bool ChompPlanner::solve(const planning_scene::PlanningSceneConstPtr& planning_scene, const moveit_msgs::GetMotionPlan::Request &req, const chomp::ChompParameters& params, moveit_msgs::GetMotionPlan::Response &res) const { ros::WallTime start_time = ros::WallTime::now(); ChompTrajectory trajectory(planning_scene->getRobotModel(), 3.0, .03, req.motion_plan_request.group_name); jointStateToArray(planning_scene->getRobotModel(), req.motion_plan_request.start_state.joint_state, req.motion_plan_request.group_name, trajectory.getTrajectoryPoint(0)); int goal_index = trajectory.getNumPoints()- 1; trajectory.getTrajectoryPoint(goal_index) = trajectory.getTrajectoryPoint(0); sensor_msgs::JointState js; for(unsigned int i = 0; i < req.motion_plan_request.goal_constraints[0].joint_constraints.size(); i++) { js.name.push_back(req.motion_plan_request.goal_constraints[0].joint_constraints[i].joint_name); js.position.push_back(req.motion_plan_request.goal_constraints[0].joint_constraints[i].position); ROS_INFO_STREAM("Setting joint " << req.motion_plan_request.goal_constraints[0].joint_constraints[i].joint_name << " to position " << req.motion_plan_request.goal_constraints[0].joint_constraints[i].position); } jointStateToArray(planning_scene->getRobotModel(), js, req.motion_plan_request.group_name, trajectory.getTrajectoryPoint(goal_index)); const planning_models::RobotModel::JointModelGroup* model_group = planning_scene->getRobotModel()->getJointModelGroup(req.motion_plan_request.group_name); // fix the goal to move the shortest angular distance for wrap-around joints: for (size_t i = 0; i < model_group->getJointModels().size(); i++) { const planning_models::RobotModel::JointModel* model = model_group->getJointModels()[i]; const planning_models::RobotModel::RevoluteJointModel* revolute_joint = dynamic_cast<const planning_models::RobotModel::RevoluteJointModel*>(model); if (revolute_joint != NULL) { if(revolute_joint->isContinuous()) { double start = (trajectory)(0, i); double end = (trajectory)(goal_index, i); ROS_INFO_STREAM("Start is " << start << " end " << end << " short " << shortestAngularDistance(start, end)); (trajectory)(goal_index, i) = start + shortestAngularDistance(start, end); } } } // fill in an initial quintic spline trajectory trajectory.fillInMinJerk(); // optimize! planning_models::RobotState *start_state(planning_scene->getCurrentState()); planning_models::robotStateMsgToRobotState(*planning_scene->getTransforms(), req.motion_plan_request.start_state, start_state); ros::WallTime create_time = ros::WallTime::now(); ChompOptimizer optimizer(&trajectory, planning_scene, req.motion_plan_request.group_name, ¶ms, start_state); if(!optimizer.isInitialized()) { ROS_WARN_STREAM("Could not initialize optimizer"); res.error_code.val = moveit_msgs::MoveItErrorCodes::PLANNING_FAILED; return false; } ROS_INFO("Optimization took %f sec to create", (ros::WallTime::now() - create_time).toSec()); ROS_INFO("Optimization took %f sec to create", (ros::WallTime::now() - create_time).toSec()); optimizer.optimize(); ROS_INFO("Optimization actually took %f sec to run", (ros::WallTime::now() - create_time).toSec()); create_time = ros::WallTime::now(); // assume that the trajectory is now optimized, fill in the output structure: ROS_INFO("Output trajectory has %d joints", trajectory.getNumJoints()); // fill in joint names: res.trajectory.joint_trajectory.joint_names.resize(trajectory.getNumJoints()); for (size_t i = 0; i < model_group->getJointModels().size(); i++) { res.trajectory.joint_trajectory.joint_names[i] = model_group->getJointModels()[i]->getName(); } res.trajectory.joint_trajectory.header = req.motion_plan_request.start_state.joint_state.header; // @TODO this is probably a hack // fill in the entire trajectory res.trajectory.joint_trajectory.points.resize(trajectory.getNumPoints()); for (int i=0; i < trajectory.getNumPoints(); i++) { res.trajectory.joint_trajectory.points[i].positions.resize(trajectory.getNumJoints()); for (size_t j=0; j < res.trajectory.joint_trajectory.points[i].positions.size(); j++) { res.trajectory.joint_trajectory.points[i].positions[j] = trajectory.getTrajectoryPoint(i)(j); if(i == trajectory.getNumPoints()-1) { ROS_INFO_STREAM("Joint " << j << " " << res.trajectory.joint_trajectory.points[i].positions[j]); } } // Setting invalid timestamps. // Further filtering is required to set valid timestamps accounting for velocity and acceleration constraints. res.trajectory.joint_trajectory.points[i].time_from_start = ros::Duration(0.0); } ROS_INFO("Bottom took %f sec to create", (ros::WallTime::now() - create_time).toSec()); ROS_INFO("Serviced planning request in %f wall-seconds, trajectory duration is %f", (ros::WallTime::now() - start_time).toSec(), res.trajectory.joint_trajectory.points[goal_index].time_from_start.toSec()); res.error_code.val = moveit_msgs::MoveItErrorCodes::SUCCESS; res.planning_time = ros::Duration((ros::WallTime::now() - start_time).toSec()); return true; }
constraint_samplers::ConstraintSamplerPtr constraint_samplers::ConstraintSamplerManager::selectDefaultSampler(const planning_scene::PlanningSceneConstPtr &scene, const std::string &group_name, const moveit_msgs::Constraints &constr) { const robot_model::JointModelGroup *jmg = scene->getRobotModel()->getJointModelGroup(group_name); if (!jmg) return constraint_samplers::ConstraintSamplerPtr(); std::stringstream ss; ss << constr; logDebug("Attempting to construct constrained state sampler for group '%s', using constraints:\n%s.