input_dp(m+1); std::vector<int> index_null(1); std::vector<int> index_dp(1); for (int i=0; i<m; i++) { index_input[i] = i; index_input_dp[i] = i; } index_input_dp[m] = m; index_dp[0] = m; index_null[0] = m+1; NOX::Abstract::MultiVector::DenseMatrix tmp_mat_1(1, m+1); NOX::Abstract::MultiVector::DenseMatrix tmp_mat_2(1, m+2); // Create view of first m+1 columns of input_x, result_x Teuchos::RCP<NOX::Abstract::MultiVector> input_x_view = input_x.subView(index_input_dp); Teuchos::RCP<NOX::Abstract::MultiVector> result_x_view = result_x.subView(index_input_dp); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||A B| = |F df/dp| // |v^T 0||a b| |0 0 | status = borderedSolver->applyInverse(params, input_x_view.get(), NULL, *result_x_view, tmp_mat_1); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> B = result_x.subView(index_dp); double b = tmp_mat_1(0,m); // compute (Jv)_x[A B v] result_x[m+1] = *nullVector; Teuchos::RCP<NOX::Abstract::MultiVector> tmp = result_x.clone(NOX::ShapeCopy); status = group->computeDJnDxaMulti(*nullVector, *JnVector, result_x, *tmp); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute (Jv)_x[A B v] - [G d(Jn)/dp 0] tmp->update(-1.0, input_null, 1.0); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||C D E| = |(Jv)_x A - G (Jv)_x B - d(Jv)/dp (Jv)_x v| // |v^T 0||c d e| | 0 0 0 | status = borderedSolver->applyInverse(params, tmp.get(), NULL, result_null, tmp_mat_2); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_null.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_null.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> E = result_null.subView(index_null); double d = tmp_mat_2(0, m); double e = tmp_mat_2(0, m+1); // Fill coefficient arrays double M[9]; M[0] = s; M[1] = e; M[2] = -tpGroup->lTransNorm((*E)[0]); M[3] = 0.0; M[4] = s; M[5] = tpGroup->lTransNorm(*nullVector); M[6] = b; M[7] = -d; M[8] = tpGroup->lTransNorm((*D)[0]); // compute h + phi^T C tpGroup->lTransNorm(*C, result_param); result_param += input_param; double *R = new double[3*m]; for (int i=0; i<m; i++) { R[3*i] = tmp_mat_1(0,i); R[3*i+1] = -tmp_mat_2(0,i); R[3*i+2] = result_param(0,i); } // Solve M*P = R int three = 3; int piv[3]; int info; Teuchos::LAPACK<int,double> L; L.GESV(three, m, M, three, piv, R, three, &info); if (info != 0) { globalData->locaErrorCheck->throwError( callingFunction, "Solve of 3x3 coefficient matrix failed!"); return NOX::Abstract::Group::Failed; } NOX::Abstract::MultiVector::DenseMatrix alpha(1,m); NOX::Abstract::MultiVector::DenseMatrix beta(1,m); for (int i=0; i<m; i++) { alpha(0,i) = R[3*i]; beta(0,i) = R[3*i+1]; result_param(0,i) = R[3*i+2]; } // compute A = A - B*z + v*alpha (remember A is a sub-view of result_x) A->update(Teuchos::NO_TRANS, -1.0, *B, result_param, 1.0); A->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, alpha, 1.0); // compute C = -C + d*z - E*alpha + v*beta // (remember C is a sub-view of result_null) C->update(Teuchos::NO_TRANS, 1.0, *D, result_param, -1.0); C->update(Teuchos::NO_TRANS, -1.0, *E, alpha, 1.0); C->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, beta, 1.0); delete [] R; return finalStatus; }
// Solves Hopf equations via classic Salinger bordering // The first m columns of input_x, input_y, input_z store the RHS, the // next column stores df/dp, (Jy-wBz)_p and (Jz+wBy)_p respectively, the // last column of input_y and input_z store Bz and -By respectively. Note // input_x has m+1 columns, input_y and input_z have m+2, and input_w and // input_p have m columns. result_x, result_y, result_z, result_w and // result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::Hopf::MooreSpence::SalingerBordering::solveContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_y, const NOX::Abstract::MultiVector& input_z, const NOX::Abstract::MultiVector::DenseMatrix& input_w, const