void init_pykmstest(py::module &m) { py::class_<RGB>(m, "RGB") .def(py::init<>()) .def(py::init<uint8_t, uint8_t, uint8_t&>()) .def(py::init<uint8_t, uint8_t, uint8_t, uint8_t&>()) .def_property_readonly("rgb888", &RGB::rgb888) .def_property_readonly("argb8888", &RGB::argb8888) .def_property_readonly("abgr8888", &RGB::abgr8888) .def_property_readonly("rgb565", &RGB::rgb565) ; py::class_<ResourceManager>(m, "ResourceManager") .def(py::init<Card&>()) .def("reset", &ResourceManager::reset) .def("reserve_connector", &ResourceManager::reserve_connector, py::arg("name") = string()) .def("reserve_crtc", &ResourceManager::reserve_crtc) .def("reserve_plane", &ResourceManager::reserve_plane, py::arg("crtc"), py::arg("type"), py::arg("format") = PixelFormat::Undefined) .def("reserve_primary_plane", &ResourceManager::reserve_primary_plane, py::arg("crtc"), py::arg("format") = PixelFormat::Undefined) .def("reserve_overlay_plane", &ResourceManager::reserve_overlay_plane, py::arg("crtc"), py::arg("format") = PixelFormat::Undefined) ; // Use lambdas to handle IMappedFramebuffer m.def("draw_test_pattern", [](MappedFramebuffer& fb) { draw_test_pattern(fb); } ); m.def("draw_color_bar", [](MappedFramebuffer& fb, int old_xpos, int xpos, int width) { draw_color_bar(fb, old_xpos, xpos, width); } ); m.def("draw_rect", [](MappedFramebuffer& fb, uint32_t x, uint32_t y, uint32_t w, uint32_t h, RGB color) { draw_rect(fb, x, y, w, h, color); } ); }
void bind_numpy_returns(py::module &m) { m.def("load_rgb_image", &load_rgb_image, "Takes a path and returns a numpy array (RGB) containing the image", py::arg("path") ); m.def("save_image", &save_image<rgb_pixel>, "Saves the given image to the specified path. Determines the file type from the file extension specified in the path", py::arg("img"), py::arg("path") ); m.def("save_image", &save_image<unsigned char>, "Saves the given image to the specified path. Determines the file type from the file extension specified in the path", py::arg("img"), py::arg("path") ); m.def("jitter_image", &get_jitter_images, "Takes an image and returns a list of jittered images." "The returned list contains num_jitters images (default is 1)." "If disturb_colors is set to True, the colors of the image are disturbed (default is False)", py::arg("img"), py::arg("num_jitters")=1, py::arg("disturb_colors")=false ); m.def("get_face_chip", &get_face_chip, "Takes an image and a full_object_detection that references a face in that image and returns the face as a Numpy array representing the image. The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.", py::arg("img"), py::arg("face"), py::arg("size")=150, py::arg("padding")=0.25 ); m.def("get_face_chips", &get_face_chips, "Takes an image and a full_object_detections object that reference faces in that image and returns the faces as a list of Numpy arrays representing the image. The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.", py::arg("img"), py::arg("faces"), py::arg("size")=150, py::arg("padding")=0.25 ); }
void for_python_result_set(pybind11::module & module) { // expose base result set with explicit holder class to allow passing of // shared pointer arguments pybind11::class_<base_result_set, std::shared_ptr<base_result_set>>(module, "BaseResultSet"); pybind11::class_<python_result_set>(module, "ResultSet") .def("get_column_info", &python_result_set::get_column_info) .def("fetch_row", &python_result_set::fetch_row) ; module.def("make_row_based_result_set", make_python_result_set); }
void export_common(py::module& m) { py::enum_<sc::DType>(m, "dtype") .value("float32", sc::DType::FLOAT_TYPE) .value("float64", sc::DType::DOUBLE_TYPE) .export_values(); m.def("size_of", sc::size_of); py::class_<sc::scalar>(m, "Scalar") .def(py::init<float, sc::DType>()) .def(py::init<double, sc::DType>()) .def_property_readonly("dtype", &sc::scalar::dtype); }
void bind_svm_rank_trainer(py::module& m) { py::class_<ranking_pair<sample_type> >(m, "ranking_pair") .def(py::init()) .def_readwrite("relevant", &ranking_pair<sample_type>::relevant) .def_readwrite("nonrelevant", &ranking_pair<sample_type>::nonrelevant) .def(py::pickle(&getstate<ranking_pair<sample_type>>, &setstate<ranking_pair<sample_type>>)); py::class_<ranking_pair<sparse_vect> >(m, "sparse_ranking_pair") .def(py::init()) .def_readwrite("relevant", &ranking_pair<sparse_vect>::relevant) .def_readwrite("nonrelevant", &ranking_pair<sparse_vect>::nonrelevant) .def(py::pickle(&getstate<ranking_pair<sparse_vect>>, &setstate<ranking_pair<sparse_vect>>)); py::bind_vector<ranking_pairs>(m, "ranking_pairs") .def("clear", &ranking_pairs::clear) .def("resize", resize<ranking_pairs>) .def("extend", extend_vector_with_python_list<ranking_pair<sample_type>>) .def(py::pickle(&getstate<ranking_pairs>, &setstate<ranking_pairs>)); py::bind_vector<sparse_ranking_pairs>(m, "sparse_ranking_pairs") .def("clear", &sparse_ranking_pairs::clear) .def("resize", resize<sparse_ranking_pairs>) .def("extend", extend_vector_with_python_list<ranking_pair<sparse_vect>>) .def(py::pickle(&getstate<sparse_ranking_pairs>, &setstate<sparse_ranking_pairs>)); add_ranker<svm_rank_trainer<linear_kernel<sample_type> > >(m, "svm_rank_trainer"); add_ranker<svm_rank_trainer<sparse_linear_kernel<sparse_vect> > >(m, "svm_rank_trainer_sparse"); m.def("cross_validate_ranking_trainer", &_cross_ranking_validate_trainer< svm_rank_trainer<linear_kernel<sample_type> >,sample_type>, py::arg("trainer"), py::arg("samples"), py::arg("folds") ); m.def("cross_validate_ranking_trainer", &_cross_ranking_validate_trainer< svm_rank_trainer<sparse_linear_kernel<sparse_vect> > ,sparse_vect>, py::arg("trainer"), py::arg("samples"), py::arg("folds") ); }