\n", jmg->getName().c_str(), ss.str().c_str()); ConstraintSamplerPtr joint_sampler; // if there are joint constraints, we could possibly get a sampler from those if (!constr.joint_constraints.empty()) { logDebug("There are joint constraints specified. Attempting to construct a JointConstraintSampler for group '%s'", jmg->getName().c_str()); std::map<std::string, bool> joint_coverage; for(std::size_t i = 0; i < jmg->getVariableNames().size() ; ++i) joint_coverage[jmg->getVariableNames()[i]] = false; // construct the constraints std::vector<kinematic_constraints::JointConstraint> jc; for (std::size_t i = 0 ; i < constr.joint_constraints.size() ; ++i) { kinematic_constraints::JointConstraint j(scene->getRobotModel(), scene->getTransforms()); if (j.configure(constr.joint_constraints[i])) { if (joint_coverage.find(j.getJointVariableName()) != joint_coverage.end()) { joint_coverage[j.getJointVariableName()] = true; jc.push_back(j); } } } bool full_coverage = true; for (std::map<std::string, bool>::iterator it = joint_coverage.begin(); it != joint_coverage.end(); ++it) if (!it->second) { full_coverage = false; break; } // if we have constrained every joint, then we just use a sampler using these constraints if (full_coverage) { boost::shared_ptr<JointConstraintSampler> sampler(new JointConstraintSampler(scene, jmg->getName())); if (sampler->configure(jc)) { logDebug("Allocated a sampler satisfying joint constraints for group '%s'", jmg->getName().c_str()); return sampler; } } else // if a smaller set of joints has been specified, keep the constraint sampler around, but use it only if no IK sampler has been specified. if (!jc.empty()) { boost::shared_ptr<JointConstraintSampler> sampler(new JointConstraintSampler(scene, jmg->getName())); if (sampler->configure(jc)) { logDebug("Temporary sampler satisfying joint constraints for group '%s' allocated. Looking for different types of constraints before returning though.", jmg->getName().c_str()); joint_sampler = sampler; } } } std::vector<ConstraintSamplerPtr> samplers; if (joint_sampler) samplers.push_back(joint_sampler); // read the ik allocators, if any robot_model::SolverAllocatorFn ik_alloc = jmg->getSolverAllocators().first; std::map<const robot_model::JointModelGroup*, robot_model::SolverAllocatorFn> ik_subgroup_alloc = jmg->getSolverAllocators().second; // if we have a means of computing complete states for the group using IK, then we try to see if any IK constraints should be used if (ik_alloc) { logDebug("There is an IK allocator for '%s'. Checking for corresponding position and/or orientation constraints", jmg->getName().c_str()); // keep track of which links we constrained std::map<std::string, boost::shared_ptr<IKConstraintSampler> > usedL; // if we have position and/or orientation constraints on links that we can perform IK for, // we will use a sampleable goal region that employs IK to sample goals; // if there are multiple constraints for the same link, we keep the one with the smallest // volume for sampling for (std::size_t p = 0 ; p < constr.position_constraints.size() ; ++p) for (std::size_t o = 0 ; o < constr.orientation_constraints.size() ; ++o) if (constr.position_constraints[p].link_name == constr.orientation_constraints[o].link_name) { boost::shared_ptr<kinematic_constraints::PositionConstraint> pc(new kinematic_constraints::PositionConstraint(scene->getRobotModel(), scene->getTransforms())); boost::shared_ptr<kinematic_constraints::OrientationConstraint> oc(new kinematic_constraints::OrientationConstraint(scene->getRobotModel(), scene->getTransforms())); if (pc->configure(constr.position_constraints[p]) && oc->configure(constr.orientation_constraints[o])) { boost::shared_ptr<IKConstraintSampler> iks(new IKConstraintSampler(scene, jmg->getName())); if(iks->configure(IKSamplingPose(pc, oc))) { bool use = true; if (usedL.find(constr.position_constraints[p].link_name) != usedL.end()) if (usedL[constr.position_constraints[p].link_name]->getSamplingVolume() < iks->getSamplingVolume()) use = false; if (use) { usedL[constr.position_constraints[p].link_name] = iks; logDebug("Allocated an IK-based sampler for group '%s' satisfying position and orientation constraints on link '%s'", jmg->getName().c_str(), constr.position_constraints[p].link_name.c_str()); } } } } // keep track of links constrained with a full pose std::map<std::string, boost::shared_ptr<IKConstraintSampler> > usedL_fullPose = usedL; for (std::size_t p = 0 ; p < constr.position_constraints.size() ; ++p) { // if we are constraining this link with a full pose, we do not attempt to constrain it with a position constraint only if (usedL_fullPose.find(constr.position_constraints[p].link_name) != usedL_fullPose.end()) continue; boost::shared_ptr<kinematic_constraints::PositionConstraint> pc(new kinematic_constraints::PositionConstraint(scene->getRobotModel(), scene->getTransforms())); if (pc->configure(constr.position_constraints[p])) { boost::shared_ptr<IKConstraintSampler> iks(new IKConstraintSampler(scene, jmg->getName())); if(iks->configure(IKSamplingPose(pc))) { bool use = true; if (usedL.find(constr.position_constraints[p].link_name) != usedL.end()) if (usedL[constr.position_constraints[p].link_name]->getSamplingVolume() < iks->getSamplingVolume()) use = false; if (use) { usedL[constr.position_constraints[p].link_name] = iks; logDebug("Allocated an IK-based sampler for group '%s' satisfying position constraints on link '%s'", jmg->getName().c_str(), constr.position_constraints[p].link_name.c_str()); } } } } for (std::size_t o = 0 ; o < constr.orientation_constraints.size() ; ++o) { // if we are constraining this link with a full pose, we do not attempt to constrain it with an orientation constraint only if (usedL_fullPose.find(constr.orientation_constraints[o].link_name) != usedL_fullPose.end()) continue; boost::shared_ptr<kinematic_constraints::OrientationConstraint> oc(new kinematic_constraints::OrientationConstraint(scene->getRobotModel(), scene->getTransforms())); if (oc->configure(constr.orientation_constraints[o])) { boost::shared_ptr<IKConstraintSampler> iks(new IKConstraintSampler(scene, jmg->getName())); if(iks->configure(IKSamplingPose(oc))) { bool use = true; if (usedL.find(constr.orientation_constraints[o].link_name) != usedL.end()) if (usedL[constr.orientation_constraints[o].link_name]->getSamplingVolume() < iks->getSamplingVolume()) use = false; if (use) { usedL[constr.orientation_constraints[o].link_name] = iks; logDebug("Allocated an IK-based sampler for group '%s' satisfying orientation constraints on link '%s'", jmg->getName().c_str(), constr.orientation_constraints[o].link_name.c_str()); } } } } if (usedL.size() == 1) { if (samplers.empty()) return usedL.begin()->second; else { samplers.push_back(usedL.begin()->second); return ConstraintSamplerPtr(new UnionConstraintSampler(scene, jmg->getName(), samplers)); } } else if (usedL.size() > 1) { logDebug("Too many IK-based samplers for group '%s'. Keeping the one with minimal sampling volume", jmg->getName().c_str()); // find the sampler with the smallest sampling volume; delete the rest boost::shared_ptr<IKConstraintSampler> iks = usedL.begin()->second; double msv = iks->getSamplingVolume(); for (std::map<std::string, boost::shared_ptr<IKConstraintSampler> >::const_iterator it = ++usedL.begin() ; it != usedL.end() ; ++it) { double