//------------------------------------------------------------------------------------- void BasicTutorial2::createScene(void) { mSceneMgr->setAmbientLight(Ogre::ColourValue(0, 0, 0)); //mSceneMgr->setShadowTechnique(Ogre::SHADOWTYPE_STENCIL_ADDITIVE); //Create cube //Create a basic green color texture Ogre::MaterialPtr mat = Ogre::MaterialManager::getSingleton().create("BoxColor", "General", true ); Ogre::Technique* tech = mat->getTechnique(0); Ogre::Pass* pass = tech->getPass(0); Ogre::TextureUnitState* tex = pass->createTextureUnitState(); tex->setTextureName("grassTexture.png"); //tex->setNumMipmaps(4); tex->setTextureAnisotropy(1); tex->setTextureFiltering(Ogre::FO_POINT, Ogre::FO_POINT, Ogre::FO_POINT); //Create the one box and the supporting class objects Ogre::ManualObject* testBox = createCubeMesh("TestBox1", "BoxColor"); Ogre::SceneNode* headNode = mSceneMgr->getRootSceneNode()->createChildSceneNode(); Ogre::MeshPtr Mesh = testBox->convertToMesh("TestBox2"); Ogre::StaticGeometry* pGeom = new Ogre::StaticGeometry (mSceneMgr, "Boxes"); Ogre::Entity* pEnt = mSceneMgr->createEntity("TestBox2"); //testBox->triangle pGeom->setRegionDimensions(Ogre::Vector3(300, 300, 300)); World::Instance(); pGeom->build (); mSceneMgr->setAmbientLight(Ogre::ColourValue(0.5, 0.5, 0.5)); Ogre::Light* l = mSceneMgr->createLight("MainLight"); l->setPosition(20,80,50); //Create Cube /* Ogre::Entity* entNinja = mSceneMgr->createEntity("Ninja", "ninja.mesh"); entNinja->setCastShadows(true); mSceneMgr->getRootSceneNode()->createChildSceneNode()->attachObject(entNinja);*/ Ogre::Light* directionalLight = mSceneMgr->createLight("directionalLight"); directionalLight->setType(Ogre::Light::LT_DIRECTIONAL); directionalLight->setDiffuseColour(Ogre::ColourValue(.25, .25, 0)); directionalLight->setSpecularColour(Ogre::ColourValue(.25, .25, 0)); directionalLight->setDirection(Ogre::Vector3( 0, -1, 1 )); }
Ogre::MeshPtr MultiShape::realizeMesh(const std::string& name) { Ogre::ManualObject * manual = Root::getInstance()->sceneManager->createManualObject(name); for (std::vector<Shape>::iterator it = shapes.begin(); it!=shapes.end(); it++) { manual->begin("BaseWhiteNoLighting", Ogre::RenderOperation::OT_LINE_STRIP); it->_appendToManualObject(manual); manual->end(); } Ogre::MeshPtr mesh = manual->convertToMesh(name); return mesh; }
void ParticleFactory::CreateImplosionParticleGeometry(Ogre::String object_name, int num_particles){ Ogre::SceneNode* root_scene_node = scene_manager->getRootSceneNode(); /* Create the 3D object */ Ogre::ManualObject* object = NULL; object = scene_manager->createManualObject(object_name); object->setDynamic(false); /* Create point list for the object */ object->begin("", Ogre::RenderOperation::OT_POINT_LIST); /* Initialize random numbers */ std::srand(std::time(0)); /* Create a set of points which will be the particles */ /* This is similar to drawing a sphere: we will sample points on a sphere, but will allow them to also deviate a bit from the sphere along the normal (change of radius) */ float trad = 1.4; // Defines the starting point of the particles float maxspray = 1.5; // This is how much we allow the points to deviate from the sphere float u, v, w, theta, phi, spray; // Work variables for (int i = 0; i < num_particles; i++){ // Randomly select three numbers to define a point in spherical coordinates u = ((double) rand() / (RAND_MAX)); v = ((double) rand() / (RAND_MAX)); w = ((double) rand() / (RAND_MAX)); // Use u to define the angle theta along one direction of a sphere theta = u * 2.0 * 3.1416; // Use v to define the angle phi along the other direction of the sphere phi = acos(2.0*v - 1.0); // Use we to define how much we can deviate from the surface of the sphere (change of radius) spray = maxspray*pow((float) w, (float) (1.0/3.0)); // Cubic root of w // Define the normal and point based on theta, phi and the spray Ogre::Vector3 normal = Ogre::Vector3(spray*cos(theta)*sin(phi), spray*sin(theta)*sin(phi), spray*cos(phi)); object->position(normal.x*trad, normal.y*trad, normal.z*trad); object->normal(normal); object->colour(Ogre::ColourValue(i/(float) num_particles, 0.0, 1.0 - (i/(float) num_particles))); // We can use the color for debug, if needed } /* We finished the object */ object->end(); /* Convert triangle list to a mesh */ object->convertToMesh(object_name); }
Mesh* MultiShape::GenerateMesh(const String& Name, const String& Group) { Ogre::ManualObject* TempMan = new Ogre::ManualObject("TempMan"); for( ShapeIterator It = this->Shapes.begin() ; It != this->Shapes.end() ; ++It ) { TempMan->begin("BaseWhiteNoLighting",Ogre::RenderOperation::OT_LINE_STRIP); (*It)._AppendToManualObject(TempMan); TempMan->end(); } Mesh* NewMesh = MeshManager::GetSingletonPtr()->_WrapInternalMesh( TempMan->convertToMesh(Name,Group) ); delete TempMan; return NewMesh; }
int DecalManager::addTerrainDecal(Ogre::Vector3 position, Ogre::Vector2 size, Ogre::Vector2 numSeg, Ogre::Real rotation, Ogre::String materialname, Ogre::String normalname) { #if 0 Ogre::ManualObject *mo = gEnv->ogreSceneManager->createManualObject(); String oname = mo->getName(); SceneNode *mo_node = terrain_decals_snode->createChildSceneNode(); mo->begin(materialname, Ogre::RenderOperation::OT_TRIANGLE_LIST); AxisAlignedBox *aab=new AxisAlignedBox(); float uTile = 1, vTile = 1; Vector3 normal = Vector3(0,1,0); // UP int offset = 0; float ground_dist = 0.001f; Ogre::Vector3 vX = normal.perpendicular(); Ogre::Vector3 vY = normal.crossProduct(vX); Ogre::Vector3 delta1 = size.x / numSeg.x * vX; Ogre::Vector3 delta2 = size.y / numSeg.y * vY; // build one corner of the square Ogre::Vector3 orig = -0.5*size.x*vX - 0.5*size.y*vY; for (int i1 = 0; i1<=numSeg.x; i1++) for (int i2 = 0; i2<=numSeg.y; i2++) { Vector3 pos = orig+i1*delta1+i2*delta2 + position; pos.y = hfinder->getHeightAt(pos.x, pos.z) + ground_dist; mo->position(pos); aab->merge(pos); mo->textureCoord(i1/(Ogre::Real)numSeg.x*uTile, i2/(Ogre::Real)numSeg.y*vTile); mo->normal(normal); } bool reverse = false; if (delta1.crossProduct(delta2).dotProduct(normal)>0) reverse= true; for (int n1 = 0; n1<numSeg.x; n1++) { for (int n2 = 0; n2<numSeg.y; n2++) { if (reverse) { mo->index(offset+0); mo->index(offset+(numSeg.y+1)); mo->index(offset+1); mo->index(offset+1); mo->index(offset+(numSeg.y+1)); mo->index(offset+(numSeg.y+1)+1); } else { mo->index(offset+0); mo->index(offset+1); mo->index(offset+(numSeg.y+1)); mo->index(offset+1); mo->index(offset+(numSeg.y+1)+1); mo->index(offset+(numSeg.y+1)); } offset++; } offset++; } offset+=numSeg.y+1; mo->end(); mo->setBoundingBox(*aab); // some optimizations mo->setCastShadows(false); mo->setDynamic(false); delete(aab); MeshPtr mesh = mo->convertToMesh(oname+"_mesh"); // build edgelist mesh->buildEdgeList(); // remove the manualobject again, since we dont need it anymore gEnv->ogreSceneManager->destroyManualObject(mo); unsigned short src, dest; if (!mesh->suggestTangentVectorBuildParams(VES_TANGENT, src, dest)) { mesh->buildTangentVectors(VES_TANGENT, src, dest); } Entity *ent = gEnv->ogreSceneManager->createEntity(oname+"_ent", oname+"_mesh"); mo_node->attachObject(ent); mo_node->setVisible(true); //mo_node->showBoundingBox(true); mo_node->setPosition(Vector3::ZERO); //(position.x, 0, position.z)); // RTSS //Ogre::RTShader::ShaderGenerator::getSingleton().createShaderBasedTechnique(materialname, Ogre::MaterialManager::DEFAULT_SCHEME_NAME, Ogre::RTShader::ShaderGenerator::DEFAULT_SCHEME_NAME); //Ogre::RTShader::ShaderGenerator::getSingleton().invalidateMaterial(RTShader::ShaderGenerator::DEFAULT_SCHEME_NAME, materialname); RTSSgenerateShadersForMaterial(materialname, normalname); #endif return 0; }
int DecalManager::addTerrainSplineDecal(Ogre::SimpleSpline *spline, float width, Ogre::Vector2 numSeg, Ogre::Vector2 uvSeg, Ogre::String materialname, float ground_offset, Ogre::String export_fn, bool debug) { #if 0 Ogre::ManualObject *mo = gEnv->ogreSceneManager->createManualObject(); String oname = mo->getName(); SceneNode *mo_node = terrain_decals_snode->createChildSceneNode(); mo->begin(materialname, Ogre::RenderOperation::OT_TRIANGLE_LIST); AxisAlignedBox *aab=new AxisAlignedBox(); int offset = 0; // how width is the road? float delta_width = width / numSeg.x; float steps_len = 1.0f / numSeg.x; for (int l = 0; l<=numSeg.x; l++) { // get current position on that spline Vector3 pos_cur = spline->interpolate(steps_len * (float)l); Vector3 pos_next = spline->interpolate(steps_len * (float)(l + 1)); Ogre::Vector3 direction = (pos_next - pos_cur); if (l == numSeg.x) { // last segment uses previous position pos_next = spline->interpolate(steps_len * (float)(l - 1)); direction = (pos_cur - pos_next); } for (int w = 0; w<=numSeg.y; w++) { // build vector for the width Vector3 wn = direction.normalisedCopy().crossProduct(Vector3::UNIT_Y); // calculate the offset, spline in the middle Vector3 offset = (-0.5 * wn * width) + (w/numSeg.y) * wn * width; // push everything together Ogre::Vector3 pos = pos_cur + offset; // get ground height there pos.y = hfinder->getHeightAt(pos.x, pos.z) + ground_offset; // add the position to the mesh mo->position(pos); aab->merge(pos); mo->textureCoord(l/(Ogre::Real)numSeg.x*uvSeg.x, w/(Ogre::Real)numSeg.y*uvSeg.y); mo->normal(Vector3::UNIT_Y); } } bool reverse = false; for (int n1 = 0; n1<numSeg.x; n1++) { for (int n2 = 0; n2<numSeg.y; n2++) { if (reverse) { mo->index(offset+0); mo->index(offset+(numSeg.y+1)); mo->index(offset+1); mo->index(offset+1); mo->index(offset+(numSeg.y+1)); mo->index(offset+(numSeg.y+1)+1); } else { mo->index(offset+0); mo->index(offset+1); mo->index(offset+(numSeg.y+1)); mo->index(offset+1); mo->index(offset+(numSeg.y+1)+1); mo->index(offset+(numSeg.y+1)); } offset++; } offset++; } offset+=numSeg.y+1; mo->end(); mo->setBoundingBox(*aab); // some optimizations mo->setCastShadows(false); mo->setDynamic(false); delete(aab); MeshPtr mesh = mo->convertToMesh(oname+"_mesh"); // build edgelist mesh->buildEdgeList(); // remove the manualobject again, since we dont need it anymore gEnv->ogreSceneManager->destroyManualObject(mo); unsigned short src, dest; if (!mesh->suggestTangentVectorBuildParams(VES_TANGENT, src, dest)) { mesh->buildTangentVectors(VES_TANGENT, src, dest); } Entity *ent = gEnv->ogreSceneManager->createEntity(oname+"_ent", oname+"_mesh"); mo_node->attachObject(ent); mo_node->setVisible(true); //mo_node->showBoundingBox(true); mo_node->setPosition(Vector3::ZERO); //(position.x, 0, position.z)); if (!export_fn.empty()) { MeshSerializer *ms = new MeshSerializer(); ms->exportMesh(mesh.get(), export_fn); LOG("spline mesh exported as " + export_fn); delete(ms); } // TBD: RTSS //Ogre::RTShader::ShaderGenerator::getSingleton().createShaderBasedTechnique(materialname, Ogre::MaterialManager::DEFAULT_SCHEME_NAME, Ogre::RTShader::ShaderGenerator::DEFAULT_SCHEME_NAME); //Ogre::RTShader::ShaderGenerator::getSingleton().invalidateMaterial(RTShader::ShaderGenerator::DEFAULT_SCHEME_NAME, materialname); RTSSgenerateShadersForMaterial(materialname, ""); #endif return 0; }
void ParticleFactory::CreateThrusterParticleGeometry(Ogre::String object_name, int num_particles, float loop_radius, float circle_radius){ //try { /* Retrieve scene manager and root scene node */ // Ogre::SceneManager* scene_manager = ogre_root_->getSceneManager("MySceneManager"); Ogre::SceneNode* root_scene_node = scene_manager->getRootSceneNode(); /* Create the 3D object */ Ogre::ManualObject* object = NULL; object = scene_manager->createManualObject(object_name); object->setDynamic(false); /* /* Create point list for the object */ object->begin("", Ogre::RenderOperation::OT_POINT_LIST); /* Initialize random numbers */ std::srand(std::time(0)); /* Create a set of points which will be the particles */ /* This is similar to drawing a torus: we will sample points on the surface of the torus */ float maxspray = 1.5; // This is how much we allow the points to wander around float u, v, w, theta, phi, spray; // Work variables for (int i = 0; i < num_particles; i++){ // Randomly select two numbers to define a point on the torus u = ((double) rand() / (RAND_MAX)); v = ((double) rand() / (RAND_MAX)); // Use u and v to define the point on the torus theta = u * Ogre::Math::TWO_PI; phi = v * Ogre::Math::TWO_PI; Ogre::Vector3 center = Ogre::Vector3(loop_radius*cos(theta), loop_radius*sin(theta), 0.0); Ogre::Vector3 normal = Ogre::Vector3(cos(theta)*cos(phi), sin(theta)*cos(phi), sin(phi)); object->position(center + normal*circle_radius); // Position of the point object->colour(Ogre::ColourValue(((float) i)/((float) num_particles), 0.0, 1.0 - (((float) i)/((float) num_particles)))); object->textureCoord(Ogre::Vector2(0.0, 0.0)); // Now sample a point on a sphere to define a direction for points to wander around u = ((double) rand() / (RAND_MAX)); v = ((double) rand() / (RAND_MAX)); w = ((double) rand() / (RAND_MAX)); theta = u * Ogre::Math::TWO_PI; phi = acos(2.0*v * -1.0); spray = maxspray*pow((float) w, (float) (1.0/4.0)); // Cubic root Ogre::Vector3 wander = Ogre::Vector3(spray*cos(theta)*cos(phi), spray*cos(theta)*sin(phi), sin(phi)*-2); object->normal(wander); } object->position(Ogre::Vector3(0.0f, 0.0f, -30.0f)); object->colour(Ogre::ColourValue(0.0f, 0.0f, 0.0f)); object->textureCoord(Ogre::Vector2(0.0f, 0.0f)); object->normal(Ogre::Vector3(0.0f, 0.0f, -30.0f)); object->end(); /* Convert triangle list to a mesh */ object->convertToMesh(object_name); /* } catch (Ogre::Exception &e){ throw(OgreAppException(std::string("Ogre::Exception: ") + std::string(e.what()))); } catch(std::exception &e){ throw(OgreAppException(std::string("std::Exception: ") + std::string(e.what()))); }*/ }
void ParticleFactory::CreateSplineControlPoints(Ogre::String control_points_name, int num_control_points, Ogre::String material_name){ // Control points for the spline Ogre::Vector3 *control_point; /* Allocate memory for control points */ control_point = new Ogre::Vector3[num_control_points]; /* Create control points of a piecewise spline */ /* We store the control points in groups of 4 */ /* Each group represents the control points (p0, p1, p2, p3) of a cubic Bezier curve */ /* To ensure C1 continuity, we constrain the first and second point of each curve according to the previous curve */ // Initialize the first two control points to fixed values */ control_point[0] = Ogre::Vector3(-20.0, 0.0, 0.0); control_point[1] = Ogre::Vector3(20.0, 0.0, 0.0); // Create remaining points for (int i = 2; i < num_control_points; i++){ // Check if we have the first or second point of a curve // Then we need to constrain the points if (i % 4 == 0){ // Constrain the first point of the curve // p3 = q0, where the previous curve is (p0, p1, p2, p3) and the current curve is (q0, q1, q2, q3) // p3 is at position -1 from the current point q0 control_point[i] = control_point[i - 1]; } else if (i % 4 == 1){ // Constrain the second point of the curve // q1 = 2*p3 – p2 // p3 is at position -1 and we add another -1 since we are at i%4 == 1 (not i%4 == 0) // p2 is at position -2 and we add another -1 since we are at i%4 == 1 (not i%4 == 0) control_point[i] = 2.0*control_point[i -2] - control_point[i - 3]; } else { // Other points: we can freely assign random values to them // Get 3 random numbers float u, v, w; //u = ((double) rand() / (RAND_MAX)); //v = ((double) rand() / (RAND_MAX)); //w = ((double) rand() / (RAND_MAX)); // Define control points based on u, v, and w and scale by the control point index //control_point[i] = Ogre::Vector3(u*3.0*(i/4 + 1), v*3.0*(i/4+1), w*3.0*(i/4+1)); //control_point[i] = Ogre::Vector3(u*3.0*(i/4 + 1), v*3.0*(i/4+1), 0.0); // Easier to visualize with the control points on the screen //x = cx + r * cos(a) //y = cy + r * sin(a) u = 20 * cos(Ogre::Math::RangeRandom(-25,25)); v = 20 * sin(Ogre::Math::RangeRandom(-50,50)); w = (Ogre::Math::RangeRandom(-15,15)); control_point[i] = Ogre::Vector3(u, w, v); } } /* Add control points to the material's shader */ /* Translate the array of Ogre::Vector3 to an accepted format */ float *shader_data; shader_data = new float[num_control_points*4]; for (int i = 0; i < num_control_points; i++){ shader_data[i*4] = control_point[i].x; shader_data[i*4 + 1] = control_point[i].y; shader_data[i*4 + 2] = control_point[i].z; shader_data[i*4 + 3] = 0.0; } /* Add array as a parameter to the shader of the specified material */ Ogre::MaterialPtr mat = static_cast<Ogre::MaterialPtr>(Ogre::MaterialManager::getSingleton().getByName(material_name)); mat->getBestTechnique()->getPass(0)->getVertexProgramParameters()->setNamedConstant("control_point", shader_data, num_control_points, 4); /* Also create a mesh out of the control points, so that we can render them, if needed */ Ogre::ManualObject* object = NULL; object = scene_manager->createManualObject(control_points_name); object->setDynamic(false); object->begin("", Ogre::RenderOperation::OT_POINT_LIST); for (int i = 0; i < num_control_points; i++){ object->position(control_point[i]); // Color allows us to keep track of control point ordering object->colour(1.0 - ((float) i)/((float)num_control_points), 0.0, ((float) i)/((float)num_control_points)); } object->end(); object->convertToMesh(control_points_name); /* Free memory we used to store control points temporarily */ delete [] control_point; }
void ParticleFactory::CreateSplineParticleGeometry(Ogre::String object_name, int num_particles, float loop_radius, float circle_radius){ /* Retrieve scene manager and root scene node */ Ogre::SceneNode* root_scene_node = scene_manager->getRootSceneNode(); /* Create the 3D object */ Ogre::ManualObject* object = NULL; object = scene_manager->createManualObject(object_name); object->setDynamic(false); /* Create point list for the object */ object->begin("", Ogre::RenderOperation::OT_POINT_LIST); /* Initialize random numbers */ std::srand(std::time(0)); /* Create a set of points which will be the particles */ /* This is similar to drawing a torus: we will sample points on a torus, but will allow the points to also deviate a bit from the torus along the direction of a random vector */ float maxspray = 0.5; // This is how much we allow the points to deviate along a normalized vector float u, v, w, theta, phi, spray; // Work variables for (int i = 0; i < num_particles; i++){ // Get two random numbers u = ((double) rand() / (RAND_MAX)); v = ((double) rand() / (RAND_MAX)); // Use u and v to define a point on the torus with angles theta and phi theta = u * Ogre::Math::TWO_PI; phi = v * Ogre::Math::TWO_PI; // Get center of loop and point's normal on the torus Ogre::Vector3 center = Ogre::Vector3(loop_radius*cos(theta), loop_radius*sin(theta), 0.0); Ogre::Vector3 normal = Ogre::Vector3(cos(theta)*cos(phi), sin(theta)*cos(phi), sin(phi)); // Next, we want to let the points deviate along the direction of a random vector // To obtain a random vector, we sample a point on the sphere // The point on