void mitk::PlaneGeometryDataMapper2D::CreateVtkCrosshair(mitk::BaseRenderer *renderer) { bool visible = true; LocalStorage* ls = m_LSH.GetLocalStorage(renderer); ls->m_CrosshairActor->SetVisibility(0); ls->m_ArrowActor->SetVisibility(0); ls->m_CrosshairHelperLineActor->SetVisibility(0); GetDataNode()->GetVisibility(visible, renderer, "visible"); if(!visible) { return; } PlaneGeometryData::Pointer input = const_cast< PlaneGeometryData * >(this->GetInput()); mitk::DataNode* geometryDataNode = renderer->GetCurrentWorldPlaneGeometryNode(); const PlaneGeometryData* rendererWorldPlaneGeometryData = dynamic_cast< PlaneGeometryData * >(geometryDataNode->GetData()); // intersecting with ourself? if ( input.IsNull() || input.GetPointer() == rendererWorldPlaneGeometryData) { return; //nothing to do in this case } const PlaneGeometry *inputPlaneGeometry = dynamic_cast< const PlaneGeometry * >( input->GetPlaneGeometry() ); const PlaneGeometry* worldPlaneGeometry = dynamic_cast< const PlaneGeometry* >( rendererWorldPlaneGeometryData->GetPlaneGeometry() ); if ( worldPlaneGeometry && dynamic_cast<const AbstractTransformGeometry*>(worldPlaneGeometry)==NULL && inputPlaneGeometry && dynamic_cast<const AbstractTransformGeometry*>(input->GetPlaneGeometry() )==NULL && inputPlaneGeometry->GetReferenceGeometry() ) { const BaseGeometry *referenceGeometry = inputPlaneGeometry->GetReferenceGeometry(); // calculate intersection of the plane data with the border of the // world geometry rectangle Point3D point1, point2; Line3D crossLine; // Calculate the intersection line of the input plane with the world plane if ( worldPlaneGeometry->IntersectionLine( inputPlaneGeometry, crossLine ) ) { Point3D boundingBoxMin, boundingBoxMax; boundingBoxMin = referenceGeometry->GetCornerPoint(0); boundingBoxMax = referenceGeometry->GetCornerPoint(7); Point3D indexLinePoint; Vector3D indexLineDirection; referenceGeometry->WorldToIndex(crossLine.GetPoint(),indexLinePoint); referenceGeometry->WorldToIndex(crossLine.GetDirection(),indexLineDirection); referenceGeometry->WorldToIndex(boundingBoxMin,boundingBoxMin); referenceGeometry->WorldToIndex(boundingBoxMax,boundingBoxMax); // Then, clip this line with the (transformed) bounding box of the // reference geometry. Line3D::BoxLineIntersection( boundingBoxMin[0], boundingBoxMin[1], boundingBoxMin[2], boundingBoxMax[0], boundingBoxMax[1], boundingBoxMax[2], indexLinePoint, indexLineDirection, point1, point2 ); referenceGeometry->IndexToWorld(point1,point1); referenceGeometry->IndexToWorld(point2,point2); crossLine.SetPoints(point1,point2); vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New(); vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New(); vtkSmartPointer<vtkPolyData> linesPolyData = vtkSmartPointer<vtkPolyData>::New(); // Now iterate through all other lines displayed in this window and // calculate the positions of intersection with the line to be // rendered; these positions will be stored in lineParams to form a // gap afterwards. NodesVectorType::iterator otherPlanesIt = m_OtherPlaneGeometries.begin(); NodesVectorType::iterator otherPlanesEnd = m_OtherPlaneGeometries.end(); std::vector<Point3D> intersections; intersections.push_back(point1); otherPlanesIt = m_OtherPlaneGeometries.begin(); int gapsize = 32; this->GetDataNode()->GetPropertyValue( "Crosshair.Gap