NOX::Abstract::MultiVector::DenseMatrix& input_p, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_y, NOX::Abstract::MultiVector& result_z, NOX::Abstract::MultiVector::DenseMatrix& result_w, NOX::Abstract::MultiVector::DenseMatrix& result_p) const { std::string callingFunction = "LOCA::Hopf::MooreSpence::SalingerBordering::solveContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-1; std::vector<int> index_input(m); std::vector<int> index_dp(1); std::vector<int> index_B(1); std::vector<int> index_ip(m+1); for (int i=0; i<m; i++) { index_input[i] = i; index_ip[i] = i; } index_ip[m] = m; index_dp[0] = m; index_B[0] = m+1; // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // compute [A b] = J^-1 [F df/dp] status = group->applyJacobianInverseMultiVector(params, input_x, result_x); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> b = result_x.subView(index_dp); // verify underlying complex matrix is valid if (!group->isComplex()) { status = group->computeComplex(w); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // compute (J+iwB)(y+iz)_x [A b] Teuchos::RCP<NOX::Abstract::MultiVector> tmp_real = result_y.clone(NOX::ShapeCopy); Teuchos::RCP<NOX::Abstract::MultiVector> tmp_real_sub = tmp_real->subView(index_ip); Teuchos::RCP<NOX::Abstract::MultiVector> tmp_imag = result_y.clone(NOX::ShapeCopy); Teuchos::RCP<NOX::Abstract::MultiVector> tmp_imag_sub = tmp_imag->subView(index_ip); tmp_real->init(0.0); tmp_imag->init(0.0); status = group->computeDCeDxa(*yVector, *zVector, w, result_x, *CeRealVector, *CeImagVector, *tmp_real_sub, *tmp_imag_sub); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute [G+iH d(J+iwB)(y+iz)/dp iB(y+iz)] - [(J+iwB)_x[A b] 0+i0] tmp_real->update(1.0, input_y, -1.0); tmp_imag->update(1.0, input_z, -1.0); // verify underlying complex matrix is valid if (!group->isComplex()) { status = group->computeComplex(w); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // compute [C+iD e+if g+ih] = (J+iwB)^-1 (tmp_real + i tmp_imag) status = group->applyComplexInverseMultiVector(params, *tmp_real, *tmp_imag, result_y, result_z); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_y.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_z.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> e = result_y.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> f = result_z.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> g = result_y.subView(index_B); Teuchos::RCP<NOX::Abstract::MultiVector> h = result_z.subView(index_B); // compute lambda = ((phi^T h)(phi^T C-u) - (phi^T g)(phi^T D-v)) / // ((phi^T h)(phi^T e)-(phi^T g)(phi^T f)) NOX::Abstract::MultiVector::DenseMatrix ltC(1,m); NOX::Abstract::MultiVector::DenseMatrix ltD(1,m); double lte = hopfGroup->lTransNorm((*e)[0]); double ltf = hopfGroup->lTransNorm((*f)[0]); double ltg = hopfGroup->lTransNorm((*g)[0]); double lth = hopfGroup->lTransNorm((*h)[0]); double denom = lth*lte - ltg*ltf; hopfGroup->lTransNorm(*C, ltC); ltC -= input_w; ltC.scale(lth); hopfGroup->lTransNorm(*D, ltD); ltD -= input_p; result_p.assign(ltD); result_p.scale(-ltg); result_p += ltC; result_p.scale(1.0/denom); // compute omega = (phi^T D-v - (phi^T f)lambda)/(phi^T h) result_w.assign(result_p); result_w.scale(-ltf); result_w += ltD; result_w.scale(1.0/lth); // compute A = A - b*lambda (remember A is a sub-view of result_x) A->update(Teuchos::NO_TRANS, -1.0, *b, result_p, 1.0); // compute C = C - e*lambda - g*omega (remember C is a sub-view of result_y) C->update(Teuchos::NO_TRANS, -1.0, *e, result_p, 1.0); C->update(Teuchos::NO_TRANS, -1.0, *g, result_w, 1.0); // compute D = D - f*lambda - h*omega (remember D is a sub-view of result_z) D->update(Teuchos::NO_TRANS, -1.0, *f, result_p, 1.0); D->update(Teuchos::NO_TRANS, -1.0, *h, result_w, 1.0); return finalStatus; }