the sphere minus the origin (0, 0) is the random vector // Randomly select two numbers to define a point in spherical coordinates u = ((double) rand() / (RAND_MAX)); v = ((double) rand() / (RAND_MAX)); // Use u to define the angle theta along one direction of a sphere theta = u * Ogre::Math::TWO_PI; // Use v to define the angle phi along the other direction of the sphere phi = acos(2.0*v - 1.0); // Get the point on the sphere (equivalent to a normalized direction vector since the origin is zero) Ogre::Vector3 direct = Ogre::Vector3(cos(theta)*sin(phi), sin(theta)*sin(phi), -cos(phi)); // We need z = -cos(phi) to make sure that the z coordinate runs from -1 to 1 as phi runs from 0 to pi // Now, multiply a random amount of deviation by this vector, which is the deviation we will add to the point on the torus w = ((double) rand() / (RAND_MAX)); spray = maxspray*pow((float) w, (float) (1.0/3.0)); // cbrt(w); Ogre::Vector3 wander = Ogre::Vector3(spray*direct.x, spray*direct.y, direct.z); // Add computed quantities to the object object->position(center + normal*circle_radius); object->normal(wander); object->colour(Ogre::ColourValue(((float) i)/((float) num_particles), 0.0, 0.0)); // Store particle id in the red channel as a float object->textureCoord(Ogre::Vector2(0.0, 0.0)); } /* We finished the object */ object->end(); /* Convert triangle list to a mesh */ object->convertToMesh(object_name); }
void CSceletalAnimationView::EngineSetup(void) { Ogre::Root *Root = ((CSceletalAnimationApp*)AfxGetApp())->m_Engine->GetRoot(); Ogre::SceneManager *SceneManager = NULL; SceneManager = Root->createSceneManager(Ogre::ST_GENERIC, "Animation"); // // Create a render window // This window should be the current ChildView window using the externalWindowHandle // value pair option. // Ogre::NameValuePairList parms; parms["externalWindowHandle"] = Ogre::StringConverter::toString((long)m_hWnd); parms["vsync"] = "true"; CRect rect; GetClientRect(&rect); Ogre::RenderTarget *RenderWindow = Root->getRenderTarget("Mouse Input"); if (RenderWindow == NULL) { try { m_RenderWindow = Root->createRenderWindow("Mouse Input", rect.Width(), rect.Height(), false, &parms); } catch(...) { MessageBox("Cannot initialize\nCheck that graphic-card driver is up-to-date", "Initialize Render System", MB_OK | MB_ICONSTOP); exit(EXIT_SUCCESS); } } // Load resources Ogre::ResourceGroupManager::getSingleton().initialiseAllResourceGroups(); // Create the camera m_Camera = SceneManager->createCamera("Camera"); m_Camera->setNearClipDistance(0.5); m_Camera->setFarClipDistance(5000); m_Camera->setCastShadows(false); m_Camera->setUseRenderingDistance(true); m_Camera->setPosition(Ogre::Vector3(5.0, 5.0, 10.0)); Ogre::SceneNode *CameraNode = NULL; CameraNode = SceneManager->getRootSceneNode()->createChildSceneNode("CameraNode"); Ogre::Viewport* Viewport = NULL; if (0 == m_RenderWindow->getNumViewports()) { Viewport = m_RenderWindow->addViewport(m_Camera); Viewport->setBackgroundColour(Ogre::ColourValue(0.8f, 0.8f, 0.8f)); } // Alter the camera aspect ratio to match the viewport m_Camera->setAspectRatio(Ogre::Real(rect.Width()) / Ogre::Real(rect.Height())); m_Camera->lookAt(Ogre::Vector3(0.5, 0.5, 0.5)); m_Camera->setPolygonMode(Ogre::PolygonMode::PM_WIREFRAME); Ogre::ManualObject* ManualObject = NULL; ManualObject = SceneManager->createManualObject("Animation"); ManualObject->setDynamic(false); ManualObject->begin("BaseWhiteNoLighting", Ogre::RenderOperation::OT_TRIANGLE_LIST); //face 1 ManualObject->position(0, 0, 0);//0 ManualObject->position(1, 0, 0);//1 ManualObject->position(1, 1, 0);//2 ManualObject->triangle(0, 1, 2);//3 ManualObject->position(0, 0, 0);//4 ManualObject->position(1, 1, 0);//5 ManualObject->position(0, 1, 0);//6 ManualObject->triangle(3, 4, 5);//7 //face 2 ManualObject->position(0, 0, 1);//8 ManualObject->position(1, 0, 1);//9 ManualObject->position(1, 1, 1);//10 ManualObject->triangle(6, 7, 8);//11 ManualObject->position(0, 0, 1);//12 ManualObject->position(1, 1, 1);//13 ManualObject->position(0, 1, 1);//14 ManualObject->triangle(9, 10, 11);//15 //face 3 ManualObject->position(0, 0, 0);//16 ManualObject->position(1, 0, 0);//17 ManualObject->position(1, 0, 1);//18 ManualObject->triangle(12, 13, 14);//19 ManualObject->position(0, 0, 0); ManualObject->position(1, 0, 1); ManualObject->position(0, 1, 1); ManualObject->triangle(15, 16, 17); //face 4 ManualObject->position(1, 0, 0); ManualObject->position(1, 1, 0); ManualObject->position(1, 1, 1); ManualObject->triangle(18, 19, 20); ManualObject->position(1, 0, 0); ManualObject->position(1, 1, 1); ManualObject->position(1, 0, 1); ManualObject->triangle(21, 22, 23); //face 5 ManualObject->position(0, 1, 0); ManualObject->position(1, 1, 0); ManualObject->position(0, 1, 1); ManualObject->triangle(24, 25, 26); ManualObject->position(1, 1, 0); ManualObject->position(1, 1, 1); ManualObject->position(0, 1, 1); ManualObject->triangle(27, 28, 29); //face 6 ManualObject->position(0, 0, 0); ManualObject->position(0, 1, 1); ManualObject->position(0, 0, 1); ManualObject->triangle(30, 31, 32); ManualObject->position(0, 0, 0); ManualObject->position(0, 1, 0); ManualObject->position(0, 1, 1); ManualObject->triangle(33, 34, 35); ManualObject->end(); Ogre::MeshPtr MeshPtr = ManualObject->convertToMesh("Animation"); Ogre::SubMesh* sub = MeshPtr->getSubMesh(0); Ogre::SkeletonPtr Skeleton = Ogre::SkeletonManager::getSingleton().create("Skeleton", Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME); MeshPtr.getPointer()->_notifySkeleton(Skeleton); Ogre::Bone *Root1 = NULL; Ogre::Bone *Child1 = NULL; Ogre::Bone *Child2 = NULL; Root1 = Skeleton.getPointer()->createBone("Root"); Root1->setPosition(Ogre::Vector3(0.0, 0.0, 0.0)); Root1->setOrientation(Ogre::Quaternion::IDENTITY); Child1 = Root1->createChild(1); Child1->setPosition(Ogre::Vector3(4.0, 0.0, 0.0)); Child1->setOrientation(Ogre::Quaternion::IDENTITY); Child2 = Root1->createChild(2); Child2->setPosition(Ogre::Vector3(5.0, 0.0, 0.0)); Child2->setOrientation(Ogre::Quaternion::IDENTITY); Ogre::VertexBoneAssignment Assignment; Assignment.boneIndex = 0; Assignment.vertexIndex = 0; Assignment.weight = 1.0; Skeleton->setBindingPose(); sub->addBoneAssignment(Assignment); Assignment.vertexIndex = 1; sub->addBoneAssignment(Assignment); Assignment.vertexIndex = 2; sub->addBoneAssignment(Assignment); Ogre::Animation *Animation = MeshPtr->createAnimation("HandAnimation", 100.0); Ogre::NodeAnimationTrack *Track = Animation->createNodeTrack(0, Root1); Ogre::TransformKeyFrame *KeyFrame = NULL; for (float FrameTime = 0.0; FrameTime < 100.0; FrameTime += 0.1) { KeyFrame = Track->createNodeKeyFrame(FrameTime); KeyFrame->setTranslate(Ogre::Vector3(10.0, 0.0, 0.0)); } Root1->setManuallyControlled(true); Child1->setManuallyControlled(true); Child2->setManuallyControlled(true); MeshPtr->load(); MeshPtr.getPointer()->_notifySkeleton(Skeleton); // Ogre::SkeletonSerializer skeletonSerializer; // skeletonSerializer.exportSkeleton(Skeleton.get(), "C:\\Users\\Ilya\\Documents\\Visual Studio 2010\\Projects\\Recipes\\media\\models\\testskeleton.skeleton"); // Ogre::MeshSerializer ser; // ser.exportMesh(MeshPtr.get(), "C:\\Users\\Ilya\\Documents\\Visual Studio 2010\\Projects\\Recipes\\media\\models\\testskeleton.mesh"); Ogre::Entity *Entity = SceneManager->createEntity("Animation", "Animation"/*"testskeleton.mesh"*/); Ogre::SceneNode *SceneNode = SceneManager->getRootSceneNode()->createChildSceneNode(); SceneNode->attachObject(Entity); Entity->setDisplaySkeleton(true); m_AnimationState = Entity->getAnimationState("HandAnimation"); m_AnimationState->setEnabled(true); m_AnimationState->setLoop(true); m_Camera->setPolygonMode(Ogre::PolygonMode::PM_WIREFRAME); Root->renderOneFrame(); }
void Map::generateMeshObstacles(std::string materialName) { Ogre::ManualObject* obstacles = new Ogre::ManualObject("obstacles"); obstacles->estimateIndexCount(m_length * m_width * 8); obstacles->estimateVertexCount(m_length * m_width * 8); obstacles->clear(); obstacles->begin(materialName); Ogre::Vector3 pos = Ogre::Vector3(0, 0, 0); Ogre::Quaternion quat; Ogre::Quaternion quatNext; unsigned long planeNum = 0; m_obstaclePositions.clear(); for (unsigned int i = 0; i < m_length; i++) { quat = m_rotationalSpline.getPoint(i); quatNext = m_rotationalSpline.getPoint(i + 1); for (int x = -100 * (m_width / (double) 2), j = 0; (unsigned) j < m_width; j++, x += 100) { int back = -100; int left = x; int right = x + 100; int up = 100; Ogre::Vector3 nextPos = pos + quat * Ogre::Vector3(0, 0, back); Ogre::Vector3 posMinus50 = pos + quat * Ogre::Vector3(left, 0, 0); Ogre::Vector3 posPlus50 = pos + quat * Ogre::Vector3(right, 0, 0); Ogre::Vector3 nextPosMinus50 = nextPos + quatNext * Ogre::Vector3(left, 0, 0); Ogre::Vector3 nextPosPlus50 = nextPos + quatNext * Ogre::Vector3(right, 0, 0); //TODO: fix normals obstacles->position(posMinus50); obstacles->normal((quat * Vector3(0, 1, 0)).normalisedCopy()); obstacles->textureCoord(1, 1); obstacles->position(nextPosMinus50); obstacles->normal((quat * Vector3(0, 1, 0)).normalisedCopy()); obstacles->textureCoord(1, 0); obstacles->position(posPlus50); obstacles->normal((quat * Vector3(0, 1, 0)).normalisedCopy()); obstacles->textureCoord(0, 1); obstacles->position(nextPosPlus50); obstacles->normal((quat * Vector3(0, 1, 0)).normalisedCopy()); obstacles->textureCoord(0, 0); Ogre::Vector3 nextPosUp = nextPos + quat * Ogre::Vector3(0, up, 0); Ogre::Vector3 posMinus50Up = posMinus50 + quat * Ogre::Vector3(0, up, 0); Ogre::Vector3 posPlus50Up = posPlus50 + quat * Ogre::Vector3(0, up, 0); Ogre::Vector3 nextPosMinus50Up = nextPosMinus50 + quatNext * Ogre::Vector3(0, up, 0); Ogre::Vector3 nextPosPlus50Up = nextPosPlus50 + quatNext * Ogre::Vector3(0, up, 0); //TODO: fix normals obstacles->position(posMinus50Up); obstacles->normal((quat * Vector3(-1, 1, 1)).normalisedCopy()); obstacles->textureCoord(0, 0); obstacles->position(nextPosMinus50Up); obstacles->normal((quat * Vector3(-1, 1, -1)).normalisedCopy()); obstacles->textureCoord(0, 1); obstacles->position(posPlus50Up); obstacles->normal((quat * Vector3(1, 1, 1)).normalisedCopy()); obstacles->textureCoord(1, 0); obstacles->position(nextPosPlus50Up); obstacles->normal((quat * Vector3(1, 1, -1)).normalisedCopy()); obstacles->textureCoord(1, 1); if (m_cubes[planeNum / (double) m_width][planeNum % m_width] == OBSTACLE) { //TODO: check if this hack works.. m_obstaclePositions.push_back(posMinus50); //top obstacles->triangle(4 + planeNum * 8, 5 + planeNum * 8, 6 + planeNum * 8); obstacles->triangle(6 + planeNum * 8, 5 + planeNum * 8, 4 + planeNum * 8); obstacles->triangle(5 + planeNum * 8, 7 + planeNum * 8, 6 + planeNum * 8); obstacles->triangle(6 + planeNum * 8, 7 + planeNum * 8, 5 + planeNum * 8); if (planeNum % m_width == 0 || m_cubes[planeNum / (double) m_width][(planeNum - 1) % m_width] != OBSTACLE) { //left obstacles->triangle(0 + planeNum * 8, 4 + planeNum * 8, 5 + planeNum * 8); obstacles->triangle(5 + planeNum * 8, 4 + planeNum * 8, 0 + planeNum * 8); obstacles->triangle(0 + planeNum * 8, 1 + planeNum * 8, 5 + planeNum * 8); obstacles->triangle(5 + planeNum * 8, 1 + planeNum * 8, 0 + planeNum * 8); } if (planeNum % m_width == m_width - 1 || m_cubes[planeNum / (double) m_width][(planeNum + 1) % m_width] != OBSTACLE) { //right obstacles->triangle(2 + planeNum * 8, 6 + planeNum * 8, 7 + planeNum * 8); obstacles->triangle(7 + planeNum * 8, 6 + planeNum * 8, 2 + planeNum * 8); obstacles->triangle(2 + planeNum * 8, 3 + planeNum * 8, 7 + planeNum * 8); obstacles->triangle(7 + planeNum * 8, 3 + planeNum * 8, 2 + planeNum * 8); } if (planeNum / (double) m_width >= m_length - 1 || m_cubes[(planeNum + m_width) / (double) m_width][planeNum % m_width] != OBSTACLE) { //back obstacles->triangle(5 + planeNum * 8, 7 + planeNum * 8, 1 + planeNum * 8); obstacles->triangle(1 + planeNum * 8, 7 + planeNum * 8, 5 + planeNum * 8); obstacles->triangle(1 + planeNum * 8, 3 + planeNum * 8, 7 + planeNum * 8); obstacles->triangle(7 + planeNum * 8, 3 + planeNum * 8, 1 + planeNum * 8); } if (planeNum / (double) m_width <= m_width || m_cubes[(planeNum - m_width) / (double) m_width][planeNum % m_width] != OBSTACLE) { //front obstacles->triangle(2 + planeNum * 8, 6 + planeNum * 8, 4 + planeNum * 8); obstacles->triangle(4 + planeNum * 8, 6 + planeNum * 8, 2 + planeNum * 8); obstacles->triangle(0 + planeNum * 8, 4 + planeNum * 8, 2 + planeNum * 8); obstacles->triangle(2 + planeNum * 8, 4 + planeNum * 8, 0 + planeNum * 8); } } planeNum++; } pos = pos + quat * Ogre::Vector3(0, 0, -100); } obstacles->end(); obstacles->setCastShadows(true); //TODO: fix graphics bug when no obstacles /*if (m_obstaclePositions.size() <= 0) { return; }*/ m_mapMainNode->attachObject(obstacles); MeshPtr ptr = obstacles->convertToMesh("obstaclesMesh"); Entity* obstaclesEntity = m_pSceneMgr->createEntity("obstaclesEntity", "obstaclesMesh"); }
