void compileOSRExit(ExecState* exec) { SamplingRegion samplingRegion("DFG OSR Exit Compilation"); CodeBlock* codeBlock = exec->codeBlock(); ASSERT(codeBlock); ASSERT(codeBlock->getJITType() == JITCode::DFGJIT); JSGlobalData* globalData = &exec->globalData(); uint32_t exitIndex = globalData->osrExitIndex; OSRExit& exit = codeBlock->osrExit(exitIndex); // Make sure all code on our inline stack is JIT compiled. This is necessary since // we may opt to inline a code block even before it had ever been compiled by the // JIT, but our OSR exit infrastructure currently only works if the target of the // OSR exit is JIT code. This could be changed since there is nothing particularly // hard about doing an OSR exit into the interpreter, but for now this seems to make // sense in that if we're OSR exiting from inlined code of a DFG code block, then // probably it's a good sign that the thing we're exiting into is hot. Even more // interestingly, since the code was inlined, it may never otherwise get JIT // compiled since the act of inlining it may ensure that it otherwise never runs. for (CodeOrigin codeOrigin = exit.m_codeOrigin; codeOrigin.inlineCallFrame; codeOrigin = codeOrigin.inlineCallFrame->caller) { static_cast<FunctionExecutable*>(codeOrigin.inlineCallFrame->executable.get()) ->baselineCodeBlockFor(codeOrigin.inlineCallFrame->isCall ? CodeForCall : CodeForConstruct) ->jitCompile(exec); } // Compute the value recoveries. Operands<ValueRecovery> operands; codeBlock->variableEventStream().reconstruct(codeBlock, exit.m_codeOrigin, codeBlock->minifiedDFG(), exit.m_streamIndex, operands); // There may be an override, for forward speculations. if (!!exit.m_valueRecoveryOverride) { operands.setOperand( exit.m_valueRecoveryOverride->operand, exit.m_valueRecoveryOverride->recovery); } SpeculationRecovery* recovery = 0; if (exit.m_recoveryIndex) recovery = &codeBlock->speculationRecovery(exit.m_recoveryIndex - 1); #if DFG_ENABLE(DEBUG_VERBOSE) dataLog( "Generating OSR exit #", exitIndex, " (seq#", exit.m_streamIndex, ", bc#", exit.m_codeOrigin.bytecodeIndex, ", @", exit.m_nodeIndex, ", ", exit.m_kind, ") for ", *codeBlock, ".\n"); #endif { CCallHelpers jit(globalData, codeBlock); OSRExitCompiler exitCompiler(jit); jit.jitAssertHasValidCallFrame(); if (globalData->m_perBytecodeProfiler && codeBlock->compilation()) { Profiler::Database& database = *globalData->m_perBytecodeProfiler; Profiler::Compilation* compilation = codeBlock->compilation(); Profiler::OSRExit* profilerExit = compilation->addOSRExit( exitIndex, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin), exit.m_kind, exit.m_watchpointIndex != std::numeric_limits<unsigned>::max()); jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress())); } exitCompiler.compileExit(exit, operands, recovery); LinkBuffer patchBuffer(*globalData, &jit, codeBlock); exit.m_code = FINALIZE_CODE_IF( shouldShowDisassembly(), patchBuffer, ("DFG OSR exit #%u (bc#%u, @%u, %s) from %s", exitIndex, exit.m_codeOrigin.bytecodeIndex, exit.m_nodeIndex, exitKindToString(exit.m_kind), toCString(*codeBlock).data())); } { RepatchBuffer repatchBuffer(codeBlock); repatchBuffer.relink(exit.codeLocationForRepatch(codeBlock), CodeLocationLabel(exit.m_code.code())); } globalData->osrExitJumpDestination = exit.m_code.code().executableAddress(); }
void compileOSRExit(ExecState* exec) { if (exec->vm().callFrameForCatch) RELEASE_ASSERT(exec->vm().callFrameForCatch == exec); CodeBlock* codeBlock = exec->codeBlock(); ASSERT(codeBlock); ASSERT(codeBlock->jitType() == JITCode::DFGJIT); VM* vm = &exec->vm(); // It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't // really be profitable. DeferGCForAWhile deferGC(vm->heap); uint32_t exitIndex = vm->osrExitIndex; OSRExit& exit = codeBlock->jitCode()->dfg()->osrExit[exitIndex]; if (vm->callFrameForCatch) ASSERT(exit.m_kind == GenericUnwind); if (exit.isExceptionHandler()) ASSERT(!!vm->exception()); prepareCodeOriginForOSRExit(exec, exit.m_codeOrigin); // Compute the value recoveries. Operands<ValueRecovery> operands; codeBlock->jitCode()->dfg()->variableEventStream.reconstruct(codeBlock, exit.m_codeOrigin, codeBlock->jitCode()->dfg()->minifiedDFG, exit.m_streamIndex, operands); SpeculationRecovery* recovery = 0; if (exit.m_recoveryIndex != UINT_MAX) recovery = &codeBlock->jitCode()->dfg()->speculationRecovery[exit.m_recoveryIndex]; { CCallHelpers