void LOCA::BorderedSolver::HouseholderQR::computeQR( const NOX::Abstract::MultiVector::DenseMatrix& C, const NOX::Abstract::MultiVector& B, bool use_c_transpose, NOX::Abstract::MultiVector::DenseMatrix& Y1, NOX::Abstract::MultiVector& Y2, NOX::Abstract::MultiVector::DenseMatrix& T, NOX::Abstract::MultiVector::DenseMatrix& R) { double beta; int m = B.numVectors(); // Initialize Y1.putScalar(0.0); T.putScalar(0.0); Y2 = B; if (use_c_transpose) { for (int i=0; i<m; i++) for (int j=0; j<m; j++) R(i,j) = C(j,i); // Copy transpose of C into R } else R.assign(C); // A temporary vector Teuchos::RCP<NOX::Abstract::MultiVector> v2 = Y2.clone(1); Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> v1; Teuchos::RCP<NOX::Abstract::MultiVector> h2; Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> h1; Teuchos::RCP<NOX::Abstract::MultiVector> y2; Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> y1; Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> z; std::vector<int> h_idx; std::vector<int> y_idx; y_idx.reserve(m); for (int i=0; i<m; i++) { // Create view of column i of Y1 starting at row i v1 = Teuchos::rcp(new NOX::Abstract::MultiVector::DenseMatrix(Teuchos::View, Y1, m-i, 1, i, i)); // Create view of columns i through m-1 of Y2 h_idx.resize(m-i); for (unsigned int j=0; j<h_idx.size(); j++) h_idx[j] = i+j; h2 = Y2.subView(h_idx); // Create view of columns i thru m-1 of R, starting at row i h1 = Teuchos::rcp(new NOX::Abstract::MultiVector::DenseMatrix(Teuchos::View, R, m-i, m-i, i, i)); if (i > 0) { // Create view of columns 0 through i-1 of Y2 y_idx.push_back(i-1); y2 = Y2.subView(y_idx); // Create view of columns 0 through i-1 of Y1, starting at row i y1 = Teuchos::rcp(new NOX::Abstract::MultiVector::DenseMatrix(Teuchos::View, Y1, m-i, i, i, 0)); // Create view of column i, row 0 through i-1 of T z = Teuchos::rcp(new NOX::Abstract::MultiVector::DenseMatrix(Teuchos::View, T, i, 1, 0, i)); } // Compute Householder Vector computeHouseholderVector(i, R, Y2, *v1, *v2, beta); // Apply Householder reflection applyHouseholderVector(*v1, *v2, beta, *h1, *h2); // Copy v2 into Y2 Y2[i] = (*v2)[0]; T(i,i) = -beta; if (i > 0) { // Compute z = y2^T * v2 v2->multiply(1.0, *y2, *z); // Compute z = -beta * (z + y1^T * v1) z->multiply(Teuchos::TRANS, Teuchos::NO_TRANS, -beta, *y1, *v1, -beta); // Compute z = T * z dblas.TRMV(Teuchos::UPPER_TRI, Teuchos::NO_TRANS, Teuchos::NON_UNIT_DIAG, i, T.values(), m, z->values(), 1); } } }
// Solves pitchfork equations via Phipps modified bordering // The first m columns of input_x and input_null store the RHS, // column m+1 stores df/dp, d(Jn)/dp, column m+2 stores psi and 0, // and the last column provides space for solving (Jv_x) v. Note however // input_param has only m columns. result_x, result_null, // are result_param have the same dimensions as their input counterparts NOX::Abstract::Group::ReturnType LOCA::Pitchfork::MooreSpence::PhippsBordering::solveContiguous( Teuchos::ParameterList& params, const NOX::Abstract::MultiVector& input_x, const NOX::Abstract::MultiVector& input_null, const NOX::Abstract::MultiVector::DenseMatrix& input_slack, const NOX::Abstract::MultiVector::DenseMatrix& input_param, NOX::Abstract::MultiVector& result_x, NOX::Abstract::MultiVector& result_null, NOX::Abstract::MultiVector::DenseMatrix& result_slack, NOX::Abstract::MultiVector::DenseMatrix& result_param) const { string callingFunction = "LOCA::Pitchfork::MooreSpence::PhippsBordering::solveContiguous()"; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; int m = input_x.numVectors()-3; vector<int> index_input(m); vector<int> index_input_dp(m+2); vector<int> index_null(1); vector<int> index_dp(1); vector<int> index_s(1); for (int i=0; i<m; i++) { index_input[i] = i; index_input_dp[i] = i; } index_input_dp[m] = m; index_input_dp[m+1] = m+1; index_dp[0] = m; index_s[0] = m+1; index_null[0] = m+2; NOX::Abstract::MultiVector::DenseMatrix tmp_mat_1(1, m+2); NOX::Abstract::MultiVector::DenseMatrix tmp_mat_2(1, m+3); // Create view of first m+2 columns of input_x, result_x Teuchos::RCP<NOX::Abstract::MultiVector> input_x_view = input_x.subView(index_input_dp); Teuchos::RCP<NOX::Abstract::MultiVector> result_x_view = result_x.subView(index_input_dp); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||A B C| = |F df/dp psi| // |v^T 0||a b c| |0 0 0 | status = borderedSolver->applyInverse(params, input_x_view.get(), NULL, *result_x_view, tmp_mat_1); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> A = result_x.