v = it->second->getSamplingVolume(); if (v < msv) { iks = it->second; msv = v; } } if (samplers.empty()) { return iks; } else { samplers.push_back(iks); return ConstraintSamplerPtr(new UnionConstraintSampler(scene, jmg->getName(), samplers)); } } } // if we got to this point, we have not decided on a sampler. // we now check to see if we can use samplers from subgroups if (!ik_subgroup_alloc.empty()) { logDebug("There are IK allocators for subgroups of group '%s'. Checking for corresponding position and/or orientation constraints", jmg->getName().c_str()); bool some_sampler_valid = false; std::set<std::size_t> usedP, usedO; for (std::map<const robot_model::JointModelGroup*, robot_model::SolverAllocatorFn>::const_iterator it = ik_subgroup_alloc.begin() ; it != ik_subgroup_alloc.end() ; ++it) { // construct a sub-set of constraints that operate on the sub-group for which we have an IK allocator moveit_msgs::Constraints sub_constr; for (std::size_t p = 0 ; p < constr.position_constraints.size() ; ++p) if (it->first->hasLinkModel(constr.position_constraints[p].link_name)) if (usedP.find(p) == usedP.end()) { sub_constr.position_constraints.push_back(constr.position_constraints[p]); usedP.insert(p); } for (std::size_t o = 0 ; o < constr.orientation_constraints.size() ; ++o) if (it->first->hasLinkModel(constr.orientation_constraints[o].link_name)) if (usedO.find(o) == usedO.end()) { sub_constr.orientation_constraints.push_back(constr.orientation_constraints[o]); usedO.insert(o); } // if some matching constraints were found, construct the allocator if (!sub_constr.orientation_constraints.empty() || !sub_constr.position_constraints.empty()) { logDebug("Attempting to construct a sampler for the '%s' subgroup of '%s'", it->first->getName().c_str(), jmg->getName().c_str()); ConstraintSamplerPtr cs = selectDefaultSampler(scene, it->first->getName(), sub_constr); if (cs) { logDebug("Constructed a sampler for the joints corresponding to group '%s', but part of group '%s'", it->first->getName().c_str(), jmg->getName().c_str()); some_sampler_valid = true; samplers.push_back(cs); } } } if (some_sampler_valid) { logDebug("Constructing sampler for group '%s' as a union of %u samplers", jmg->getName().c_str(), (unsigned int)samplers.size()); return ConstraintSamplerPtr(new UnionConstraintSampler(scene, jmg->getName(), samplers)); } } //if we've gotten here, just return joint sampler if (joint_sampler) { logDebug("Allocated a sampler satisfying joint constraints for group '%s'", jmg->getName().c_str()); return joint_sampler; } logDebug("No constraints sampler allocated for group '%s'", jmg->getName().c_str()); return ConstraintSamplerPtr(); }
bool PlacePlan::plan(const planning_scene::PlanningSceneConstPtr &planning_scene, const moveit_msgs::PlaceGoal &goal) { double timeout = goal.allowed_planning_time; ros::WallTime endtime = ros::WallTime::now() + ros::WallDuration(timeout); std::string attached_object_name = goal.attached_object_name; const robot_model::JointModelGroup *jmg = NULL; const robot_model::JointModelGroup *eef = NULL; // if the group specified is actually an end-effector, we use it as such if (planning_scene->getRobotModel()->hasEndEffector(goal.group_name)) { eef = planning_scene->getRobotModel()->getEndEffector(goal.group_name); if (eef) { // if we correctly found the eef, then we try to find out what the planning group is const std::string &eef_parent = eef->getEndEffectorParentGroup().first; if (eef_parent.empty()) { ROS_ERROR_STREAM_NAMED("manipulation", "No parent group to plan in was identified based on end-effector '" << goal.group_name << "'. Please define a parent group in the SRDF."); error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_GROUP_NAME; return false; } else jmg = planning_scene->getRobotModel()->getJointModelGroup(eef_parent); } } else { // if a group name was specified, try to use it jmg = goal.group_name.empty() ? NULL : planning_scene->getRobotModel()->getJointModelGroup(goal.group_name); if (jmg) { // we also try to find the corresponding eef const std::vector<std::string> &eef_names = jmg->getAttachedEndEffectorNames(); if (eef_names.empty()) { ROS_ERROR_STREAM_NAMED("manipulation", "There are no end-effectors specified for group '" << goal.group_name << "'"); error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_GROUP_NAME; return false; } else // check to see if there is an end effector that has attached objects associaded, so we can complete the place for (std::size_t i = 0 ; i < eef_names.size() ; ++i) { std::vector<const robot_state::AttachedBody*> attached_bodies; const robot_model::JointModelGroup *eg = planning_scene->getRobotModel()->getEndEffector(eef_names[i]); if (eg) { // see if there are objects attached to links in the eef planning_scene->getCurrentState().getAttachedBodies(attached_bodies, eg); // is is often possible that the objects are attached to the same link that the eef itself is attached, // so we check for attached bodies there as well const robot_model::LinkModel *attached_link_model = planning_scene->getRobotModel()->getLinkModel(eg->getEndEffectorParentGroup().second); if (attached_link_model) { std::vector<const robot_state::AttachedBody*> attached_bodies2; planning_scene->getCurrentState().getAttachedBodies(attached_bodies2, attached_link_model); attached_bodies.insert(attached_bodies.end(), attached_bodies2.begin(), attached_bodies2.end()); } } // if this end effector has attached objects, we go on if (!attached_bodies.empty()) { // if the user specified the name of the attached object to place, we check that indeed // the group contains this attachd body if (!attached_object_name.empty()) { bool found = false; for (std::size_t j = 0 ; j < attached_bodies.size() ; ++j) if (attached_bodies[j]->getName() == attached_object_name) { found = true; break; } // if the attached body this group has is not the same as the one specified, // we cannot use this eef if (!found) continue; } // if we previoulsy have set the eef it means we have more options we could use, so things are ambiguous if (eef) { ROS_ERROR_STREAM_NAMED("manipulation", "There are multiple end-effectors for group '" << goal.group_name << "' that are currently holding objects. It is ambiguous which end-effector to use. Please specify it explicitly."); error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_GROUP_NAME; return false; } // set the end effector (this was initialized to NULL