void UpdateOCIOGLState() { // Step 0: Get the processor using any of the pipelines mentioned above. OCIO::ConstConfigRcPtr config = OCIO::GetCurrentConfig(); OCIO::DisplayTransformRcPtr transform = OCIO::DisplayTransform::Create(); transform->setInputColorSpaceName( g_inputColorSpace.c_str() ); transform->setDisplay( g_display.c_str() ); transform->setView( g_transformName.c_str() ); // Add optional transforms to create a full-featured, "canonical" display pipeline // Fstop exposure control (in SCENE_LINEAR) { float gain = powf(2.0f, g_exposure_fstop); const float slope4f[] = { gain, gain, gain, gain }; float m44[16]; float offset4[4]; OCIO::MatrixTransform::Scale(m44, offset4, slope4f); OCIO::MatrixTransformRcPtr mtx = OCIO::MatrixTransform::Create(); mtx->setValue(m44, offset4); transform->setLinearCC(mtx); } // Channel swizzling { float lumacoef[3]; config->getDefaultLumaCoefs(lumacoef); float m44[16]; float offset[4]; OCIO::MatrixTransform::View(m44, offset, g_channelHot, lumacoef); OCIO::MatrixTransformRcPtr swizzle = OCIO::MatrixTransform::Create(); swizzle->setValue(m44, offset); transform->setChannelView(swizzle); } // Post-display transform gamma { float exponent = 1.0f/std::max(1e-6f, static_cast<float>(g_display_gamma)); const float exponent4f[] = { exponent, exponent, exponent, exponent }; OCIO::ExponentTransformRcPtr expTransform = OCIO::ExponentTransform::Create(); expTransform->setValue(exponent4f); transform->setDisplayCC(expTransform); } OCIO::ConstProcessorRcPtr processor; try { processor = config->getProcessor(transform); } catch(OCIO::Exception & e) { std::cerr << e.what() << std::endl; return; } catch(...) { return; } // Step 1: Create a GPU Shader Description OCIO::GpuShaderDesc shaderDesc; shaderDesc.setLanguage(OCIO::GPU_LANGUAGE_GLSL_1_0); shaderDesc.setFunctionName("OCIODisplay"); shaderDesc.setLut3DEdgeLen(LUT3D_EDGE_SIZE); // Step 2: Compute the 3D LUT std::string lut3dCacheID = processor->getGpuLut3DCacheID(shaderDesc); if(lut3dCacheID != g_lut3dcacheid) { //std::cerr << "Computing 3DLut " << g_lut3dcacheid << std::endl; g_lut3dcacheid = lut3dCacheID; processor->getGpuLut3D(&g_lut3d[0], shaderDesc); glBindTexture(GL_TEXTURE_3D, g_lut3dTexID); glTexSubImage3D(GL_TEXTURE_3D, 0, 0, 0, 0, LUT3D_EDGE_SIZE, LUT3D_EDGE_SIZE, LUT3D_EDGE_SIZE, GL_RGB,GL_FLOAT, &g_lut3d[0]); } // Step 3: Compute the Shader std::string shaderCacheID = processor->getGpuShaderTextCacheID(shaderDesc); if(g_program == 0 || shaderCacheID != g_shadercacheid) { //std::cerr << "Computing Shader " << g_shadercacheid << std::endl; g_shadercacheid = shaderCacheID; std::ostringstream os; os << processor->getGpuShaderText(shaderDesc) << "\n"; os << g_fragShaderText; //std::cerr << os.str() << std::endl; if(g_fragShader) glDeleteShader(g_fragShader); g_fragShader = CompileShaderText(GL_FRAGMENT_SHADER, os.str().c_str()); if(g_program) glDeleteProgram(g_program); g_program = LinkShaders(g_fragShader); } glUseProgram(g_program); glUniform1i(glGetUniformLocation(g_program, "tex1"), 1); glUniform1i(glGetUniformLocation(g_program, "tex2"), 2); }
