示例#1
0
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void VisualizeGBCDGMT::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  DataContainer::Pointer sm = getDataContainerArray()->getDataContainer(getGBCDArrayPath().getDataContainerName());

  // Make sure any directory path is also available as the user may have just typed
  // in a path without actually creating the full path
  QFileInfo fi(getOutputFile());

  QDir dir(fi.path());
  if (!dir.mkpath("."))
  {
    QString ss;
    ss = QObject::tr("Error creating parent path '%1'").arg(dir.path());
    setErrorCondition(-1);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  QFile file(getOutputFile());
  if (!file.open(QIODevice::WriteOnly | QIODevice::Text))
  {
    QString ss = QObject::tr("Error opening output file '%1'").arg(getOutputFile());
    setErrorCondition(-100);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  FloatArrayType::Pointer gbcdDeltasArray = FloatArrayType::CreateArray(5, "GBCDDeltas");
  gbcdDeltasArray->initializeWithZeros();

  FloatArrayType::Pointer gbcdLimitsArray = FloatArrayType::CreateArray(10, "GBCDLimits");
  gbcdLimitsArray->initializeWithZeros();

  Int32ArrayType::Pointer gbcdSizesArray = Int32ArrayType::CreateArray(5, "GBCDSizes");
  gbcdSizesArray->initializeWithZeros();

  float* gbcdDeltas = gbcdDeltasArray->getPointer(0);
  int32_t* gbcdSizes = gbcdSizesArray->getPointer(0);
  float* gbcdLimits = gbcdLimitsArray->getPointer(0);

  // Original Ranges from Dave R.
  //m_GBCDlimits[0] = 0.0f;
  //m_GBCDlimits[1] = cosf(1.0f*m_pi);
  //m_GBCDlimits[2] = 0.0f;
  //m_GBCDlimits[3] = 0.0f;
  //m_GBCDlimits[4] = cosf(1.0f*m_pi);
  //m_GBCDlimits[5] = 2.0f*m_pi;
  //m_GBCDlimits[6] = cosf(0.0f);
  //m_GBCDlimits[7] = 2.0f*m_pi;
  //m_GBCDlimits[8] = 2.0f*m_pi;
  //m_GBCDlimits[9] = cosf(0.0f);

  // Greg R. Ranges
  gbcdLimits[0] = 0.0f;
  gbcdLimits[1] = 0.0f;
  gbcdLimits[2] = 0.0f;
  gbcdLimits[3] = -sqrtf(SIMPLib::Constants::k_Pi / 2.0f);
  gbcdLimits[4] = -sqrtf(SIMPLib::Constants::k_Pi / 2.0f);
  gbcdLimits[5] = SIMPLib::Constants::k_Pi / 2.0f;
  gbcdLimits[6] = 1.0f;
  gbcdLimits[7] = SIMPLib::Constants::k_Pi / 2.0f;
  gbcdLimits[8] = sqrtf(SIMPLib::Constants::k_Pi / 2.0f);
  gbcdLimits[9] = sqrtf(SIMPLib::Constants::k_Pi / 2.0f);

  // get num components of GBCD
  QVector<size_t> cDims = m_GBCDPtr.lock()->getComponentDimensions();

  gbcdSizes[0] = cDims[0];
  gbcdSizes[1] = cDims[1];
  gbcdSizes[2] = cDims[2];
  gbcdSizes[3] = cDims[3];
  gbcdSizes[4] = cDims[4];

  gbcdDeltas[0] = (gbcdLimits[5] - gbcdLimits[0]) / float(gbcdSizes[0]);
  gbcdDeltas[1] = (gbcdLimits[6] - gbcdLimits[1]) / float(gbcdSizes[1]);
  gbcdDeltas[2] = (gbcdLimits[7] - gbcdLimits[2]) / float(gbcdSizes[2]);
  gbcdDeltas[3] = (gbcdLimits[8] - gbcdLimits[3]) / float(gbcdSizes[3]);
  gbcdDeltas[4] = (gbcdLimits[9] - gbcdLimits[4]) / float(gbcdSizes[4]);