void Map::generateMesh(std::string materialName) { Ogre::ManualObject* plane = new Ogre::ManualObject("plane"); plane->estimateIndexCount(m_length * m_width * 8); plane->estimateVertexCount(m_length * m_width * 8); plane->clear(); plane->begin(materialName); Ogre::Vector3 pos = Ogre::Vector3(0, 0, 0); Ogre::Quaternion quat; Ogre::Quaternion quatNext; unsigned long planeNum = 0; for (unsigned int i = 0; i < m_length; i++) { quat = m_rotationalSpline.getPoint(i); quatNext = m_rotationalSpline.getPoint(i + 1); for (int x = -100 * (m_width / (double) 2), j = 0; (unsigned) j < m_width; j++, x += 100) { int back = -100; int left = x; int right = x + 100; int down = -20 ; Ogre::Vector3 nextPos = pos + quat * Ogre::Vector3(0, 0, back); Ogre::Vector3 posMinus50 = pos + quat * Ogre::Vector3(left, 0, 0); Ogre::Vector3 posPlus50 = pos + quat * Ogre::Vector3(right, 0, 0); Ogre::Vector3 nextPosMinus50 = nextPos + quatNext * Ogre::Vector3(left, 0, 0); Ogre::Vector3 nextPosPlus50 = nextPos + quatNext * Ogre::Vector3(right, 0, 0); //TODO: fix normals? plane->position(posMinus50); plane->normal((quat * Vector3(0, 1, 0)).normalisedCopy()); plane->textureCoord(1, 1); plane->position(nextPosMinus50); plane->normal((quat * Vector3(0, 1, 0)).normalisedCopy()); plane->textureCoord(1, 0); plane->position(posPlus50); plane->normal((quat * Vector3(0, 1, 0)).normalisedCopy()); plane->textureCoord(0, 1); plane->position(nextPosPlus50); plane->normal((quat * Vector3(0, 1, 0)).normalisedCopy()); plane->textureCoord(0, 0); Ogre::Vector3 nextPosDown = nextPos + quat * Ogre::Vector3(0, down, 0); Ogre::Vector3 posMinus50Down = posMinus50 + quat * Ogre::Vector3(0, down, 0); Ogre::Vector3 posPlus50Down = posPlus50 + quat * Ogre::Vector3(0, down, 0); Ogre::Vector3 nextPosMinus50Down = nextPosMinus50 + quatNext * Ogre::Vector3(0, down, 0); Ogre::Vector3 nextPosPlus50Down = nextPosPlus50 + quatNext * Ogre::Vector3(0, down, 0); //TODO: fix normals? plane->position(posMinus50Down); plane->normal((quat * Vector3(-1, -1, 1)).normalisedCopy()); plane->textureCoord(0, 0); plane->position(nextPosMinus50Down); plane->normal((quat * Vector3(-1, -1, -1)).normalisedCopy()); plane->textureCoord(0, 1); plane->position(posPlus50Down); plane->normal((quat * Vector3(1, -1, 1)).normalisedCopy()); plane->textureCoord(1, 0); plane->position(nextPosPlus50Down); plane->normal((quat * Vector3(1, -1, -1)).normalisedCopy()); plane->textureCoord(1, 1); if (m_cubes[planeNum / (double) m_width][planeNum % m_width] != HOLE) { //if (m_cubes[planeNum / (double) m_width][planeNum % m_width] == NORMAL) //{ //top plane->triangle(0 + planeNum * 8, 1 + planeNum * 8, 2 + planeNum * 8); plane->triangle(2 + planeNum * 8, 1 + planeNum * 8, 0 + planeNum * 8); plane->triangle(1 + planeNum * 8, 3 + planeNum * 8, 2 + planeNum * 8); plane->triangle(2 + planeNum * 8, 3 + planeNum * 8, 1 + planeNum * 8); //} //bottom plane->triangle(4 + planeNum * 8, 5 + planeNum * 8, 6 + planeNum * 8); plane->triangle(6 + planeNum * 8, 5 + planeNum * 8, 4 + planeNum * 8); plane->triangle(5 + planeNum * 8, 7 + planeNum * 8, 6 + planeNum * 8); plane->triangle(6 + planeNum * 8, 7 + planeNum * 8, 5 + planeNum * 8); if (planeNum % m_width == 0 || m_cubes[planeNum / (double) m_width][(planeNum - 1) % m_width] == HOLE) { //left plane->triangle(0 + planeNum * 8, 4 + planeNum * 8, 5 + planeNum * 8); plane->triangle(5 + planeNum * 8, 4 + planeNum * 8, 0 + planeNum * 8); plane->triangle(0 + planeNum * 8, 1 + planeNum * 8, 5 + planeNum * 8); plane->triangle(5 + planeNum * 8, 1 + planeNum * 8, 0 + planeNum * 8); } if (planeNum % m_width == m_width - 1 || m_cubes[planeNum / (double) m_width][(planeNum + 1) % m_width] == HOLE) { //right plane->triangle(2 + planeNum * 8, 6 + planeNum * 8, 7 + planeNum * 8); plane->triangle(7 + planeNum * 8, 6 + planeNum * 8, 2 + planeNum * 8); plane->triangle(2 + planeNum * 8, 3 + planeNum * 8, 7 + planeNum * 8); plane->triangle(7 + planeNum * 8, 3 + planeNum * 8, 2 + planeNum * 8); } if (planeNum / (double) m_width >= m_length - 1 || m_cubes[(planeNum + m_width) / (double) m_width][planeNum % m_width] == HOLE) { //back plane->triangle(5 + planeNum * 8, 7 + planeNum * 8, 1 + planeNum * 8); plane->triangle(1 + planeNum * 8, 7 + planeNum * 8, 5 + planeNum * 8); plane->triangle(1 + planeNum * 8, 3 + planeNum * 8, 7 + planeNum * 8); plane->triangle(7 + planeNum * 8, 3 + planeNum * 8, 1 + planeNum * 8); } if (planeNum / (double) m_width <= m_width || m_cubes[(planeNum - m_width) / (double) m_width][planeNum % m_width] == HOLE) { //front plane->triangle(2 + planeNum * 8, 6 + planeNum * 8, 4 + planeNum * 8); plane->triangle(4 + planeNum * 8, 6 + planeNum * 8, 2 + planeNum * 8); plane->triangle(0 + planeNum * 8, 4 + planeNum * 8, 2 + planeNum * 8); plane->triangle(2 + planeNum * 8, 4 + planeNum * 8, 0 + planeNum * 8); } } planeNum++; } pos = pos + quat * Ogre::Vector3(0, 0, -100); } plane->end(); plane->setCastShadows(false); m_mapMainNode->attachObject(plane); MeshPtr ptr = plane->convertToMesh("planeMesh"); Entity* planeEntity = m_pSceneMgr->createEntity("planeEntity", "planeMesh"); }
void AssetLoader::readModel(Ogre::SceneManager* sceneMgr, Ogre::SceneNode* scnNode, const aiScene* scene, aiNode* nd) { for (size_t n = 0; n < nd->mNumChildren; n++) { aiNode* cnd = nd->mChildren[n]; Ogre::SceneNode* cnode = createChildSceneNodeWithTransform(scnNode, cnd); for (size_t i = 0; i < cnd->mNumMeshes; i++) { aiMesh* m = scene->mMeshes[cnd->mMeshes[i]]; aiMaterial* mat = scene->mMaterials[m->mMaterialIndex]; std::string nodeName = getFullPathName(cnd); Ogre::MaterialPtr omat = createMaterial(Ogre::String(nodeName), m->mMaterialIndex, mat); aiVector3D* vec = m->mVertices; aiVector3D* norm = m->mNormals; aiVector3D* uv = m->mTextureCoords[0]; aiColor4D* vcol = NULL; if (m->HasVertexColors(0)) vcol = m->mColors[0]; // 頂点情報の読み込み Ogre::AxisAlignedBox aab; Ogre::ManualObject* mobj = new Ogre::ManualObject(nodeName+"_MObj"); mobj->begin(omat->getName()); //mobj->begin("Ogre/Skin"); for (size_t n = 0; n < m->mNumVertices; n ++) { Ogre::Vector3 position(vec->x, vec->y, vec->z); aab.merge(position); mobj->position(vec->x, vec->y, vec->z); vec++; mobj->normal(norm->x, norm->y, norm->z); norm++; if (uv) { mobj->textureCoord(uv->x, uv->y); uv++; } if (vcol) { mobj->colour(vcol->r, vcol->g, vcol->b, vcol->a); vcol++; } } // ポリゴンの構築 for (size_t n = 0; n < m->mNumFaces; n++) { aiFace* face = &m->mFaces[n]; for (size_t k = 0; k < face->mNumIndices; k++) { mobj->index(face->mIndices[k]); } } mobj->end(); mobj->setBoundingBox(aab); Ogre::String meshName(nodeName+"_Mesh"); mobj->convertToMesh(meshName); delete mobj; Ogre::String entityName(nodeName+"_Entity"); std::cout << "entity: " << entityName << std::endl; Ogre::Entity* ent = sceneMgr->createEntity(entityName, meshName); cnode->attachObject(ent); } readModel(sceneMgr, cnode, scene, cnd); } }