above) eef = planning_scene->getRobotModel()->getEndEffector(eef_names[i]); } } } } // if we know the attached object, but not the eef, we can try to identify that if (!attached_object_name.empty() && !eef) { const robot_state::AttachedBody *attached_body = planning_scene->getCurrentState().getAttachedBody(attached_object_name); if (attached_body) { // get the robot model link this attached body is associated to const robot_model::LinkModel *link = attached_body->getAttachedLink(); // check to see if there is a unique end effector containing the link const std::vector<const robot_model::JointModelGroup*> &eefs = planning_scene->getRobotModel()->getEndEffectors(); for (std::size_t i = 0 ; i < eefs.size() ; ++i) if (eefs[i]->hasLinkModel(link->getName())) { if (eef) { ROS_ERROR_STREAM_NAMED("manipulation", "There are multiple end-effectors that include the link '" << link->getName() << "' which is where the body '" << attached_object_name << "' is attached. It is unclear which end-effector to use."); error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_GROUP_NAME; return false; } eef = eefs[i]; } } // if the group is also unknown, but we just found out the eef if (!jmg && eef) { const std::string &eef_parent = eef->getEndEffectorParentGroup().first; if (eef_parent.empty()) { ROS_ERROR_STREAM_NAMED("manipulation", "No parent group to plan in was identified based on end-effector '" << goal.group_name << "'. Please define a parent group in the SRDF."); error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_GROUP_NAME; return false; } else jmg = planning_scene->getRobotModel()->getJointModelGroup(eef_parent); } } if (!jmg || !eef) { error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_GROUP_NAME; return false; } // try to infer attached body name if possible int loop_count = 0; while (attached_object_name.empty() && loop_count < 2) { // in the first try, look for objects attached to the eef, if the eef is known; // otherwise, look for attached bodies in the planning group itself std::vector<const robot_state::AttachedBody*> attached_bodies; planning_scene->getCurrentState().getAttachedBodies(attached_bodies, loop_count == 0 ? eef : jmg); loop_count++; if (attached_bodies.size() > 1) { ROS_ERROR_NAMED("manipulation", "Multiple attached bodies for group '%s' but no explicit attached object to place was specified", goal.group_name.c_str()); error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_OBJECT_NAME; return false; } else attached_object_name = attached_bodies[0]->getName(); } const robot_state::AttachedBody *attached_body = planning_scene->getCurrentState().getAttachedBody(attached_object_name); if (!attached_body) { ROS_ERROR_NAMED("manipulation", "There is no object to detach for place action"); error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_OBJECT_NAME; return false; } ros::WallTime start_time = ros::WallTime::now(); // construct common data for possible manipulation plans ManipulationPlanSharedDataPtr plan_data(new ManipulationPlanSharedData()); ManipulationPlanSharedDataConstPtr const_plan_data = plan_data; plan_data->planning_group_ = jmg; plan_data->end_effector_group_ = eef; plan_data->ik_link_ = planning_scene->getRobotModel()->getLinkModel(eef->getEndEffectorParentGroup().second); plan_data->timeout_ = endtime; plan_data->path_constraints_ = goal.path_constraints; plan_data->planner_id_ = goal.planner_id; plan_data->minimize_object_distance_ = false; plan_data->max_goal_sampling_attempts_ = std::max(2u, jmg->getDefaultIKAttempts()); moveit_msgs::AttachedCollisionObject &detach_object_msg = plan_data->diff_attached_object_; // construct the attached object message that will change the world to what it would become after a placement detach_object_msg.link_name = attached_body->getAttachedLinkName(); detach_object_msg.object.id = attached_object_name; detach_object_msg.object.operation = moveit_msgs::CollisionObject::REMOVE; collision_detection::AllowedCollisionMatrixPtr approach_place_acm(new collision_detection::AllowedCollisionMatrix(planning_scene->getAllowedCollisionMatrix())); // we are allowed to touch certain other objects with the gripper approach_place_acm->setEntry(eef->getLinkModelNames(), goal.allowed_touch_objects, true); // we are allowed to touch the target object slightly while retreating the end effector std::vector<std::string> touch_links(attached_body->getTouchLinks().begin(), attached_body->getTouchLinks().end()); approach_place_acm->setEntry(attached_object_name, touch_links, true); if (!goal.support_surface_name.empty()) { // we are allowed to have contact between the target object and the support surface before the place approach_place_acm->setEntry(goal.support_surface_name, attached_object_name, true); // optionally, it may be allowed to touch the support surface with the gripper if (goal.allow_gripper_support_collision) approach_place_acm->setEntry(goal.support_surface_name, eef->getLinkModelNames(), true); } // configure the manipulation pipeline pipeline_.reset(); ManipulationStagePtr stage1(new ReachableAndValidPoseFilter(planning_scene, approach_place_acm, pick_place_->getConstraintsSamplerManager())); ManipulationStagePtr stage2(new ApproachAndTranslateStage(planning_scene, approach_place_acm)); ManipulationStagePtr stage3(new PlanStage(planning_scene, pick_place_->getPlanningPipeline())); pipeline_.addStage(stage1).addStage(stage2).addStage(stage3); initialize(); pipeline_.start(); // add possible place locations for (std::size_t i = 0 ; i < goal.place_locations.size() ; ++i) { ManipulationPlanPtr p(new ManipulationPlan(const_plan_data)); const moveit_msgs::PlaceLocation &pl = goal.place_locations[i]; if (goal.place_eef) p->goal_pose_ = pl.place_pose; else // The goals are specified for the attached body // but we want to transform them into goals for the end-effector instead if (!transformToEndEffectorGoal(pl.place_pose, attached_body, p->goal_pose_)) { p->goal_pose_ = pl.place_pose; ROS_ERROR_NAMED("manipulation", "Unable to transform the desired pose of the object to the pose of the end-effector"); } p->approach_ = pl.pre_place_approach; p->retreat_ = pl.post_place_retreat; p->retreat_posture_ = pl.post_place_posture; p->id_ = i; if (p->retreat_posture_.joint_names.empty()) p->retreat_posture_ = attached_body->getDetachPosture(); pipeline_.push(p); } ROS_INFO_NAMED("manipulation", "Added %d place locations", (int) goal.place_locations.size()); // wait