示例#1
0
double getDihedralRad(const Conformer &conf, unsigned int iAtomId,
                      unsigned int jAtomId, unsigned int kAtomId,
                      unsigned int lAtomId) {
  const RDGeom::POINT3D_VECT &pos = conf.getPositions();
  URANGE_CHECK(iAtomId, pos.size());
  URANGE_CHECK(jAtomId, pos.size());
  URANGE_CHECK(kAtomId, pos.size());
  URANGE_CHECK(lAtomId, pos.size());
  RDGeom::Point3D rIJ = pos[jAtomId] - pos[iAtomId];
  double rIJSqLength = rIJ.lengthSq();
  if (rIJSqLength <= 1.e-16)
    throw ValueErrorException("atoms i and j have identical 3D coordinates");
  RDGeom::Point3D rJK = pos[kAtomId] - pos[jAtomId];
  double rJKSqLength = rJK.lengthSq();
  if (rJKSqLength <= 1.e-16)
    throw ValueErrorException("atoms j and k have identical 3D coordinates");
  RDGeom::Point3D rKL = pos[lAtomId] - pos[kAtomId];
  double rKLSqLength = rKL.lengthSq();
  if (rKLSqLength <= 1.e-16)
    throw ValueErrorException("atoms k and l have identical 3D coordinates");

  RDGeom::Point3D nIJK = rIJ.crossProduct(rJK);
  double nIJKSqLength = nIJK.lengthSq();
  RDGeom::Point3D nJKL = rJK.crossProduct(rKL);
  double nJKLSqLength = nJKL.lengthSq();
  RDGeom::Point3D m = nIJK.crossProduct(rJK);
  // we want a signed dihedral, that's why we use atan2 instead of acos
  return -atan2(m.dotProduct(nJKL) / sqrt(nJKLSqLength * m.lengthSq()),
                nIJK.dotProduct(nJKL) / sqrt(nIJKSqLength * nJKLSqLength));
}
示例#2
0
void setDihedralRad(Conformer &conf, unsigned int iAtomId, unsigned int jAtomId,
                    unsigned int kAtomId, unsigned int lAtomId, double value) {
  RDGeom::POINT3D_VECT &pos = conf.getPositions();
  URANGE_CHECK(iAtomId, pos.size());
  URANGE_CHECK(jAtomId, pos.size());
  URANGE_CHECK(kAtomId, pos.size());
  URANGE_CHECK(lAtomId, pos.size());
  ROMol &mol = conf.getOwningMol();
  Bond *bondIJ = mol.getBondBetweenAtoms(iAtomId, jAtomId);
  if (!bondIJ) throw ValueErrorException("atoms i and j must be bonded");
  Bond *bondJK = mol.getBondBetweenAtoms(jAtomId, kAtomId);
  if (!bondJK) throw ValueErrorException("atoms j and k must be bonded");
  Bond *bondKL = mol.getBondBetweenAtoms(kAtomId, lAtomId);
  if (!bondKL) throw ValueErrorException("atoms k and l must be bonded");

  if (queryIsBondInRing(bondJK))
    throw ValueErrorException("bond (j,k) must not belong to a ring");
  RDGeom::Point3D rIJ = pos[jAtomId] - pos[iAtomId];
  double rIJSqLength = rIJ.lengthSq();
  if (rIJSqLength <= 1.e-16)
    throw ValueErrorException("atoms i and j have identical 3D coordinates");
  RDGeom::Point3D rJK = pos[kAtomId] - pos[jAtomId];
  double rJKSqLength = rJK.lengthSq();
  if (rJKSqLength <= 1.e-16)
    throw ValueErrorException("atoms j and k have identical 3D coordinates");
  RDGeom::Point3D rKL = pos[lAtomId] - pos[kAtomId];
  double rKLSqLength = rKL.lengthSq();
  if (rKLSqLength <= 1.e-16)
    throw ValueErrorException("atoms k and l have identical 3D coordinates");