Size",gapsize, NULL ); ScalarType lineLength = point1.EuclideanDistanceTo(point2); DisplayGeometry *displayGeometry = renderer->GetDisplayGeometry(); ScalarType gapinmm = gapsize * displayGeometry->GetScaleFactorMMPerDisplayUnit(); float gapSizeParam = gapinmm / lineLength; while ( otherPlanesIt != otherPlanesEnd ) { PlaneGeometry *otherPlane = static_cast< PlaneGeometry * >( static_cast< PlaneGeometryData * >((*otherPlanesIt)->GetData() )->GetPlaneGeometry() ); if (otherPlane != inputPlaneGeometry && otherPlane != worldPlaneGeometry) { Point3D planeIntersection; otherPlane->IntersectionPoint(crossLine,planeIntersection); ScalarType sectionLength = point1.EuclideanDistanceTo(planeIntersection); ScalarType lineValue = sectionLength/lineLength; if(lineValue-gapSizeParam > 0.0) intersections.push_back(crossLine.GetPoint(lineValue-gapSizeParam)); else intersections.pop_back(); if(lineValue+gapSizeParam < 1.0) intersections.push_back(crossLine.GetPoint(lineValue+gapSizeParam)); } ++otherPlanesIt; } if(intersections.size()%2 == 1) intersections.push_back(point2); if(intersections.empty()) { this->DrawLine(point1,point2,lines,points); } else for(unsigned int i = 0 ; i< intersections.size()-1 ; i+=2) { this->DrawLine(intersections[i],intersections[i+1],lines,points); } // Add the points to the dataset linesPolyData->SetPoints(points); // Add the lines to the dataset linesPolyData->SetLines(lines); Vector3D orthogonalVector; orthogonalVector = inputPlaneGeometry->GetNormal(); worldPlaneGeometry->Project(orthogonalVector,orthogonalVector); orthogonalVector.Normalize(); // Visualize ls->m_Mapper->SetInputData(linesPolyData); ls->m_CrosshairActor->SetMapper(ls->m_Mapper); // Determine if we should draw the area covered by the thick slicing, default is false. // This will also show the area of slices that do not have thick slice mode enabled bool showAreaOfThickSlicing = false; GetDataNode()->GetBoolProperty( "reslice.thickslices.showarea", showAreaOfThickSlicing ); // determine the pixelSpacing in that direction double thickSliceDistance = SlicedGeometry3D::CalculateSpacing( referenceGeometry->GetSpacing(), orthogonalVector ); IntProperty *intProperty=0; if( GetDataNode()->GetProperty( intProperty, "reslice.thickslices.num" ) && intProperty ) thickSliceDistance *= intProperty->GetValue()+0.5; else showAreaOfThickSlicing = false; // not the nicest place to do it, but we have the width of the visible bloc in MM here // so we store it in this fancy property GetDataNode()->SetFloatProperty( "reslice.thickslices.sizeinmm", thickSliceDistance*2 ); ls->m_CrosshairActor->SetVisibility(1); vtkSmartPointer<vtkPolyData> arrowPolyData = vtkSmartPointer<vtkPolyData>::New(); ls->m_Arrowmapper->SetInputData(arrowPolyData); if(this->m_RenderOrientationArrows) { ScalarType triangleSizeMM = 7.0 * displayGeometry->GetScaleFactorMMPerDisplayUnit(); vtkSmartPointer<vtkCellArray> triangles = vtkSmartPointer<vtkCellArray>::New(); vtkSmartPointer<vtkPoints> triPoints = vtkSmartPointer<vtkPoints>::New(); DrawOrientationArrow(triangles,triPoints,triangleSizeMM,orthogonalVector,point1,point2); DrawOrientationArrow(triangles,triPoints,triangleSizeMM,orthogonalVector,point2,point1); arrowPolyData->SetPoints(triPoints); arrowPolyData->SetPolys(triangles); ls->m_ArrowActor->SetVisibility(1); } // Visualize