void OgreApplication::CreateWall(Ogre::String material_name){ try { /* Create two rectangles */ /* Retrieve scene manager and root scene node */ Ogre::SceneManager* scene_manager = ogre_root_->getSceneManager("MySceneManager"); Ogre::SceneNode* root_scene_node = scene_manager->getRootSceneNode(); /* Create the 3D object */ Ogre::ManualObject* object = NULL; Ogre::String object_name = "Wall"; object = scene_manager->createManualObject(object_name); object->setDynamic(false); /* Create triangle list for the object */ object->begin(material_name, Ogre::RenderOperation::OT_TRIANGLE_LIST); /* Add vertices */ /* One side of the "wall" */ object->position(-1.0,-1.0,0.0); object->normal(0.0, 0.0, -1.0); object->tangent(-1.0, 0.0, 0.0); object->textureCoord(1.0, 0.0); object->position(-1.0,1.0,0.0); object->normal(0.0, 0.0, -1.0); object->tangent(-1.0, 0.0, 0.0); object->textureCoord(1.0, 1.0); object->position(1.0,1.0,0.0); object->normal(0.0, 0.0, -1.0); object->tangent(-1.0, 0.0, 0.0); object->textureCoord(0.0, 1.0); object->position(1.0,-1.0,0.0); object->normal(0.0, 0.0, -1.0); object->tangent(-1.0, 0.0, 0.0); object->textureCoord(0.0, 0.0); /* The other side of the "wall" */ object->position(-1.0,-1.0,0.0); object->normal(0.0, 0.0, 1.0); object->tangent(1.0, 0.0, 0.0); object->textureCoord(0.0, 0.0); object->position(-1.0,1.0,0.0); object->normal(0.0, 0.0, 1.0); object->tangent(1.0, 0.0, 0.0); object->textureCoord(0.0, 1.0); object->position(1.0,1.0,0.0); object->normal(0.0, 0.0, 1.0); object->tangent(1.0, 0.0, 0.0); object->textureCoord(1.0, 1.0); object->position(1.0,-1.0,0.0); object->normal(0.0, 0.0, 1.0); object->tangent(1.0, 0.0, 0.0); object->textureCoord(1.0, 0.0); /* Add triangles */ /* One side */ object->triangle(0, 1, 2); object->triangle(0, 2, 3); /* The other side */ object->triangle(4, 7, 6); object->triangle(4, 6, 5); /* We finished the object */ object->end(); /* Convert triangle list to a mesh */ Ogre::String mesh_name = "Wall"; object->convertToMesh(mesh_name); /* Create one instance of the sphere (one entity) */ /* The same object can have multiple instances or entities */ Ogre::Entity* entity = scene_manager->createEntity(mesh_name); /* Apply a material to the entity to give it color */ /* We already did that above, so we comment it out here */ /* entity->setMaterialName(material_name); */ /* But, this call is useful if we have multiple entities with different materials */ /* Create a scene node for the entity */ /* The scene node keeps track of the entity's position */ Ogre::SceneNode* scene_node = root_scene_node->createChildSceneNode(mesh_name); scene_node->attachObject(entity); /* Position and rotate the entity with the scene node */ //scene_node->rotate(Ogre::Vector3(0, 1, 0), Ogre::Degree(60)); //scene_node->rotate(Ogre::Vector3(1, 0, 0), Ogre::Degree(30)); //scene_node->rotate(Ogre::Vector3(1, 0, 0), Ogre::Degree(-90)); //scene_node->translate(0.0, 0.0, 0.0); scene_node->scale(0.5, 0.5, 0.5); } catch (Ogre::Exception &e){ throw(OgreAppException(std::string("Ogre::Exception: ") + std::string(e.what()))); } catch(std::exception &e){ throw(OgreAppException(std::string("std::Exception: ") + std::string(e.what()))); } }
Ogre::MeshPtr Loader::getMeshFromMdl(unsigned int id){ if(!models[id].isNull()){ return models[id]; } std::string name = "mesh"+Utils::toStr(id); std::ifstream stream; stream.open(("Models/"+name+".mdl").c_str(),std::ios::in|std::ios::binary); Ogre::ManualObject* obj = OgreFramework::getSingletonPtr()->m_pSceneMgr->createManualObject(); unsigned int texture, normalmap, vertices, indices; short endian; stream.read((char*)&endian,sizeof(short)); stream.read((char*)&texture,sizeof(unsigned int)); stream.read((char*)&normalmap,sizeof(unsigned int)); stream.read((char*)&vertices,sizeof(unsigned int)); stream.read((char*)&indices,sizeof(unsigned int)); float bounds[6];//{minX,minY,minZ,maxX,maxY,maxZ} stream.read((char*)bounds,sizeof(float)*6); std::string textureFName,normalMapFName; for(int i=0;i<texture;i++){ char c; stream.read((char*)&c,sizeof(char)); textureFName+=c; } if(normalmap>0){ for(int i=0;i<texture;i++){ char c; stream.read((char*)&c,sizeof(char)); normalMapFName+=c; } } if(normalmap>0) obj->begin("NormalMapTexture"); else obj->begin("PlainTexture"); float * arrayV = new float[vertices*(3+3+2)]; stream.read((char*)arrayV,sizeof(float)*(3+3+2)*vertices);//should also work - automatically grab ALL vertex data to array in one operation :) C++ is great for(int i=0;i<vertices;i++){ int ptr = i*(3+3+2); obj->position(arrayV[ptr],arrayV[ptr+1],arrayV[ptr+2]); obj->normal(arrayV[ptr+3],arrayV[ptr+4],arrayV[ptr+5]); obj->textureCoord(arrayV[ptr+6],arrayV[ptr+7]); } delete [] arrayV; unsigned int * arrayI = new unsigned int[indices]; stream.read((char*)arrayI,sizeof(unsigned int)*indices); for(int i=0;i<indices;i++){ obj->index(arrayI[i]); } delete [] arrayI; obj->end(); /*if(normalmap>0){ obj->setMaterialName("NormalMapTexture"); obj->addTextureAlias("normalmap",normalMapFName); } else{ obj->setMaterialName("OneTexture"); } obj->addTextureAlias("textura",textureFName);*/ OgreFramework::getSingletonPtr()->m_pSceneMgr->getRootSceneNode()->createChildSceneNode()->attachObject(obj); Ogre::MeshPtr mesh = obj->convertToMesh(name); mesh->getSubMesh(0)->addTextureAlias("textura",textureFName);//TODO normalmap return mesh; /*Ogre::MeshPtr meshM = Ogre::MeshManager::getSingletonPtr()->createManual(name,"General"); unsigned int texture, normalmap, vertices, indices; short