  RDGeom::Point3D nIJK = rIJ.crossProduct(rJK);
  double nIJKSqLength = nIJK.lengthSq();
  RDGeom::Point3D nJKL = rJK.crossProduct(rKL);
  double nJKLSqLength = nJKL.lengthSq();
  RDGeom::Point3D m = nIJK.crossProduct(rJK);
  // we only need to rotate by delta with respect to the current dihedral value
  value -= -atan2(m.dotProduct(nJKL) / sqrt(nJKLSqLength * m.lengthSq()),
                  nIJK.dotProduct(nJKL) / sqrt(nIJKSqLength * nJKLSqLength));
  // our rotation axis is the (j,k) bond
  RDGeom::Point3D &rotAxisBegin = pos[jAtomId];
  RDGeom::Point3D &rotAxisEnd = pos[kAtomId];
  RDGeom::Point3D rotAxis = rotAxisEnd - rotAxisBegin;
  rotAxis.normalize();
  // get all atoms bonded to k and loop through them
  std::list<unsigned int> alist;
  _toBeMovedIdxList(mol, jAtomId, kAtomId, alist);
  for (std::list<unsigned int>::iterator it = alist.begin(); it != alist.end();
       ++it) {
    // translate atom so that it coincides with the origin of rotation
    pos[*it] -= rotAxisBegin;
    // rotate around our rotation axis
    RDGeom::Transform3D rotByAngle;
    rotByAngle.SetRotation(value, rotAxis);
    rotByAngle.TransformPoint(pos[*it]);
    // translate atom back
    pos[*it] += rotAxisBegin;
  }
}
示例#3
0
      double calculateCosY(const RDGeom::Point3D &iPoint,
        const RDGeom::Point3D &jPoint, const RDGeom::Point3D &kPoint,
        const RDGeom::Point3D &lPoint) {
        RDGeom::Point3D rJI = iPoint - jPoint;
        RDGeom::Point3D rJK = kPoint - jPoint;
        RDGeom::Point3D rJL = lPoint - jPoint;
        rJI /= rJI.length();
        rJK /= rJK.length();
        rJL /= rJL.length();

        RDGeom::Point3D n = rJI.crossProduct(rJK);
        n /= n.length();
        
        return n.dotProduct(rJL);
      }
示例#4
0
void setAngleRad(Conformer &conf, unsigned int iAtomId, unsigned int jAtomId,
                 unsigned int kAtomId, double value) {
  RDGeom::POINT3D_VECT &pos = conf.getPositions();
  URANGE_CHECK(iAtomId, pos.size());
  URANGE_CHECK(jAtomId, pos.size());
  URANGE_CHECK(kAtomId, pos.size());
  ROMol &mol = conf.getOwningMol();
  Bond *bondJI = mol.getBondBetweenAtoms(jAtomId, iAtomId);
  if (!bondJI) throw ValueErrorException("atoms i and j must be bonded");
  Bond *bondJK = mol.getBondBetweenAtoms(jAtomId, kAtomId);
  if (!bondJK) throw ValueErrorException("atoms j and k must be bonded");
  if (queryIsBondInRing(bondJI) && queryIsBondInRing(bondJK))
    throw ValueErrorException(
        "bonds (i,j) and (j,k) must not both belong to a ring");

  RDGeom::Point3D rJI = pos[iAtomId] - pos[jAtomId];
  double rJISqLength = rJI.lengthSq();
  if (rJISqLength <= 1.e-16)
    throw ValueErrorException("atoms i and j have identical 3D coordinates");
  RDGeom::Point3D rJK = pos[kAtomId] - pos[jAtomId];
  double rJKSqLength = rJK.lengthSq();
  if (rJKSqLength <= 1.e-16)
    throw ValueErrorException("atoms j and k have identical 3D coordinates");

  // we only need to rotate by delta with respect to the current angle value
  value -= rJI.angleTo(rJK);
  RDGeom::Point3D &rotAxisBegin = pos[jAtomId];
  // our rotation axis is the normal to the plane of atoms i, j, k
  RDGeom::Point3D rotAxisEnd = rJI.crossProduct(rJK) + pos[jAtomId];
  RDGeom::Point3D rotAxis = rotAxisEnd - rotAxisBegin;
  rotAxis.normalize();
  // get all atoms bonded to j and loop through them
  std::list<unsigned int> alist;
  _toBeMovedIdxList(mol, jAtomId, kAtomId, alist);
  for (std::list<unsigned int>::iterator it = alist.begin(); it != alist.end();
       ++it) {
    // translate atom so that it coincides with the origin of rotation
    pos[*it] -= rotAxisBegin;
    // rotate around our rotation axis
    RDGeom::Transform3D rotByAngle;
    rotByAngle.SetRotation(value, rotAxis);
    rotByAngle.TransformPoint(pos[*it]);
    // translate atom back
    pos[*it] += rotAxisBegin;
  }
}
示例#5
0
double calcOopChi(const RDGeom::Point3D &iPoint, const RDGeom::Point3D &jPoint,
                  const RDGeom::Point3D &kPoint,
                  const RDGeom::Point3D &lPoint) {
  RDGeom::Point3D rJI = iPoint - jPoint;
  RDGeom::Point3D rJK = kPoint - jPoint;
  RDGeom::Point3D rJL = lPoint - jPoint;
  rJI /= rJI.length();
  rJK /= rJK.length();
  rJL /= rJL.length();