jit(vm, codeBlock); OSRExitCompiler exitCompiler(jit); if (exit.m_kind == GenericUnwind) { // We are acting as a defacto op_catch because we arrive here from genericUnwind(). // So, we must restore our call frame and stack pointer. jit.restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer(); jit.loadPtr(vm->addressOfCallFrameForCatch(), GPRInfo::callFrameRegister); jit.addPtr(CCallHelpers::TrustedImm32(codeBlock->stackPointerOffset() * sizeof(Register)), GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister); } jit.jitAssertHasValidCallFrame(); if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) { Profiler::Database& database = *vm->m_perBytecodeProfiler; Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get(); Profiler::OSRExit* profilerExit = compilation->addOSRExit( exitIndex, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin), exit.m_kind, exit.m_kind == UncountableInvalidation); jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress())); } exitCompiler.compileExit(exit, operands, recovery); LinkBuffer patchBuffer(*vm, jit, codeBlock); exit.m_code = FINALIZE_CODE_IF( shouldDumpDisassembly() || Options::verboseOSR(), patchBuffer, ("DFG OSR exit #%u (%s, %s) from %s, with operands = %s", exitIndex, toCString(exit.m_codeOrigin).data(), exitKindToString(exit.m_kind), toCString(*codeBlock).data(), toCString(ignoringContext<DumpContext>(operands)).data())); } MacroAssembler::repatchJump(exit.codeLocationForRepatch(codeBlock), CodeLocationLabel(exit.m_code.code())); vm->osrExitJumpDestination = exit.m_code.code().executableAddress(); }
void compileOSRExit(ExecState* exec) { SamplingRegion samplingRegion("DFG OSR Exit Compilation"); CodeBlock* codeBlock = exec->codeBlock(); ASSERT(codeBlock); ASSERT(codeBlock->jitType() == JITCode::DFGJIT); VM* vm = &exec->vm(); // It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't // really be profitable. DeferGCForAWhile deferGC(vm->heap); uint32_t exitIndex = vm->osrExitIndex; OSRExit& exit = codeBlock->jitCode()->dfg()->osrExit[exitIndex]; prepareCodeOriginForOSRExit(exec, exit.m_codeOrigin); // Compute the value recoveries. Operands<ValueRecovery> operands; codeBlock->jitCode()->dfg()->variableEventStream.reconstruct(codeBlock, exit.m_codeOrigin, codeBlock->jitCode()->dfg()->minifiedDFG, exit.m_streamIndex, operands); // There may be an override, for forward speculations. if (!!exit.m_valueRecoveryOverride) { operands.setOperand( exit.m_valueRecoveryOverride->operand, exit.m_valueRecoveryOverride->recovery); } SpeculationRecovery* recovery = 0; if (exit.m_recoveryIndex != UINT_MAX) recovery = &codeBlock->jitCode()->dfg()->speculationRecovery[exit.m_recoveryIndex]; { CCallHelpers jit(vm, codeBlock); OSRExitCompiler exitCompiler(jit); jit.jitAssertHasValidCallFrame(); if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) { Profiler::Database& database = *vm->m_perBytecodeProfiler; Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get(); Profiler::OSRExit* profilerExit = compilation->addOSRExit( exitIndex, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin), exit.m_kind, exit.m_kind == UncountableInvalidation); jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress())); } exitCompiler.compileExit(exit, operands, recovery); LinkBuffer patchBuffer(*vm, jit, codeBlock); exit.m_code = FINALIZE_CODE_IF( shouldShowDisassembly() || Options::verboseOSR(), patchBuffer, ("DFG OSR exit #%u (%s, %s) from %s, with operands = %s", exitIndex, toCString(exit.m_codeOrigin).data(), exitKindToString(exit.m_kind), toCString(*codeBlock).data(), toCString(ignoringContext<DumpContext>(operands)).data())); } { RepatchBuffer repatchBuffer(codeBlock); repatchBuffer.relink(exit.codeLocationForRepatch(codeBlock), CodeLocationLabel(exit.m_code.code())); } vm->osrExitJumpDestination = exit.m_code.code().executableAddress(); }