endian; stream.read((char*)&endian,sizeof(short)); stream.read((char*)&texture,sizeof(unsigned int)); stream.read((char*)&normalmap,sizeof(unsigned int)); stream.read((char*)&vertices,sizeof(unsigned int)); stream.read((char*)&indices,sizeof(unsigned int)); float bounds[6];//{minX,minY,minZ,maxX,maxY,maxZ} stream.read((char*)bounds,sizeof(float)*6); std::string textureFName,normalMapFName; for(int i=0;i<texture;i++){ char c; stream.read((char*)&c,sizeof(char)); textureFName+=c; } if(normalmap>0){ for(int i=0;i<texture;i++){ char c; stream.read((char*)&c,sizeof(char)); normalMapFName+=c; } } Ogre::SubMesh* mesh = meshM->createSubMesh(); // We first create a VertexData Ogre::VertexData* data = new Ogre::VertexData(); // Then, we link it to our Mesh/SubMesh : #ifdef SHARED_GEOMETRY meshM->sharedVertexData = data; #else mesh->useSharedVertices = false; // This value is 'true' by default mesh->vertexData = data; #endif // We have to provide the number of verteices we'll put into this Mesh/SubMesh data->vertexCount = vertices; // Then we can create our VertexDeclaration Ogre::VertexDeclaration* decl = data->vertexDeclaration; size_t offset = 0; decl->addElement(0, offset, Ogre::VET_FLOAT3, Ogre::VES_POSITION); offset += Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3); decl->addElement(0, offset, Ogre::VET_FLOAT3, Ogre::VES_NORMAL); offset += Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3); decl->addElement(0, offset, Ogre::VET_FLOAT2, Ogre::VES_TEXTURE_COORDINATES); offset += Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT2);//you can't animate because one buffer Ogre::HardwareVertexBufferSharedPtr vbuf = Ogre::HardwareBufferManager::getSingleton().createVertexBuffer( decl->getVertexSize(0), // This value is the size of a vertex in memory vertices, // The number of vertices you'll put into this buffer Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY // Properties ); float * arrayV = new float[vertices*(3+3+2)]; stream.read((char*)arrayV,sizeof(float)*(3+3+2)*vertices);//should also work - automatically grab ALL vertex data to array in one operation :) C++ is great vbuf->writeData(0, vbuf->getSizeInBytes(), arrayV, true); delete [] arrayV; // "data" is the Ogre::VertexData* we created before Ogre::VertexBufferBinding* bind = data->vertexBufferBinding; bind->setBinding(0, vbuf); Ogre::HardwareIndexBufferSharedPtr ibuf = Ogre::HardwareBufferManager::getSingleton().createIndexBuffer( Ogre::HardwareIndexBuffer::IT_16BIT, // You can use several different value types here indices, // The number of indices you'll put in that buffer Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY // Properties ); mesh->indexData->indexBuffer = ibuf; // The pointer to the index buffer mesh->indexData->indexCount = indices; // The number of indices we'll use mesh->indexData->indexStart = 0; unsigned int * arrayI = new unsigned int[indices]; stream.read((char*)arrayI,sizeof(unsigned int)*indices); ibuf->writeData(0, ibuf->getSizeInBytes(), arrayI, true); delete [] arrayI; if(normalmap>0){ mesh->setMaterialName("NormalMapTexture"); mesh->addTextureAlias("normalmap",normalMapFName); } else{ //mesh->setMaterialName("OneTexture"); } mesh->addTextureAlias("textura",textureFName); meshM->_setBounds(Ogre::AxisAlignedBox(bounds[0],bounds[1],bounds[2],bounds[3],bounds[4],bounds[5])); meshM->_setBoundingSphereRadius(std::max(bounds[3]-bounds[0], std::max(bounds[4]-bounds[1], bounds[5]-bounds[2]))/2.0f); meshM->load();//TODO need? return meshM;*/ }
void Client::initScene() { Ogre::Vector3 lightPosition = Ogre::Vector3(0,10,50); // Set the scene's ambient light mSceneMgr->setAmbientLight(Ogre::ColourValue(.1f, .1f, .1f)); Ogre::Light* pointLight = mSceneMgr->createLight("pointLight"); pointLight->setType(Ogre::Light::LT_POINT); pointLight->setPosition(lightPosition); // create a marker where the light is Ogre::Entity* ogreHead2 = mSceneMgr->createEntity( "Head2", "ogrehead.mesh" ); Ogre::SceneNode* headNode2 = mSceneMgr->getRootSceneNode()->createChildSceneNode( "HeadNode2", lightPosition ); headNode2->attachObject( ogreHead2 ); headNode2->scale( .5, .5, .5 ); // make a quad Ogre::ManualObject* lManualObject = NULL; Ogre::String lNameOfTheMesh = "TestQuad"; { // params Ogre::String lManualObjectName = "TestQuad"; bool lDoIWantToUpdateItLater = false; // code lManualObject = mSceneMgr->createManualObject(lManualObjectName); lManualObject->setDynamic(lDoIWantToUpdateItLater); lManualObject->begin("BaseWhiteNoLighting", Ogre::RenderOperation::OT_TRIANGLE_LIST); { // Specify Vertices float xmin = 0.0f, xmax = 100.0f, zmin = -100.0f, zmax = 0.0f, ymin = -50.0f, ymax = 0.0f; lManualObject->position(xmin, ymin, zmin);// a vertex lManualObject->colour(Ogre::ColourValue::Red); lManualObject->textureCoord(0.0,0.0); lManualObject->position(xmax, ymin, zmin);// a vertex lManualObject->colour(Ogre::ColourValue::Green); lManualObject->textureCoord(1.0,0.0); lManualObject->position(xmin, ymin, zmax);// a vertex lManualObject->colour(Ogre::ColourValue::Blue); lManualObject->textureCoord(0.0,1.0); lManualObject->position(xmax, ymin, zmax);// a vertex lManualObject->colour(Ogre::ColourValue::Blue); lManualObject->textureCoord(1.0,1.0); } { // specify geometry lManualObject->triangle(0,2,1); lManualObject->triangle(3,1,2); } lManualObject->end(); lManualObject->convertToMesh(lNameOfTheMesh); } Ogre::Entity* lEntity = mSceneMgr->createEntity(lNameOfTheMesh); Ogre::SceneNode* lNode = mSceneMgr->getRootSceneNode()->createChildSceneNode(); lNode->attachObject(lEntity); Ogre::Entity* ogreHead = mSceneMgr->createEntity("Head", "ogrehead.mesh"); // Create a SceneNode and attach the Entity to it Ogre::SceneNode* headNode = mSceneMgr->getRootSceneNode()->createChildSceneNode("HeadNode",Ogre::Vector3(0,-20,0)); headNode->attachObject(ogreHead); ogreHead->setMaterialName("Hatching"); lEntity->setMaterialName("Hatching"); // postprocessing effects //Ogre::CompositorManager::getSingleton().addCompositor(mViewport,"Sobel" ); //Ogre::CompositorManager::getSingleton().setCompositorEnabled(mCamera->getViewport(), "Sobel", true); //Ogre::CompositorManager::getSingleton().addCompositor(mViewport,"CelShading" ); //Ogre::CompositorManager::getSingleton().setCompositorEnabled(mCamera->getViewport(), "CelShading", true); }