void wrapper_95d0d4d7e8215bf98789264a4aeb8c71(pybind11::module& module) { module.def("set_seed", function_pointer_95d0d4d7e8215bf98789264a4aeb8c71, ""); }
void exportPyLazyCaller(py::module m) { m.def("callLater", [](py::function func){ cnoid::callLater(PyFunc(func)); }); m.def("callSynchronously", [](py::function func){ cnoid::callSynchronously(PyFunc(func)); }); }
void fifi_utils(pybind11::module& m, const std::string& field) { using namespace pybind11; m.def((field + std::string("_elements_to_length")).c_str(), &fifi::elements_to_length<Field>, arg("elements"), "Returns the number of value_type elements needed to store a " "certain number of field elements.\n\n" "elemenets.\n\n" "\t:param elements: The number of elements.\n" "\t:return: The number of value_type elements needed.\n"); m.def((field + std::string("_elements_to_size")).c_str(), &fifi::elements_to_size<Field>, arg("elements"), "Returns the minimum size in bytes required to accommodate a " "certain number of field elements.\n\n" "\t:param elements: the number of field elements.\n" "\t:return: the size in bytes needed to store the field " "elements.\n"); m.def((field + std::string("_size_to_length")).c_str(), &fifi::size_to_length<Field>, arg("bytes"), "Returns the number of value_type elements needed to store " "a certain number of bytes.\n\n" "\t:param bytes: the number of bytes to store.\n" "\t:return: the number of value_type elements that need to be " "stored.\n"); m.def((field + std::string("_length_to_size")).c_str(), &fifi::length_to_size<Field>, arg("length"), "Returns the size in bytes needed to store a certain " "number of value_type elements.\n\n" "\t:param length: the number of value_type elements to store.\n" "\t:return: the size in bytes needed to store the value_type " "elements.\n"); m.def((field + std::string("_length_to_elements")).c_str(), &fifi::length_to_elements<Field>, arg("length"), "Returns the number of field elements needed to store a certain " "number of value_type elements.\n\n" "\t:param length: the number of value_type elements.\n" "\t:return: the number of field elements needed.\n"); m.def((field + std::string("_size_to_elements")).c_str(), &fifi::size_to_elements<Field>, arg("bytes"), "Returns the number of field elements that can fit within a " "certain number of bytes.\n\n" "\t:param bytes: the number of bytes to store the field elements.\n" "\t:return: the number of field elements stored within the bytes.\n"); m.def((field + std::string("_get_value")).c_str(), &get_value<Field>, arg("elements"), arg("index"), "Useful abstraction function for accessing field elements in a " "buffer. Note this function assumes that values are packed.\n\n" "\t:param elements: elements to get value from.\n" "\t:param index: index of element to access in the packed buffer.\n" "\t:return: the value of the element at specified index.\n"); m.def((field + std::string("_set_value")).c_str(), &set_value<Field>, arg("elements"), arg("index"), arg("value"), "Useful abstraction function for assigning field elements in a " "buffer a specific value. Note this function assumes that values " "are packed.\n\n" "\t:param elements: elements to manipulate.\n" "\t:param index: index of element.\n" "\t:param value: value to assign element.\n" "\t:return: The modified buffer.\n"); m.def((field + std::string("_pack_constant")).c_str(), &fifi::pack_constant<Field>, arg("constant"), "Helper function for creating packed constants. In Fifi we refer " "to values as packed if they utilize the entire underlying data " "type. As an example binary4 uses four bits for every field " "element but since no 4-bit data types are available we store it's " "value in an uint8_t. When using APIs requiring packed data we " "therefore have to pack the constant which ensures that both the " "high an low 4 bits have the right constant value (in the case of " "binary4).\n\n" "\t:param constant: The constant to pack.\n" "\t:return: The packed constant.\n"); }
void wrapper_cfd7d1ec1fbc514b9feba31d16e55cf6(pybind11::module& module) { module.def("get_nn", function_pointer_cfd7d1ec1fbc514b9feba31d16e55cf6, pybind11::return_value_policy::copy, ""); }
void install_toolmain(pybind11::module& m) { m.def("toolmain", &toolmain); }
void wrapper_1a16c32a3d8f5d01b8d739fb757db381(pybind11::module& module) { module.def("set_seed", function_pointer_1a16c32a3d8f5d01b8d739fb757db381, ""); }