vtkSmartPointer<vtkPolyData> helperlinesPolyData = vtkSmartPointer<vtkPolyData>::New(); ls->m_HelperLinesmapper->SetInputData(helperlinesPolyData); if ( showAreaOfThickSlicing ) { vtkSmartPointer<vtkCellArray> helperlines = vtkSmartPointer<vtkCellArray>::New(); // vectorToHelperLine defines how to reach the helperLine from the mainLine // got the right direction, so we multiply the width Vector3D vecToHelperLine = orthogonalVector * thickSliceDistance; this->DrawLine(point1 - vecToHelperLine, point2 - vecToHelperLine,helperlines,points); this->DrawLine(point1 + vecToHelperLine, point2 + vecToHelperLine,helperlines,points); // Add the points to the dataset helperlinesPolyData->SetPoints(points); // Add the lines to the dataset helperlinesPolyData->SetLines(helperlines); ls->m_CrosshairActor->GetProperty()->SetLineStipplePattern(0xf0f0); ls->m_CrosshairActor->GetProperty()->SetLineStippleRepeatFactor(1); ls->m_CrosshairHelperLineActor->SetVisibility(1); } } } }
void PlaneGeometryDataVtkMapper3D::GenerateDataForRenderer(BaseRenderer* renderer) { SetVtkMapperImmediateModeRendering(m_EdgeMapper); SetVtkMapperImmediateModeRendering(m_BackgroundMapper); // Remove all actors from the assembly, and re-initialize it with the // edge actor m_ImageAssembly->GetParts()->RemoveAllItems(); bool visible = true; GetDataNode()->GetVisibility(visible, renderer, "visible"); if ( !visible ) { // visibility has explicitly to be set in the single actors // due to problems when using cell picking: // even if the assembly is invisible, the renderer contains // references to the assemblies parts. During picking the // visibility of each part is checked, and not only for the // whole assembly. m_ImageAssembly->VisibilityOff(); m_EdgeActor->VisibilityOff(); return; } // visibility has explicitly to be set in the single actors // due to problems when using cell picking: // even if the assembly is invisible, the renderer contains // references to the assemblies parts. During picking the // visibility of each part is checked, and not only for the // whole assembly. m_ImageAssembly->VisibilityOn(); bool drawEdges = true; this->GetDataNode()->GetBoolProperty("draw edges", drawEdges, renderer); m_EdgeActor->SetVisibility(drawEdges); PlaneGeometryData::Pointer input = const_cast< PlaneGeometryData * >(this->GetInput()); if (input.IsNotNull() && (input->GetPlaneGeometry() != NULL)) { SmartPointerProperty::Pointer surfacecreatorprop; surfacecreatorprop = dynamic_cast< SmartPointerProperty * >(GetDataNode()->GetProperty("surfacegeometry", renderer)); if ( (surfacecreatorprop.IsNull()) || (surfacecreatorprop->GetSmartPointer().IsNull()) || ((m_SurfaceCreator = dynamic_cast<PlaneGeometryDataToSurfaceFilter*> (surfacecreatorprop->GetSmartPointer().GetPointer())).IsNull() ) ) { m_SurfaceCreator->PlaceByGeometryOn(); surfacecreatorprop = SmartPointerProperty::New( m_SurfaceCreator ); GetDataNode()->SetProperty("surfacegeometry", surfacecreatorprop); } m_SurfaceCreator->SetInput(input); int res; if (GetDataNode()->GetIntProperty("xresolution", res, renderer)) { m_SurfaceCreator->SetXResolution(res); } if (GetDataNode()->GetIntProperty("yresolution", res, renderer)) { m_SurfaceCreator->SetYResolution(res); } double tubeRadius = 1.0; // Radius of tubular edge surrounding plane // Clip the PlaneGeometry with the reference geometry bounds (if