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> B = result_x.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> C = result_x.subView(index_s); double b = tmp_mat_1(0,m); double c = tmp_mat_1(0,m+1); // compute (Jv)_x[A B C v] result_x[m+2] = *nullVector; Teuchos::RCP<NOX::Abstract::MultiVector> tmp = result_x.clone(NOX::ShapeCopy); status = group->computeDJnDxaMulti(*nullVector, *JnVector, result_x, *tmp); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // compute [G d(Jn)/dp 0 0] - (Jv)_x[A B C v] tmp->update(1.0, input_null, -1.0); // verify underlying Jacobian is valid if (!group->isJacobian()) { status = group->computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); } // Solve |J u||D E K L| = |G-(Jv)_xA d(Jv)/dp-(Jv)_xB -(Jv)_xC -(Jv)_xv| // |v^T 0||d e k l| | 0 0 0 0 | status = borderedSolver->applyInverse(params, tmp.get(), NULL, result_null, tmp_mat_2); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); Teuchos::RCP<NOX::Abstract::MultiVector> D = result_null.subView(index_input); Teuchos::RCP<NOX::Abstract::MultiVector> E = result_null.subView(index_dp); Teuchos::RCP<NOX::Abstract::MultiVector> K = result_null.subView(index_s); Teuchos::RCP<NOX::Abstract::MultiVector> L = result_null.subView(index_null); double e = tmp_mat_2(0, m); double k = tmp_mat_2(0, m+1); double l = tmp_mat_2(0, m+2); double ltE = pfGroup->lTransNorm((*E)[0]); double ltK = pfGroup->lTransNorm((*K)[0]); double ltL = pfGroup->lTransNorm((*L)[0]); double ltv = pfGroup->lTransNorm(*nullVector); double ipv = group->innerProduct(*nullVector, *asymVector); double ipB = group->innerProduct((*B)[0], *asymVector); double ipC = group->innerProduct((*C)[0], *asymVector); // Fill coefficient arrays double M[16]; M[0] = sigma; M[1] = -l; M[2] = ipv; M[3] = ltL; M[4] = 0.0; M[5] = sigma; M[6] = 0.0; M[7] = ltv; M[8] = b; M[9] = e; M[10] = -ipB; M[11] = -ltE; M[12] = c; M[13] = k; M[14] = -ipC; M[15] = -ltK; // compute s - <A,psi> NOX::Abstract::MultiVector::DenseMatrix tmp_mat_3(1, m); group->innerProduct(*asymMultiVector, *A, tmp_mat_3); tmp_mat_3 -= input_slack; tmp_mat_3.scale(-1.0); // compute h - phi^T D NOX::Abstract::MultiVector::DenseMatrix tmp_mat_4(1, m); pfGroup->lTransNorm(*D, tmp_mat_4); tmp_mat_4 -= input_param; tmp_mat_4.scale(-1.0); double *R = new double[4*m]; for (int i=0; i<m; i++) { R[4*i] = tmp_mat_1(0,i); R[4*i+1] = tmp_mat_2(0,i); R[4*i+2] = tmp_mat_3(0,i); R[4*i+3] = tmp_mat_4(0,i); } // Solve M*P = R int piv[4]; int info; Teuchos::LAPACK<int,double> dlapack; dlapack.GESV(4, m, M, 4, piv, R, 4, &info); if (info != 0) { globalData->locaErrorCheck->throwError( callingFunction, "Solve of 4x4 coefficient matrix failed!"); return NOX::Abstract::Group::Failed; } NOX::Abstract::MultiVector::DenseMatrix alpha(1,m); NOX::Abstract::MultiVector::DenseMatrix beta(1,m); for (int i=0; i<m; i++) { alpha(0,i) = R[4*i]; beta(0,i) = R[4*i+1]; result_param(0,i) = R[4*i+2]; result_slack(0,i) = R[4*i+3]; } // compute A = A - B*z -C*w + v*alpha (remember A is a sub-view of result_x) A->update(Teuchos::NO_TRANS, -1.0, *B, result_param, 1.0); A->update(Teuchos::NO_TRANS, -1.0, *C, result_slack, 1.0); A->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, alpha, 1.0); // compute D = D - E*z - K*w + L*alpha + v*beta // (remember D is a sub-view of result_null) D->update(Teuchos::NO_TRANS, -1.0, *E, result_param, 1.0); D->update(Teuchos::NO_TRANS, -1.0, *K, result_slack, 1.0); D->update(Teuchos::NO_TRANS, 1.0, *L, alpha, 1.0); D->update(Teuchos::NO_TRANS, 1.0, *nullMultiVector, beta, 1.0); delete [] R; return finalStatus; }