till we're done waitForPipeline(endtime); pipeline_.stop(); last_plan_time_ = (ros::WallTime::now() - start_time).toSec(); if (!getSuccessfulManipulationPlans().empty()) error_code_.val = moveit_msgs::MoveItErrorCodes::SUCCESS; else { if (last_plan_time_ > timeout) error_code_.val = moveit_msgs::MoveItErrorCodes::TIMED_OUT; else { error_code_.val = moveit_msgs::MoveItErrorCodes::PLANNING_FAILED; if (goal.place_locations.size() > 0) { ROS_WARN_NAMED("manipulation", "All supplied place locations failed. Retrying last location in verbose mode."); // everything failed. we now start the pipeline again in verbose mode for one grasp initialize(); pipeline_.setVerbose(true); pipeline_.start(); pipeline_.reprocessLastFailure(); waitForPipeline(ros::WallTime::now() + ros::WallDuration(1.0)); pipeline_.stop(); pipeline_.setVerbose(false); } } } ROS_INFO_NAMED("manipulation", "Place planning completed after %lf seconds", last_plan_time_); return error_code_.val == moveit_msgs::MoveItErrorCodes::SUCCESS; }
virtual bool adaptAndPlan(const PlannerFn &planner, const planning_scene::PlanningSceneConstPtr& planning_scene, const planning_interface::MotionPlanRequest &req, planning_interface::MotionPlanResponse &res, std::vector<std::size_t> &added_path_index) const { ROS_DEBUG("Running '%s'", getDescription().c_str()); // get the specified start state robot_state::RobotState start_state = planning_scene->getCurrentState(); robot_state::robotStateMsgToRobotState(*planning_scene->getTransforms(), req.start_state, start_state); const std::vector<robot_state::JointState*> &jstates = planning_scene->getRobotModel()->hasJointModelGroup(req.group_name) ? start_state.getJointStateGroup(req.group_name)->getJointStateVector() : start_state.getJointStateVector(); bool change_req = false; for (std::size_t i = 0 ; i < jstates.size() ; ++i) { // Check if we have a revolute, continuous joint. If we do, then we only need to make sure // it is within de model's declared bounds (usually -Pi, Pi), since the values wrap around. // It is possible that the encoder maintains values outside the range [-Pi, Pi], to inform // how many times the joint was wrapped. Because of this, we remember the offsets for continuous // joints, and we un-do them when the plan comes from the planner const robot_model::JointModel* jm = jstates[i]->getJointModel(); if (jm->getType() == robot_model::JointModel::REVOLUTE) { if (static_cast<const robot_model::RevoluteJointModel*>(jm)->isContinuous()) { double initial = jstates[i]->getVariableValues()[0]; jstates[i]->enforceBounds(); double after = jstates[i]->getVariableValues()[0]; if (fabs(initial - after) > std::numeric_limits<double>::epsilon()) change_req = true; } } else // Normalize yaw; no offset needs to be remembered if (jm->getType() == robot_model::JointModel::PLANAR) { double initial = jstates[i]->getVariableValues()[2]; if (static_cast<const robot_model::PlanarJointModel*>(jm)->normalizeRotation(jstates[i]->getVariableValues())) change_req = true; } else // Normalize quaternions if (jm->getType() == robot_model::JointModel::FLOATING) { if (static_cast<const robot_model::FloatingJointModel*>(jm)->normalizeRotation(jstates[i]->getVariableValues())) change_req = true; } } // pointer to a prefix state we could possibly add, if we detect we have to make changes robot_state::RobotStatePtr prefix_state; for (std::size_t i = 0 ; i < jstates.size() ; ++i) { if (!jstates[i]->satisfiesBounds()) { if (jstates[i]->satisfiesBounds(bounds_dist_)) { if (!prefix_state) prefix_state.reset(new robot_state::RobotState(start_state)); jstates[i]->enforceBounds(); change_req = true; ROS_INFO("Starting state is just outside bounds (joint '%s'). Assuming within bounds.", jstates[i]->getName().c_str()); } else { std::stringstream joint_values; std::stringstream joint_bounds_low; std::stringstream joint_bounds_hi; for (std::size_t k = 0 ; k < jstates[i]->getVariableValues().size() ; ++k) joint_values << jstates[i]->getVariableValues()[k] << " "; for (std::size_t k = 0 ; k < jstates[i]->getVariableBounds().size() ; ++k) { joint_bounds_low << jstates[i]->getVariableBounds()[k].first << " "; joint_bounds_hi << jstates[i]->getVariableBounds()[k].second << " "; } ROS_WARN_STREAM("Joint '" << jstates[i]->getName() << "' from the starting state is outside bounds by a significant margin: [ " << joint_values.str() << "] should be in the range [ " << joint_bounds_low.str() << "], [ " << joint_bounds_hi.str() << "] but the error above the ~" << BOUNDS_PARAM_NAME << " parameter (currently set to " << bounds_dist_ << ")"); } } } bool solved; // if we made any changes, use them if (change_req) { planning_interface::MotionPlanRequest req2 = req; robot_state::robotStateToRobotStateMsg(start_state, req2.start_state); solved = planner(planning_scene, req2, res); } else solved = planner(planning_scene, req, res); // re-add the prefix state, if it was constructed if (prefix_state && res.trajectory_) { if (!res.trajectory_->empty()) // heuristically decide a duration offset for the trajectory (induced by the additional point added as a prefix to the computed trajectory) res.trajectory_->setWayPointDurationFromPrevious(0, std::min(max_dt_offset_, res.trajectory_->getAverageSegmentDuration())); res.trajectory_->addPrefixWayPoint(prefix_state, 0.0); added_path_index.push_back(0); } return solved; }
bool ChompPlanner::solve(const planning_scene::PlanningSceneConstPtr& planning_scene, const moveit_msgs::MotionPlanRequest& req, const chomp::ChompParameters& params, moveit_msgs::MotionPlanDetailedResponse& res) const { if (!planning_scene) { ROS_ERROR_STREAM_NAMED("chomp_planner", "No planning scene initialized."); res.error_code.val = moveit_msgs::MoveItErrorCodes::FAILURE; return false; } if (req.start_state.joint_state.position.empty()) { ROS_ERROR_STREAM_NAMED("chomp_planner", "Start state is empty"); res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_ROBOT_STATE; return false; } if (not planning_scene->getRobotModel()->satisfiesPositionBounds(req.start_state.joint_state.position.data())) { ROS_ERROR_STREAM_NAMED("chomp_planner", "Start state violates joint limits"); res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_ROBOT_STATE; return false; } ros::WallTime start_time = ros::WallTime::now(); ChompTrajectory trajectory(planning_scene->getRobotModel(), 3.0, .03, req.group_name); jointStateToArray(planning_scene->getRobotModel(), req.start_state.joint_state, req.group_name, trajectory.getTrajectoryPoint(0)); if (req.goal_constraints.empty()) { ROS_ERROR_STREAM_NAMED("chomp_planner", "No goal constraints specified!"); res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_GOAL_CONSTRAINTS; return false; } if (req.goal_constraints[0].joint_constraints.empty()) { ROS_ERROR_STREAM("Only joint-space goals are supported"); res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_GOAL_CONSTRAINTS; return false; } int goal_index = trajectory.getNumPoints() - 1; trajectory.getTrajectoryPoint(goal_index) = trajectory.getTrajectoryPoint(0); sensor_msgs::JointState js; for (const moveit_msgs::JointConstraint& joint_constraint : req.goal_constraints[0].joint_constraints) { js.name.push_back(joint_constraint.joint_name); js.position.push_back(joint_constraint.position); ROS_INFO_STREAM_NAMED("chomp_planner", "Setting joint " << joint_constraint.joint_name << " to position " << joint_constraint.position); } jointStateToArray(planning_scene->getRobotModel(), js, req.group_name, trajectory.getTrajectoryPoint(goal_index)); const moveit::core::JointModelGroup* model_group = planning_scene->getRobotModel()->getJointModelGroup(req.group_name); // fix the goal to move the shortest angular distance for wrap-around joints: for (size_t i = 0; i < model_group->getActiveJointModels().size(); i++) { const moveit::core::JointModel* model = model_group->getActiveJointModels()[i]; const moveit::core::RevoluteJointModel* revolute_joint = dynamic_cast<const moveit::core::RevoluteJointModel*>(model); if (revolute_joint != nullptr) { if (revolute_joint->isContinuous()) { double start = (trajectory)(0, i); double end = (trajectory)(goal_index, i); ROS_INFO_STREAM("Start is " << start << " end " << end << " short " << shortestAngularDistance(start, end)); (trajectory)(goal_index, i) = start + shortestAngularDistance(start, end); } } } const std::vector<std::string>& active_joint_names = model_group->getActiveJointModelNames(); const Eigen::MatrixXd goal_state = trajectory.getTrajectoryPoint(goal_index); moveit::core::RobotState goal_robot_state = planning_scene->getCurrentState(); goal_robot_state.setVariablePositions( active_joint_names, std::vector<double>(goal_state.data(), goal_state.data() + active_joint_names.size())); if (not goal_robot_state.satisfiesBounds()) { ROS_ERROR_STREAM_NAMED("chomp_planner", "Goal state violates joint limits"); res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_ROBOT_STATE; return false; } // fill in an initial trajectory based on user choice from the chomp_config.yaml file if (params.trajectory_initialization_method_.compare("quintic-spline") == 0) trajectory.fillInMinJerk(); else if (params.trajectory_initialization_method_.compare("linear") == 0) trajectory.fillInLinearInterpolation(); else if (params.trajectory_initialization_method_.compare("cubic") == 0) trajectory.fillInCubicInterpolation(); else if (params.trajectory_initialization_method_.compare("fillTrajectory") == 0) { if (!(trajectory.fillInFromTrajectory(res))) { ROS_ERROR_STREAM_NAMED("chomp_planner", "Input trajectory has less than 2 points, " "trajectory must contain at least start and goal state"); return false; } } else ROS_ERROR_STREAM_NAMED("chomp_planner", "invalid interpolation method specified in the chomp_planner file"); ROS_INFO_NAMED("chomp_planner", "CHOMP trajectory initialized using method: %s ", (params.trajectory_initialization_method_).c_str()); // optimize! moveit::core::RobotState start_state(planning_scene->getCurrentState()); moveit::core::robotStateMsgToRobotState(req.start_state, start_state); start_state.update(); ros::WallTime create_time = ros::WallTime::now(); int replan_count = 0; bool replan_flag = false; double org_learning_rate = 0.04, org_ridge_factor = 0.0, org_planning_time_limit = 10; int org_max_iterations = 200; // storing the initial chomp parameters values org_learning_rate = params.learning_rate_; org_ridge_factor = params.ridge_factor_; org_planning_time_limit = params.planning_time_limit_; org_max_iterations = params.max_iterations_; std::unique_ptr<ChompOptimizer> optimizer; // create a non_const_params variable which stores the non constant version of the const params variable ChompParameters params_nonconst = params; // while loop for replanning (recovery behaviour) if collision free optimized solution not found while (true) { if (replan_flag) { // increase learning rate in hope to find a successful path; increase ridge factor to avoid obstacles; add 5 // additional secs in hope to find a solution; increase maximum iterations params_nonconst.setRecoveryParams(params_nonconst.learning_rate_ + 0.02, params_nonconst.ridge_factor_ + 0.002, params_nonconst.planning_time_limit_ + 5, params_nonconst.max_iterations_ + 50); } // initialize a ChompOptimizer object to load up the optimizer with default parameters or with updated parameters in // case of a recovery behaviour optimizer.reset(new ChompOptimizer(&trajectory, planning_scene, req.group_name, ¶ms_nonconst, start_state)); if (!optimizer->isInitialized()) { ROS_ERROR_STREAM_NAMED("chomp_planner", "Could not initialize optimizer"); res.error_code.val = moveit_msgs::MoveItErrorCodes::PLANNING_FAILED; return false; } ROS_DEBUG_NAMED("chomp_planner", "Optimization took %f sec to create", (ros::WallTime::now() - create_time).toSec()); bool optimization_result = optimizer->optimize(); // replan with updated parameters if no solution is found if (params_nonconst.enable_failure_recovery_) { ROS_INFO_NAMED("chomp_planner", "Planned with Chomp Parameters (learning_rate, ridge_factor, " "planning_time_limit, max_iterations), attempt: # %d ", (replan_count + 1)); ROS_INFO_NAMED("chomp_planner", "Learning rate: %f ridge factor: %f planning time limit: %f max_iterations %d ", params_nonconst.learning_rate_, params_nonconst.ridge_factor_, params_nonconst.planning_time_limit_, params_nonconst.max_iterations_); if (!optimization_result && replan_count < params_nonconst.max_recovery_attempts_) { replan_count++; replan_flag = true; } else { break; } } else break; } // end of while loop // resetting the CHOMP Parameters to the original values after a successful plan params_nonconst.setRecoveryParams(org_learning_rate, org_ridge_factor, org_planning_time_limit, org_max_iterations); ROS_DEBUG_NAMED("chomp_planner", "Optimization actually took %f sec to run", (ros::WallTime::now() - create_time).toSec()); create_time = ros::WallTime::now(); // assume that the trajectory is now optimized, fill in the output structure: ROS_DEBUG_NAMED("chomp_planner", "Output trajectory has %d joints", trajectory.getNumJoints()); res.trajectory.resize(1); res.trajectory[0].joint_trajectory.joint_names = active_joint_names; res.trajectory[0].joint_trajectory.header = req.start_state.joint_state.header; // @TODO this is probably a hack // fill in the entire trajectory res.trajectory[0].joint_trajectory.points.resize(trajectory.getNumPoints()); for (int i = 0; i < trajectory.getNumPoints(); i++) { res.trajectory[0].joint_trajectory.points[i].positions.resize(trajectory.getNumJoints()); for (size_t j = 0; j < res.trajectory[0].joint_trajectory.points[i].positions.size(); j++) { res.trajectory[0].joint_trajectory.points[i].positions[j] = trajectory.getTrajectoryPoint(i)(j); } // Setting invalid timestamps. // Further filtering is required to set valid timestamps accounting for velocity and acceleration constraints. res.trajectory[0].joint_trajectory.points[i].time_from_start = ros::Duration(0.0); } ROS_DEBUG_NAMED("chomp_planner", "Bottom took %f sec to create", (ros::WallTime::now() - create_time).toSec()); ROS_DEBUG_NAMED("chomp_planner", "Serviced planning request in %f wall-seconds, trajectory duration is %f", (ros::WallTime::now() - start_time).toSec(), res.trajectory[0].joint_trajectory.points[goal_index].time_from_start.toSec()); res.error_code.val = moveit_msgs::MoveItErrorCodes::SUCCESS; res.processing_time.push_back((ros::WallTime::now() - start_time).toSec()); // report planning failure if path has collisions if (not optimizer->isCollisionFree()) { ROS_ERROR_STREAM_NAMED("chomp_planner", "Motion plan is invalid."); res.error_code.val = moveit_msgs::MoveItErrorCodes::INVALID_MOTION_PLAN; return false; } // check that final state is within goal tolerances kinematic_constraints::JointConstraint jc(planning_scene->getRobotModel()); robot_state::RobotState last_state(start_state); last_state.setVariablePositions(res.trajectory[0].joint_trajectory.joint_names, res.trajectory[0].joint_trajectory.points.back().positions); bool constraints_are_ok = true; for (const moveit_msgs::JointConstraint& constraint : req.goal_constraints[0].joint_constraints) { constraints_are_ok = constraints_are_ok and jc.configure(constraint); constraints_are_ok = constraints_are_ok and jc.decide(last_state).satisfied; if (not constraints_are_ok) { ROS_ERROR_STREAM_NAMED("chomp_planner", "Goal constraints are violated: " << constraint.joint_name); res.error_code.val = moveit_msgs::MoveItErrorCodes::GOAL_CONSTRAINTS_VIOLATED; return false; } } return true; }
virtual bool adaptAndPlan(const PlannerFn &planner, const planning_scene::PlanningSceneConstPtr& planning_scene, const planning_interface::MotionPlanRequest &req, planning_interface::MotionPlanResponse &res, std::vector<std::size_t> &added_path_index) const { ROS_DEBUG("Running '%s'", getDescription().c_str()); // get the specified start state robot_state::RobotState start_state = planning_scene->getCurrentState(); robot_state::robotStateMsgToRobotState(planning_scene->getTransforms(), req.start_state, start_state); collision_detection::CollisionRequest creq; creq.group_name = req.group_name; collision_detection::CollisionResult cres; planning_scene->checkCollision(creq, cres, start_state); if (cres.collision) { // Rerun in verbose mode collision_detection::CollisionRequest vcreq = creq; collision_detection::CollisionResult vcres; vcreq.verbose = true; planning_scene->checkCollision(vcreq, vcres, start_state); if (creq.group_name.empty()) ROS_INFO("Start state appears to be in collision"); else ROS_INFO_STREAM("Start state appears to be in collision with respect to group " << creq.group_name); robot_state::RobotStatePtr prefix_state(new robot_state::RobotState(start_state)); random_numbers::RandomNumberGenerator &rng = prefix_state->getRandomNumberGenerator(); const std::vector<const robot_model::JointModel*> &jmodels = planning_scene->getRobotModel()->hasJointModelGroup(req.group_name) ? planning_scene->getRobotModel()->getJointModelGroup(req.group_name)->getJointModels() : planning_scene->getRobotModel()->getJointModels(); bool found = false; for (int c = 0 ; !found && c < sampling_attempts_ ; ++c) { for (std::size_t i = 0 ; !found && i < jmodels.size() ; ++i) { std::vector<double> sampled_variable_values(jmodels[i]->getVariableCount()); const double *original_values = prefix_state->getJointPositions(jmodels[i]); jmodels[i]->getVariableRandomPositionsNearBy(rng, &sampled_variable_values[0], original_values, jmodels[i]->getMaximumExtent() * jiggle_fraction_); start_state.setJointPositions(jmodels[i], sampled_variable_values); collision_detection::CollisionResult cres; planning_scene->checkCollision(creq, cres, start_state); if (!cres.collision) { found = true; ROS_INFO("Found a valid state near the start state at distance %lf after %d attempts", prefix_state->distance(start_state), c); } } } if (found) { planning_interface::MotionPlanRequest req2 = req; robot_state::robotStateToRobotStateMsg(start_state, req2.start_state); bool solved = planner(planning_scene, req2, res); if (solved && !res.trajectory_->empty()) { // heuristically decide a duration offset for the trajectory (induced by the additional point added as a prefix to the computed trajectory) res.trajectory_->setWayPointDurationFromPrevious(0, std::min(max_dt_offset_, res.trajectory_->getAverageSegmentDuration())); res.trajectory_->addPrefixWayPoint(prefix_state, 0.0); // we add a prefix point, so we need to bump any previously added index positions for (std::size_t i = 0 ; i < added_path_index.size() ; ++i) added_path_index[i]++; added_path_index.push_back(0); } return solved; } else { ROS_WARN("Unable to find a valid state nearby the start state (using jiggle fraction of %lf and %u sampling attempts). Passing the original planning request to the planner.", jiggle_fraction_, sampling_attempts_); return planner(planning_scene, req, res); } } else { if (creq.group_name.empty()) ROS_DEBUG("Start state is valid"); else ROS_DEBUG_STREAM("Start state is valid with respect to group " << creq.group_name); return planner(planning_scene, req, res); } }