available) if ( input->GetPlaneGeometry()->HasReferenceGeometry() ) { BaseGeometry *referenceGeometry = input->GetPlaneGeometry()->GetReferenceGeometry(); BoundingBox::PointType boundingBoxMin, boundingBoxMax; boundingBoxMin = referenceGeometry->GetBoundingBox()->GetMinimum(); boundingBoxMax = referenceGeometry->GetBoundingBox()->GetMaximum(); if ( referenceGeometry->GetImageGeometry() ) { for ( unsigned int i = 0; i < 3; ++i ) { boundingBoxMin[i] -= 0.5; boundingBoxMax[i] -= 0.5; } } m_SurfaceCreatorPointsContainer->CreateElementAt( 0 ) = boundingBoxMin; m_SurfaceCreatorPointsContainer->CreateElementAt( 1 ) = boundingBoxMax; m_SurfaceCreatorBoundingBox->ComputeBoundingBox(); m_SurfaceCreator->SetBoundingBox( m_SurfaceCreatorBoundingBox ); tubeRadius = referenceGeometry->GetDiagonalLength() / 450.0; } // If no reference geometry is available, clip with the current global // bounds else if (m_DataStorage.IsNotNull()) { m_SurfaceCreator->SetBoundingBox(m_DataStorage->ComputeVisibleBoundingBox(NULL, "includeInBoundingBox")); tubeRadius = sqrt( m_SurfaceCreator->GetBoundingBox()->GetDiagonalLength2() ) / 450.0; } // Calculate the surface of the PlaneGeometry m_SurfaceCreator->Update(); Surface *surface = m_SurfaceCreator->GetOutput(); // Check if there's something to display, otherwise return if ( (surface->GetVtkPolyData() == 0 ) || (surface->GetVtkPolyData()->GetNumberOfCells() == 0) ) { m_ImageAssembly->VisibilityOff(); return; } // add a graphical representation of the surface normals if requested DataNode* node = this->GetDataNode(); bool displayNormals = false; bool colorTwoSides = false; bool invertNormals = false; node->GetBoolProperty("draw normals 3D", displayNormals, renderer); node->GetBoolProperty("color two sides", colorTwoSides, renderer); node->GetBoolProperty("invert normals", invertNormals, renderer); //if we want to draw the display normals or render two sides we have to get the colors if( displayNormals || colorTwoSides ) { //get colors float frontColor[3] = { 0.0, 0.0, 1.0 }; node->GetColor( frontColor, renderer, "front color" ); float backColor[3] = { 1.0, 0.0, 0.0 }; node->GetColor( backColor, renderer, "back color" ); if ( displayNormals ) { m_NormalsTransformer->SetInputData( surface->GetVtkPolyData() ); m_NormalsTransformer->SetTransform(node->GetVtkTransform(this->GetTimestep()) ); m_FrontHedgeHog->SetInputConnection(m_NormalsTransformer->GetOutputPort() ); m_FrontHedgeHog->SetVectorModeToUseNormal(); m_FrontHedgeHog->SetScaleFactor( invertNormals ? 1.0 : -1.0 ); m_FrontHedgeHog->Update(); m_FrontNormalsActor->GetProperty()->SetColor( frontColor[0], frontColor[1], frontColor[2] ); m_BackHedgeHog->SetInputConnection( m_NormalsTransformer->GetOutputPort() ); m_BackHedgeHog->SetVectorModeToUseNormal(); m_BackHedgeHog->SetScaleFactor( invertNormals ? -1.0 : 1.0 ); m_BackHedgeHog->Update(); m_BackNormalsActor->GetProperty()->SetColor( backColor[0], backColor[1], backColor[2] ); //if there is no actor added yet, add one if ( !m_NormalsActorAdded ) { m_Prop3DAssembly->AddPart( m_FrontNormalsActor ); m_Prop3DAssembly->AddPart( m_BackNormalsActor ); m_NormalsActorAdded = true; } } //if we don't want to display normals AND there is an actor added remove the actor else if ( m_NormalsActorAdded ) { m_Prop3DAssembly->RemovePart( m_FrontNormalsActor ); m_Prop3DAssembly->RemovePart( m_BackNormalsActor ); m_NormalsActorAdded = false; } if ( colorTwoSides ) { if ( !invertNormals ) { m_BackgroundActor->GetProperty()->SetColor( backColor[0], backColor[1], backColor[2] ); m_BackgroundActor->GetBackfaceProperty()->SetColor( frontColor[0], frontColor[1], frontColor[2] ); } else { m_BackgroundActor->GetProperty()->SetColor( frontColor[0], frontColor[1], frontColor[2] ); m_BackgroundActor->GetBackfaceProperty()->SetColor( backColor[0], backColor[1], backColor[2] ); } } } // Add black background for all images (which may be transparent) m_BackgroundMapper->SetInputData( surface->GetVtkPolyData() ); m_ImageAssembly->AddPart( m_BackgroundActor ); LayerSortedActorList layerSortedActors; // Traverse the data tree to find nodes resliced by ImageMapperGL2D //use a predicate to get all data nodes which are "images" or inherit from mitk::Image mitk::TNodePredicateDataType< mitk::Image >::Pointer predicateAllImages = mitk::TNodePredicateDataType< mitk::Image >::New(); mitk::DataStorage::SetOfObjects::ConstPointer all = m_DataStorage->GetSubset(predicateAllImages); //process all found images for (mitk::DataStorage::SetOfObjects::ConstIterator it = all->Begin(); it != all->End(); ++it) { DataNode *node = it->Value(); if (node != NULL) this->ProcessNode(node, renderer, surface, layerSortedActors); } // Add all image actors to the assembly, sorted according to // layer property LayerSortedActorList::iterator actorIt; for ( actorIt = layerSortedActors.begin(); actorIt != layerSortedActors.end(); ++actorIt ) { m_ImageAssembly->AddPart( actorIt->second ); } // Configurate the tube-shaped frame: size according to the surface // bounds, color as specified in the plane's properties vtkPolyData *surfacePolyData = surface->GetVtkPolyData(); m_Cleaner->SetInputData(surfacePolyData); m_EdgeTransformer->SetTransform(this->GetDataNode()->GetVtkTransform(this->GetTimestep()) ); // Adjust the radius according to extent m_EdgeTuber->SetRadius( tubeRadius ); // Get the plane's color and set the tube properties accordingly ColorProperty::Pointer colorProperty; colorProperty = dynamic_cast<ColorProperty*>(this->GetDataNode()->GetProperty( "color" )); if ( colorProperty.IsNotNull() ) { const Color& color = colorProperty->GetColor(); m_EdgeActor->GetProperty()->SetColor(color.GetRed(), color.GetGreen(), color.GetBlue()); } else { m_EdgeActor->GetProperty()->SetColor( 1.0, 1.0, 1.0 ); } m_ImageAssembly->SetUserTransform(this->GetDataNode()->GetVtkTransform(this->GetTimestep()) ); } VtkRepresentationProperty* representationProperty; this->GetDataNode()->GetProperty(representationProperty, "material.representation", renderer); if ( representationProperty != NULL ) m_BackgroundActor->GetProperty()->SetRepresentation( representationProperty->GetVtkRepresentation() ); }
void mitk::PlaneGeometryDataMapper2D::CreateVtkCrosshair(mitk::BaseRenderer *renderer) { bool visible = true; LocalStorage* ls = m_LSH.GetLocalStorage(renderer); ls->m_CrosshairActor->SetVisibility(0); ls->m_ArrowActor->SetVisibility(0); ls->m_CrosshairHelperLineActor->SetVisibility(0); GetDataNode()->GetVisibility(visible, renderer, "visible"); if(!visible) { return; } PlaneGeometryData::Pointer input = const_cast< PlaneGeometryData * >(this->GetInput()); mitk::DataNode* geometryDataNode = renderer->GetCurrentWorldPlaneGeometryNode(); const