static void compileStub( unsigned exitID, JITCode* jitCode, OSRExit& exit, VM* vm, CodeBlock* codeBlock) { StackMaps::Record* record = nullptr; for (unsigned i = jitCode->stackmaps.records.size(); i--;) { record = &jitCode->stackmaps.records[i]; if (record->patchpointID == exit.m_stackmapID) break; } RELEASE_ASSERT(record->patchpointID == exit.m_stackmapID); // This code requires framePointerRegister is the same as callFrameRegister static_assert(MacroAssembler::framePointerRegister == GPRInfo::callFrameRegister, "MacroAssembler::framePointerRegister and GPRInfo::callFrameRegister must be the same"); CCallHelpers jit(vm, codeBlock); // We need scratch space to save all registers, to build up the JS stack, to deal with unwind // fixup, pointers to all of the objects we materialize, and the elements inside those objects // that we materialize. // Figure out how much space we need for those object allocations. unsigned numMaterializations = 0; size_t maxMaterializationNumArguments = 0; for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) { numMaterializations++; maxMaterializationNumArguments = std::max( maxMaterializationNumArguments, materialization->properties().size()); } ScratchBuffer* scratchBuffer = vm->scratchBufferForSize( sizeof(EncodedJSValue) * ( exit.m_values.size() + numMaterializations + maxMaterializationNumArguments) + requiredScratchMemorySizeInBytes() + codeBlock->calleeSaveRegisters()->size() * sizeof(uint64_t)); EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0; EncodedJSValue* materializationPointers = scratch + exit.m_values.size(); EncodedJSValue* materializationArguments = materializationPointers + numMaterializations; char* registerScratch = bitwise_cast<char*>(materializationArguments + maxMaterializationNumArguments); uint64_t* unwindScratch = bitwise_cast<uint64_t*>(registerScratch + requiredScratchMemorySizeInBytes()); HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*> materializationToPointer; unsigned materializationCount = 0; for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) { materializationToPointer.add( materialization, materializationPointers + materializationCount++); } // Note that we come in here, the stack used to be as LLVM left it except that someone called pushToSave(). // We don't care about the value they saved. But, we do appreciate the fact that they did it, because we use // that slot for saveAllRegisters(). saveAllRegisters(jit, registerScratch); // Bring the stack back into a sane form and assert that it's sane. jit.popToRestore(GPRInfo::regT0); jit.checkStackPointerAlignment(); if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) { Profiler::Database& database = *vm->m_perBytecodeProfiler; Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get(); Profiler::OSRExit* profilerExit = compilation->addOSRExit( exitID, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin), exit.m_kind, exit.m_kind == UncountableInvalidation); jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress())); } // The remaining code assumes that SP/FP are in the same state that they were in the FTL's // call frame. // Get the call frame and tag thingies. // Restore the exiting function's callFrame value into a regT4 jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister); jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister); // Do some value profiling. if (exit.m_profileDataFormat != DataFormatNone) { record->locations[0].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0); reboxAccordingToFormat( exit.m_profileDataFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2); if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) { jit.load32(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureIDOffset()), GPRInfo::regT1); jit.store32(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructureID()); jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::indexingTypeOffset()), GPRInfo::regT1); jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2); jit.lshift32(GPRInfo::regT1, GPRInfo::regT2); jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes())); } } if (!!exit.m_valueProfile) jit.store64(GPRInfo::regT0, exit.m_valueProfile.getSpecFailBucket(0)); } // Materialize all objects. Don't materialize an object until all // of the objects it needs have been materialized. We break cycles // by populating objects late - we only consider an object as // needing another object if the later is needed for the // allocation of the former. HashSet<ExitTimeObjectMaterialization*> toMaterialize; for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) toMaterialize.add(materialization); while (!toMaterialize.isEmpty()) { unsigned previousToMaterializeSize = toMaterialize.size(); Vector<ExitTimeObjectMaterialization*> worklist; worklist.appendRange(toMaterialize.begin(), toMaterialize.end()); for (ExitTimeObjectMaterialization* materialization : worklist) { // Check if we can do anything about this right now. bool allGood = true; for (ExitPropertyValue value : materialization->properties()) { if (!value.value().isObjectMaterialization()) continue; if (!value.location().neededForMaterialization()) continue; if (toMaterialize.contains(value.value().objectMaterialization())) { // Gotta skip this one, since it needs a // materialization that hasn't been materialized. allGood = false; break; } } if (!allGood) continue; // All systems go for materializing the object. First we // recover the values of all of its fields and then we // call a function to actually allocate the beast. // We only recover the fields that are needed for the allocation. for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) { const ExitPropertyValue& property = materialization->properties()[propertyIndex]; const ExitValue& value = property.value(); if (!property.location().neededForMaterialization()) continue; compileRecovery( jit, value, record, jitCode->stackmaps, registerScratch, materializationToPointer); jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex); } // This call assumes that we don't pass arguments on the stack. jit.setupArgumentsWithExecState( CCallHelpers::TrustedImmPtr(materialization), CCallHelpers::TrustedImmPtr(materializationArguments)); jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationMaterializeObjectInOSR)), GPRInfo::nonArgGPR0); jit.call(GPRInfo::nonArgGPR0); jit.storePtr(GPRInfo::returnValueGPR, materializationToPointer.get(materialization)); // Let everyone know that we're done. toMaterialize.remove(materialization); } // We expect progress! This ensures that we crash rather than looping infinitely if there // is something broken about this fixpoint. Or, this could happen if we ever violate the // "materializations form a DAG" rule. RELEASE_ASSERT(toMaterialize.size() < previousToMaterializeSize); } // Now that all the objects have been allocated, we populate them // with the correct values. This time we can recover all the // fields, including those that are only needed for the allocation. for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) { for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) { const ExitValue& value = materialization->properties()[propertyIndex].value(); compileRecovery( jit, value, record, jitCode->stackmaps, registerScratch, materializationToPointer); jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex); } // This call assumes that we don't pass arguments on the stack jit.setupArgumentsWithExecState( CCallHelpers::TrustedImmPtr(materialization), CCallHelpers::TrustedImmPtr(materializationToPointer.get(materialization)), CCallHelpers::TrustedImmPtr(materializationArguments)); jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationPopulateObjectInOSR)), GPRInfo::nonArgGPR0); jit.call(GPRInfo::nonArgGPR0); } // Save all state from wherever the exit data tells us it was, into the appropriate place in // the scratch buffer. This also does the reboxing. for (unsigned index = exit.m_values.size(); index--;) { compileRecovery( jit, exit.m_values[index], record, jitCode->stackmaps, registerScratch, materializationToPointer); jit.store64(GPRInfo::regT0, scratch + index); } // Henceforth we make it look like the exiting function was called through a register // preservation wrapper. This implies that FP must be nudged down by a certain amount. Then // we restore the various things according to either exit.m_values or by copying from the // old frame, and finally we save the various callee-save registers into where the // restoration thunk would restore them from. // Before we start messing with the frame, we need to set aside any registers that the // FTL code was preserving. for (unsigned i = codeBlock->calleeSaveRegisters()->size(); i--;) { RegisterAtOffset entry = codeBlock->calleeSaveRegisters()->at(i); jit.load64( MacroAssembler::Address(MacroAssembler::framePointerRegister, entry.offset()), GPRInfo::regT0); jit.store64(GPRInfo::regT0, unwindScratch + i); } jit.load32(CCallHelpers::payloadFor(JSStack::ArgumentCount), GPRInfo::regT2); // Let's say that the FTL function had failed its arity check. In that case, the stack will // contain some extra stuff. // // We compute the padded stack space: // // paddedStackSpace = roundUp(codeBlock->numParameters - regT2 + 1) // // The stack will have regT2 + CallFrameHeaderSize stuff. // We want to make the stack look like this, from higher addresses down: // // - argument padding // - actual arguments // - call frame header // This code assumes that we're dealing with FunctionCode. RELEASE_ASSERT(codeBlock->codeType() == FunctionCode); jit.add32( MacroAssembler::TrustedImm32(-codeBlock->numParameters()), GPRInfo::regT2, GPRInfo::regT3); MacroAssembler::Jump arityIntact = jit.branch32( MacroAssembler::GreaterThanOrEqual, GPRInfo::regT3, MacroAssembler::TrustedImm32(0)); jit.neg32(GPRInfo::regT3); jit.add32(MacroAssembler::TrustedImm32(1 + stackAlignmentRegisters() - 1), GPRInfo::regT3); jit.and32(MacroAssembler::TrustedImm32(-stackAlignmentRegisters()), GPRInfo::regT3); jit.add32(GPRInfo::regT3, GPRInfo::regT2); arityIntact.link(&jit); CodeBlock* baselineCodeBlock = jit.baselineCodeBlockFor(exit.m_codeOrigin); // First set up SP so that our data doesn't get clobbered by signals. unsigned conservativeStackDelta = (exit.m_values.numberOfLocals() + baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters()) * sizeof(Register) + maxFrameExtentForSlowPathCall; conservativeStackDelta = WTF::roundUpToMultipleOf( stackAlignmentBytes(), conservativeStackDelta); jit.addPtr( MacroAssembler::TrustedImm32(-conservativeStackDelta), MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister); jit.checkStackPointerAlignment(); RegisterSet allFTLCalleeSaves = RegisterSet::ftlCalleeSaveRegisters(); RegisterAtOffsetList* baselineCalleeSaves = baselineCodeBlock->calleeSaveRegisters(); for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) { if (!allFTLCalleeSaves.get(reg)) continue; unsigned unwindIndex = codeBlock->calleeSaveRegisters()->indexOf(reg); RegisterAtOffset* baselineRegisterOffset = baselineCalleeSaves->find(reg); if (reg.isGPR()) { GPRReg regToLoad = baselineRegisterOffset ? GPRInfo::regT0 : reg.gpr(); if (unwindIndex == UINT_MAX) { // The FTL compilation didn't preserve this register. This means that it also // didn't use the register. So its value at the beginning of OSR exit should be // preserved by the thunk. Luckily, we saved all registers into the register // scratch buffer, so we can restore them from there. jit.load64(registerScratch + offsetOfReg(reg), regToLoad); } else { // The FTL compilation preserved the register. Its new value is therefore // irrelevant, but we can get the value that was preserved by using the unwind // data. We've already copied all unwind-able preserved registers into the unwind // scratch buffer, so we can get it from there. jit.load64(unwindScratch + unwindIndex, regToLoad); } if (baselineRegisterOffset) jit.store64(regToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset())); } else { FPRReg fpRegToLoad = baselineRegisterOffset ? FPRInfo::fpRegT0 : reg.fpr(); if (unwindIndex == UINT_MAX) jit.loadDouble(MacroAssembler::TrustedImmPtr(registerScratch + offsetOfReg(reg)), fpRegToLoad); else jit.loadDouble(MacroAssembler::TrustedImmPtr(unwindScratch + unwindIndex), fpRegToLoad); if (baselineRegisterOffset) jit.storeDouble(fpRegToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset())); } } size_t baselineVirtualRegistersForCalleeSaves = baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters(); // Now get state out of the scratch buffer and place it back into the stack. The values are // already reboxed so we just move them. for (unsigned index = exit.m_values.size(); index--;) { VirtualRegister reg = exit.m_values.virtualRegisterForIndex(index); if (reg.isLocal() && reg.toLocal() < static_cast<int>(baselineVirtualRegistersForCalleeSaves)) continue; jit.load64(scratch + index, GPRInfo::regT0); jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(reg)); } handleExitCounts(jit, exit); reifyInlinedCallFrames(jit, exit); adjustAndJumpToTarget(jit, exit, false); LinkBuffer patchBuffer(*vm, jit, codeBlock); exit.m_code = FINALIZE_CODE_IF( shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(), patchBuffer, ("FTL OSR exit #%u (%s, %s) from %s, with operands = %s, and record = %s", exitID, toCString(exit.m_codeOrigin).data(), exitKindToString(exit.m_kind), toCString(*codeBlock).data(), toCString(ignoringContext<DumpContext>(exit.m_values)).data(), toCString(*record).data())); }