bool PickPlan::plan(const planning_scene::PlanningSceneConstPtr &planning_scene, const moveit_msgs::PickupGoal &goal) { double timeout = goal.allowed_planning_time; ros::WallTime endtime = ros::WallTime::now() + ros::WallDuration(timeout); std::string planning_group = goal.group_name; std::string end_effector = goal.end_effector; if (end_effector.empty() && !planning_group.empty()) { const robot_model::JointModelGroup *jmg = planning_scene->getRobotModel()->getJointModelGroup(planning_group); if (!jmg) { error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_GROUP_NAME; return false; } const std::vector<std::string> &eefs = jmg->getAttachedEndEffectorNames(); if (!eefs.empty()) { end_effector = eefs.front(); if (eefs.size() > 1) ROS_WARN_STREAM_NAMED("manipulation", "Choice of end-effector for group '" << planning_group << "' is ambiguous. Assuming '" << end_effector << "'"); } } else if (!end_effector.empty() && planning_group.empty()) { const robot_model::JointModelGroup *jmg = planning_scene->getRobotModel()->getEndEffector(end_effector); if (!jmg) { error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_GROUP_NAME; return false; } planning_group = jmg->getEndEffectorParentGroup().first; if (planning_group.empty()) { ROS_ERROR_STREAM_NAMED("manipulation", "No parent group to plan in was identified based on end-effector '" << end_effector << "'. Please define a parent group in the SRDF."); error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_GROUP_NAME; return false; } else ROS_INFO_STREAM_NAMED("manipulation", "Assuming the planning group for end effector '" << end_effector << "' is '" << planning_group << "'"); } const robot_model::JointModelGroup *eef = end_effector.empty() ? NULL : planning_scene->getRobotModel()->getEndEffector(end_effector); if (!eef) { ROS_ERROR_NAMED("manipulation", "No end-effector specified for pick action"); error_code_.val = moveit_msgs::MoveItErrorCodes::INVALID_GROUP_NAME; return false; } const std::string &ik_link = eef->getEndEffectorParentGroup().second; ros::WallTime start_time = ros::WallTime::now(); // construct common data for possible manipulation plans ManipulationPlanSharedDataPtr plan_data(new ManipulationPlanSharedData()); ManipulationPlanSharedDataConstPtr const_plan_data = plan_data; plan_data->planning_group_ = planning_scene->getRobotModel()->getJointModelGroup(planning_group); plan_data->end_effector_group_ = eef; plan_data->ik_link_ = planning_scene->getRobotModel()->getLinkModel(ik_link); plan_data->timeout_ = endtime; plan_data->path_constraints_ = goal.path_constraints; plan_data->planner_id_ = goal.planner_id; plan_data->minimize_object_distance_ = goal.minimize_object_distance; plan_data->max_goal_sampling_attempts_ = std::max(2u, plan_data->planning_group_->getDefaultIKAttempts()); moveit_msgs::AttachedCollisionObject &attach_object_msg = plan_data->diff_attached_object_; // construct the attached object message that will change the world to what it would become after a pick attach_object_msg.link_name = ik_link; attach_object_msg.object.id = goal.target_name; attach_object_msg.object.operation = moveit_msgs::CollisionObject::ADD; attach_object_msg.touch_links = goal.attached_object_touch_links.empty() ? eef->getLinkModelNames() : goal.attached_object_touch_links; collision_detection::AllowedCollisionMatrixPtr approach_grasp_acm(new collision_detection::AllowedCollisionMatrix(planning_scene->getAllowedCollisionMatrix())); // we are allowed to touch the target object approach_grasp_acm->setEntry(goal.target_name, attach_object_msg.touch_links, true); // we are allowed to touch certain other objects with the gripper approach_grasp_acm->setEntry(eef->getLinkModelNames(), goal.allowed_touch_objects, true); if (!goal.support_surface_name.empty()) { // we are allowed to have contact between the target object and the support surface before the grasp approach_grasp_acm->setEntry(goal.support_surface_name, goal.target_name, true); // optionally, it may be allowed to touch the support surface with the gripper if (goal.allow_gripper_support_collision) approach_grasp_acm->setEntry(goal.support_surface_name, eef->getLinkModelNames(), true); } // configure the manipulation pipeline pipeline_.reset(); ManipulationStagePtr stage1(new ReachableAndValidPoseFilter(planning_scene, approach_grasp_acm, pick_place_->getConstraintsSamplerManager())); ManipulationStagePtr stage2(new ApproachAndTranslateStage(planning_scene, approach_grasp_acm)); ManipulationStagePtr stage3(new PlanStage(planning_scene, pick_place_->getPlanningPipeline())); pipeline_.addStage(stage1).addStage(stage2).addStage(stage3); initialize(); pipeline_.start(); // order the grasps by quality std::vector<std::size_t> grasp_order(goal.possible_grasps.size()); for (std::size_t i = 0 ; i < goal.possible_grasps.size() ; ++i) grasp_order[i] = i; OrderGraspQuality oq(goal.possible_grasps); std::sort(grasp_order.begin(), grasp_order.end(), oq); // feed the available grasps to the stages we set up for (std::size_t i = 0 ; i < goal.possible_grasps.size() ; ++i) { ManipulationPlanPtr p(new ManipulationPlan(const_plan_data)); const moveit_msgs::Grasp &g = goal.possible_grasps[grasp_order[i]]; p->approach_ = g.pre_grasp_approach; p->retreat_ = g.post_grasp_retreat; p->goal_pose_ = g.grasp_pose; p->id_ = grasp_order[i]; // if no frame of reference was specified, assume the transform to be in the reference frame of the object if (p->goal_pose_.header.frame_id.empty()) p->goal_pose_.header.frame_id = goal.target_name; p->approach_posture_ = g.pre_grasp_posture; p->retreat_posture_ = g.grasp_posture; pipeline_.push(p); } // wait till we're done waitForPipeline(endtime); pipeline_.stop(); last_plan_time_ = (ros::WallTime::now() - start_time).toSec(); if (!getSuccessfulManipulationPlans().empty()) error_code_.val = moveit_msgs::MoveItErrorCodes::SUCCESS; else { if (last_plan_time_ > timeout) error_code_.val = moveit_msgs::MoveItErrorCodes::TIMED_OUT; else { error_code_.val = moveit_msgs::MoveItErrorCodes::PLANNING_FAILED; if (goal.possible_grasps.size() > 0) { ROS_WARN_NAMED("manipulation", "All supplied grasps failed. Retrying last grasp in verbose mode."); // everything failed. we now start the pipeline again in verbose mode for one grasp initialize(); pipeline_.setVerbose(true); pipeline_.start(); pipeline_.reprocessLastFailure(); waitForPipeline(ros::WallTime::now() + ros::WallDuration(1.0)); pipeline_.stop(); pipeline_.setVerbose(false); } } } ROS_INFO_NAMED("manipulation", "Pickup planning completed after %lf seconds", last_plan_time_); return error_code_.val == moveit_msgs::MoveItErrorCodes::SUCCESS; }