PlaneGeometryData* rendererWorldPlaneGeometryData = dynamic_cast< PlaneGeometryData * >(geometryDataNode->GetData()); // intersecting with ourself? if ( input.IsNull() || input.GetPointer() == rendererWorldPlaneGeometryData) { return; //nothing to do in this case } const PlaneGeometry *inputPlaneGeometry = dynamic_cast< const PlaneGeometry * >( input->GetPlaneGeometry() ); const PlaneGeometry* worldPlaneGeometry = dynamic_cast< const PlaneGeometry* >( rendererWorldPlaneGeometryData->GetPlaneGeometry() ); if ( worldPlaneGeometry && dynamic_cast<const AbstractTransformGeometry*>(worldPlaneGeometry)==NULL && inputPlaneGeometry && dynamic_cast<const AbstractTransformGeometry*>(input->GetPlaneGeometry() )==NULL) { const BaseGeometry *referenceGeometry = inputPlaneGeometry->GetReferenceGeometry(); // calculate intersection of the plane data with the border of the // world geometry rectangle Point3D point1, point2; Line3D crossLine; // Calculate the intersection line of the input plane with the world plane if ( worldPlaneGeometry->IntersectionLine( inputPlaneGeometry, crossLine ) ) { bool hasIntersection = referenceGeometry ? CutCrossLineWithReferenceGeometry(referenceGeometry, crossLine) : CutCrossLineWithPlaneGeometry(inputPlaneGeometry, crossLine); if (!hasIntersection) { return; } point1 = crossLine.GetPoint1(); point2 = crossLine.GetPoint2(); vtkSmartPointer<vtkCellArray> lines = vtkSmartPointer<vtkCellArray>::New(); vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New(); vtkSmartPointer<vtkPolyData> linesPolyData = vtkSmartPointer<vtkPolyData>::New(); // Now iterate through all other lines displayed in this window and // calculate the positions of intersection with the line to be // rendered; these positions will be stored in lineParams to form a // gap afterwards. NodesVectorType::iterator otherPlanesIt = m_OtherPlaneGeometries.begin(); NodesVectorType::iterator otherPlanesEnd = m_OtherPlaneGeometries.end(); otherPlanesIt = m_OtherPlaneGeometries.begin(); int gapSize = 32; this->GetDataNode()->GetPropertyValue("Crosshair.Gap Size", gapSize, NULL); auto intervals = IntervalSet<double>( SimpleInterval<double>(0, 1)); ScalarType lineLength = point1.EuclideanDistanceTo(point2); ScalarType gapInMM = gapSize * renderer->GetScaleFactorMMPerDisplayUnit(); float gapSizeParam = gapInMM / lineLength; if( gapSize != 0 ) { while ( otherPlanesIt != otherPlanesEnd ) { bool ignorePlane = false; (*otherPlanesIt)->GetPropertyValue("Crosshair.Ignore", ignorePlane); if (ignorePlane) { ++otherPlanesIt; continue; } PlaneGeometry *otherPlaneGeometry = static_cast< PlaneGeometry * >( static_cast< PlaneGeometryData * >((*otherPlanesIt)->GetData() )->GetPlaneGeometry() ); if (otherPlaneGeometry != inputPlaneGeometry && otherPlaneGeometry != worldPlaneGeometry) { double intersectionParam; if (otherPlaneGeometry->IntersectionPointParam(crossLine, intersectionParam) && intersectionParam > 0 && intersectionParam < 1) { Point3D point = crossLine.GetPoint() + intersectionParam * crossLine.GetDirection(); bool intersectionPointInsideOtherPlane = otherPlaneGeometry->HasReferenceGeometry() ? TestPointInReferenceGeometry(otherPlaneGeometry->GetReferenceGeometry(), point) : TestPointInPlaneGeometry(otherPlaneGeometry, point); if (intersectionPointInsideOtherPlane) { intervals -= SimpleInterval<double>(intersectionParam - gapSizeParam, intersectionParam + gapSizeParam); } } } ++otherPlanesIt; } } for (const auto& interval : intervals.getIntervals()) { this->DrawLine(crossLine.GetPoint(interval.GetLowerBoundary()), crossLine.GetPoint(interval.GetUpperBoundary()), lines, points); } // Add the points to the dataset linesPolyData->SetPoints(points); // Add the lines to the dataset linesPolyData->SetLines(lines); Vector3D orthogonalVector; orthogonalVector = inputPlaneGeometry->GetNormal(); worldPlaneGeometry->Project(orthogonalVector,orthogonalVector); orthogonalVector.Normalize(); // Visualize ls->m_Mapper->SetInputData(linesPolyData); ls->m_CrosshairActor->SetMapper(ls->m_Mapper); // Determine if we should draw the area covered by the thick slicing, default is false. // This will also show the area of slices that do not have thick slice mode enabled bool showAreaOfThickSlicing = false; GetDataNode()->GetBoolProperty( "reslice.thickslices.showarea", showAreaOfThickSlicing ); // determine the pixelSpacing in that direction double thickSliceDistance = SlicedGeometry3D::CalculateSpacing( referenceGeometry ? referenceGeometry->GetSpacing() : inputPlaneGeometry->GetSpacing(), orthogonalVector); IntProperty *intProperty=0; if( GetDataNode()->GetProperty( intProperty, "reslice.thickslices.num" ) && intProperty ) thickSliceDistance *= intProperty->GetValue()+0.5; else showAreaOfThickSlicing = false; // not the nicest place to do it, but we have the width of the visible bloc in MM here // so we store it in this fancy property GetDataNode()->SetFloatProperty( "reslice.thickslices.sizeinmm", thickSliceDistance*2 ); ls->m_CrosshairActor->SetVisibility(1); vtkSmartPointer<vtkPolyData> arrowPolyData = vtkSmartPointer<vtkPolyData>::New(); ls->m_Arrowmapper->SetInputData(arrowPolyData); if(this->m_RenderOrientationArrows) { ScalarType triangleSizeMM = 7.0 * renderer->GetScaleFactorMMPerDisplayUnit(); vtkSmartPointer<vtkCellArray> triangles = vtkSmartPointer<vtkCellArray>::New(); vtkSmartPointer<vtkPoints> triPoints = vtkSmartPointer<vtkPoints>::New(); DrawOrientationArrow(triangles,triPoints,triangleSizeMM,orthogonalVector,point1,point2); DrawOrientationArrow(triangles,triPoints,triangleSizeMM,orthogonalVector,point2,point1); arrowPolyData->SetPoints(triPoints); arrowPolyData->SetPolys(triangles); ls->m_ArrowActor->SetVisibility(1); } // Visualize vtkSmartPointer<vtkPolyData> helperlinesPolyData = vtkSmartPointer<vtkPolyData>::New(); ls->m_HelperLinesmapper->SetInputData(helperlinesPolyData); if ( showAreaOfThickSlicing ) { vtkSmartPointer<vtkCellArray> helperlines = vtkSmartPointer<vtkCellArray>::New(); // vectorToHelperLine defines how to reach the helperLine from the mainLine // got the right direction, so we multiply the width Vector3D vecToHelperLine = orthogonalVector * thickSliceDistance; this->DrawLine(point1 - vecToHelperLine, point2 - vecToHelperLine,helperlines,points); this->DrawLine(point1 + vecToHelperLine, point2 + vecToHelperLine,helperlines,points); // Add the points to the dataset helperlinesPolyData->SetPoints(points); // Add the lines to the dataset helperlinesPolyData->SetLines(helperlines); ls->m_CrosshairActor->GetProperty()->SetLineStipplePattern(0xf0f0); ls->m_CrosshairActor->GetProperty()->SetLineStippleRepeatFactor(1); ls->m_CrosshairHelperLineActor->SetVisibility(1); } } } }