void UpdateOCIOGLState() { // Step 0: Get the processor using any of the pipelines mentioned above. OCIO::ConstConfigRcPtr config = OCIO::GetCurrentConfig(); OCIO::DisplayTransformRcPtr transform = OCIO::DisplayTransform::Create(); transform->setInputColorSpaceName( g_inputColorSpace.c_str() ); transform->setDisplay( g_display.c_str() ); transform->setView( g_transformName.c_str() ); transform->setLooksOverride( g_look.c_str() ); if(g_verbose) { std::cout << std::endl; std::cout << "Color transformation composed of:" << std::endl; std::cout << " Image ColorSpace is:\t" << g_inputColorSpace << std::endl; std::cout << " Transform is:\t\t" << g_transformName << std::endl; std::cout << " Device is:\t\t" << g_display << std::endl; std::cout << " Looks Override is:\t'" << g_look << "'" << std::endl; std::cout << " with:" << std::endl; std::cout << " exposure_fstop = " << g_exposure_fstop << std::endl; std::cout << " display_gamma = " << g_display_gamma << std::endl; std::cout << " channels = " << (g_channelHot[0] ? "R" : "") << (g_channelHot[1] ? "G" : "") << (g_channelHot[2] ? "B" : "") << (g_channelHot[3] ? "A" : "") << std::endl; } // Add optional transforms to create a full-featured, "canonical" display pipeline // Fstop exposure control (in SCENE_LINEAR) { float gain = powf(2.0f, g_exposure_fstop); const float slope4f[] = { gain, gain, gain, gain }; float m44[16]; float offset4[4]; OCIO::MatrixTransform::Scale(m44, offset4, slope4f); OCIO::MatrixTransformRcPtr mtx = OCIO::MatrixTransform::Create(); mtx->setValue(m44, offset4); transform->setLinearCC(mtx); } // Channel swizzling { float lumacoef[3]; config->getDefaultLumaCoefs(lumacoef); float m44[16]; float offset[4]; OCIO::MatrixTransform::View(m44, offset, g_channelHot, lumacoef); OCIO::MatrixTransformRcPtr swizzle = OCIO::MatrixTransform::Create(); swizzle->setValue(m44, offset); transform->setChannelView(swizzle); } // Post-display transform gamma { float exponent = 1.0f/std::max(1e-6f, static_cast<float>(g_display_gamma)); const float exponent4f[] = { exponent, exponent, exponent, exponent }; OCIO::ExponentTransformRcPtr expTransform = OCIO::ExponentTransform::Create(); expTransform->setValue(exponent4f); transform->setDisplayCC(expTransform); } OCIO::ConstProcessorRcPtr processor; try { processor = config->getProcessor(transform); } catch(OCIO::Exception & e) { std::cerr << e.what() << std::endl; return; } catch(...) { return; } // Step 1: Create the appropriate GPU shader description OCIO::GpuShaderDescRcPtr shaderDesc = g_gpulegacy ? OCIO::GpuShaderDesc::CreateLegacyShaderDesc(LUT3D_EDGE_SIZE) : OCIO::GpuShaderDesc::CreateShaderDesc(); shaderDesc->setLanguage(OCIO::GPU_LANGUAGE_GLSL_1_0); shaderDesc->setFunctionName("OCIODisplay"); shaderDesc->setResourcePrefix("ocio_"); // Step 2: Collect the shader program information for a specific processor processor->extractGpuShaderInfo(shaderDesc); // Step 3: Use the helper OpenGL builder g_oglBuilder = OpenGLBuilder::Create(shaderDesc); g_oglBuilder->setVerbose(g_gpuinfo); // Step 4: Allocate & upload all the LUTs // // NB: The start index for the texture indices is 1 as one texture // was already created for the input image. // g_oglBuilder->allocateAllTextures(1); // Step 5: Build the fragment shader program g_oglBuilder->buildProgram(g_fragShaderText); // Step 6: Enable the fragment shader program, and all needed textures g_oglBuilder->useProgram(); // The image texture glUniform1i(glGetUniformLocation(g_oglBuilder->getProgramHandle(), "tex1"), 0); // The LUT textures g_oglBuilder->useAllTextures(); }