  RDGeom::Point3D n = rJI.crossProduct(rJK);
  n /= n.length();
  double sinChi = n.dotProduct(rJL);
  clipToOne(sinChi);

  return RAD2DEG * asin(sinChi);
}
示例#6
0
    void InversionContrib::getGrad(double *pos, double *grad) const {
      PRECONDITION(dp_forceField, "no owner");
      PRECONDITION(pos, "bad vector");
      PRECONDITION(grad, "bad vector");

      RDGeom::Point3D p1(pos[3 * d_at1Idx],
        pos[3 * d_at1Idx + 1],
        pos[3 * d_at1Idx + 2]);
      RDGeom::Point3D p2(pos[3 * d_at2Idx],
        pos[3 * d_at2Idx + 1],
        pos[3 * d_at2Idx + 2]);
      RDGeom::Point3D p3(pos[3 * d_at3Idx],
        pos[3 * d_at3Idx + 1],
        pos[3 * d_at3Idx + 2]);
      RDGeom::Point3D p4(pos[3 * d_at4Idx],
        pos[3 * d_at4Idx + 1],
        pos[3 * d_at4Idx + 2]);
      double *g1 = &(grad[3 * d_at1Idx]);
      double *g2 = &(grad[3 * d_at2Idx]);
      double *g3 = &(grad[3 * d_at3Idx]);
      double *g4 = &(grad[3 * d_at4Idx]);

      RDGeom::Point3D rJI = p1 - p2;
      RDGeom::Point3D rJK = p3 - p2;
      RDGeom::Point3D rJL = p4 - p2;
      double dJI = rJI.length();
      double dJK = rJK.length();
      double dJL = rJL.length();
      if (isDoubleZero(dJI) || isDoubleZero(dJK) || isDoubleZero(dJL)) {
        return;
      }
      rJI /= dJI;
      rJK /= dJK;
      rJL /= dJL;
      
      RDGeom::Point3D n = (-rJI).crossProduct(rJK);
      n /= n.length();
      double cosY = n.dotProduct(rJL);
      double sinYSq = 1.0 - cosY * cosY;
      double sinY = std::max(((sinYSq > 0.0) ? sqrt(sinYSq) : 0.0), 1.0e-8);
      double cosTheta = rJI.dotProduct(rJK);
      double sinThetaSq = std::max(1.0 - cosTheta * cosTheta, 1.0e-8);
      double sinTheta = std::max(((sinThetaSq > 0.0) ? sqrt(sinThetaSq) : 0.0), 1.0e-8);
      // sin(2 * W) = 2 * sin(W) * cos(W) = 2 * cos(Y) * sin(Y)
      double dE_dW = -d_forceConstant
        * (d_C1 * cosY - 4.0 * d_C2 * cosY * sinY);
      RDGeom::Point3D t1 = rJL.crossProduct(rJK);
      RDGeom::Point3D t2 = rJI.crossProduct(rJL);
      RDGeom::Point3D t3 = rJK.crossProduct(rJI);
      double term1 = sinY * sinTheta;
      double term2 = cosY / (sinY * sinThetaSq);
      double tg1[3] = { (t1.x / term1 - (rJI.x - rJK.x * cosTheta) * term2) / dJI,
        (t1.y / term1 - (rJI.y - rJK.y * cosTheta) * term2) / dJI,
        (t1.z / term1 - (rJI.z - rJK.z * cosTheta) * term2) / dJI };
      double tg3[3] = { (t2.x / term1 - (rJK.x - rJI.x * cosTheta) * term2) / dJK,
        (t2.y / term1 - (rJK.y - rJI.y * cosTheta) * term2) / dJK,
        (t2.z / term1 - (rJK.z - rJI.z * cosTheta) * term2) / dJK };
      double tg4[3] = { (t3.x / term1 - rJL.x * cosY / sinY) / dJL,
        (t3.y / term1 - rJL.y * cosY / sinY) / dJL,
        (t3.z / term1 - rJL.z * cosY / sinY) / dJL };
      for (unsigned int i = 0; i < 3; ++i) {
        g1[i] += dE_dW * tg1[i];
        g2[i] += -dE_dW * (tg1[i] + tg3[i] + tg4[i]);
        g3[i] += dE_dW * tg3[i];
        g4[i] += dE_dW * tg4[i];
      }
    }
示例#7
0
void OopBendContrib::getGrad(double *pos, double *grad) const {
  PRECONDITION(dp_forceField, "no owner");
  PRECONDITION(pos, "bad vector");
  PRECONDITION(grad, "bad vector");

  RDGeom::Point3D iPoint(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
                         pos[3 * d_at1Idx + 2]);
  RDGeom::Point3D jPoint(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
                         pos[3 * d_at2Idx + 2]);
  RDGeom::Point3D kPoint(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
                         pos[3 * d_at3Idx + 2]);
  RDGeom::Point3D lPoint(pos[3 * d_at4Idx], pos[3 * d_at4Idx + 1],
                         pos[3 * d_at4Idx + 2]);
  double *g1 = &(grad[3 * d_at1Idx]);
  double *g2 = &(grad[3 * d_at2Idx]);
  double *g3 = &(grad[3 * d_at3Idx]);
  double *g4 = &(grad[3 * d_at4Idx]);

  RDGeom::Point3D rJI = iPoint - jPoint;
  RDGeom::Point3D rJK = kPoint - jPoint;
  RDGeom::Point3D rJL = lPoint - jPoint;
  double dJI = rJI.length();
  double dJK = rJK.length();
  double dJL = rJL.length();
  if (isDoubleZero(dJI) || isDoubleZero(dJK) || isDoubleZero(dJL)) {
    return;
  }
  rJI /= dJI;
  rJK /= dJK;
  rJL /= dJL;

  RDGeom::Point3D n = (-rJI).crossProduct(rJK);
  n /= n.length();
  double const c2 = MDYNE_A_TO_KCAL_MOL * DEG2RAD * DEG2RAD;
  double sinChi = rJL.dotProduct(n);
  clipToOne(sinChi);
  double cosChiSq = 1.0 - sinChi * sinChi;
  double cosChi = std::max(((cosChiSq > 0.0) ? sqrt(cosChiSq) : 0.0), 1.0e-8);
  double chi = RAD2DEG * asin(sinChi);
  double cosTheta = rJI.dotProduct(rJK);
  clipToOne(cosTheta);
  double sinThetaSq = std::max(1.0 - cosTheta * cosTheta, 1.0e-8);
  double sinTheta =
      std::max(((sinThetaSq > 0.0) ? sqrt(sinThetaSq) : 0.0), 1.0e-8);

  double dE_dChi = RAD2DEG * c2 * d_koop * chi;
  RDGeom::Point3D t1 = rJL.crossProduct(rJK);
  RDGeom::Point3D t2 = rJI.crossProduct(rJL);
  RDGeom::Point3D t3 = rJK.crossProduct(rJI);
  double term1 = cosChi * sinTheta;
  double term2 = sinChi / (cosChi * sinThetaSq);
  double tg1[3] = {(t1.x / term1 - (rJI.x - rJK.x * cosTheta) * term2) / dJI,
                   (t1.y / term1 - (rJI.y - rJK.y * cosTheta) * term2) / dJI,
                   (t1.z / term1 - (rJI.z - rJK.z * cosTheta) * term2) / dJI};
  double tg3[3] = {(t2.x / term1 - (rJK.x - rJI.x * cosTheta) * term2) / dJK,
                   (t2.y / term1 - (rJK.y - rJI.y * cosTheta) * term2) / dJK,
                   (t2.z / term1 - (rJK.z - rJI.z * cosTheta) * term2) / dJK};
  double tg4[3] = {(t3.x / term1 - rJL.x * sinChi / cosChi) / dJL,
                   (t3.y / term1 - rJL.y * sinChi / cosChi) / dJL,
                   (t3.z / term1 - rJL.z * sinChi / cosChi) / dJL};
  for (unsigned int i = 0; i < 3; ++i) {
    g1[i] += dE_dChi * tg1[i];
    g2[i] += -dE_dChi * (tg1[i] + tg3[i] + tg4[i]);
    g3[i] += dE_dChi * tg3[i];
    g4[i] += dE_dChi * tg4[i];
  }
}