  float vec[3] = { 0.0f, 0.0f, 0.0f };
  float vec2[3] = { 0.0f, 0.0f, 0.0f };
  float rotNormal[3] = { 0.0f, 0.0f, 0.0f };
  float rotNormal2[3] = { 0.0f, 0.0f, 0.0f };
  float sqCoord[2] = { 0.0f, 0.0f };
  float dg[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float dgt[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float dg1[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float dg2[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float sym1[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float sym2[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float sym2t[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float mis_euler1[3] = { 0.0f, 0.0f, 0.0f };

  float misAngle = m_MisorientationRotation.angle * SIMPLib::Constants::k_PiOver180;
  float normAxis[3] = { m_MisorientationRotation.h, m_MisorientationRotation.k, m_MisorientationRotation.l };
  MatrixMath::Normalize3x1(normAxis);
  // convert axis angle to matrix representation of misorientation
  FOrientArrayType om(9, 0.0f);
  FOrientTransformsType::ax2om(FOrientArrayType(normAxis[0], normAxis[1], normAxis[2], misAngle), om);
  om.toGMatrix(dg);

  // take inverse of misorientation variable to use for switching symmetry
  MatrixMath::Transpose3x3(dg, dgt);

  // Get our SpaceGroupOps pointer for the selected crystal structure
  SpaceGroupOps::Pointer orientOps = m_OrientationOps[m_CrystalStructures[m_PhaseOfInterest]];

  // get number of symmetry operators
  int32_t n_sym = orientOps->getNumSymOps();

  int32_t thetaPoints = 120;
  int32_t phiPoints = 30;
  float thetaRes = 360.0f / float(thetaPoints);
  float phiRes = 90.0f / float(phiPoints);
  float theta = 0.0f, phi = 0.0f;
  float thetaRad = 0.0f, phiRad = 0.0f;
  float degToRad = SIMPLib::Constants::k_PiOver180;
  float sum = 0.0f;
  int32_t count = 0;
  bool nhCheck = false;
  int32_t hemisphere = 0;

  int32_t shift1 = gbcdSizes[0];
  int32_t shift2 = gbcdSizes[0] * gbcdSizes[1];
  int32_t shift3 = gbcdSizes[0] * gbcdSizes[1] * gbcdSizes[2];
  int32_t shift4 = gbcdSizes[0] * gbcdSizes[1] * gbcdSizes[2] * gbcdSizes[3];

  int64_t totalGBCDBins = gbcdSizes[0] * gbcdSizes[1] * gbcdSizes[2] * gbcdSizes[3] * gbcdSizes[4] * 2;

  std::vector<float> gmtValues;

  for (int32_t k = 0; k < phiPoints + 1; k++)
  {
    for (int32_t l = 0; l < thetaPoints + 1; l++)
    {
      // get (x,y) for stereographic projection pixel
      theta = float(l) * thetaRes;
      phi = float(k) * phiRes;
      thetaRad = theta * degToRad;
      phiRad = phi * degToRad;
      sum = 0.0f;
      count = 0;
      vec[0] = sinf(phiRad) * cosf(thetaRad);
      vec[1] = sinf(phiRad) * sinf(thetaRad);
      vec[2] = cosf(phiRad);
      MatrixMath::Multiply3x3with3x1(dgt, vec, vec2);

      // Loop over all the symetry operators in the given cystal symmetry
      for (int32_t i = 0; i < n_sym; i++)
      {
        // get symmetry operator1
        orientOps->getMatSymOp(i, sym1);
        for (int32_t j = 0; j < n_sym; j++)
        {
          // get symmetry operator2
          orientOps->getMatSymOp(j, sym2);
          MatrixMath::Transpose3x3(sym2, sym2t);
          // calculate symmetric misorientation
          MatrixMath::Multiply3x3with3x3(dg, sym2t, dg1);
          MatrixMath::Multiply3x3with3x3(sym1, dg1, dg2);
          // convert to euler angle
          FOrientArrayType mEuler(mis_euler1, 3);
          FOrientTransformsType::om2eu(FOrientArrayType(dg2), mEuler);
          if (mis_euler1[0] < SIMPLib::Constants::k_PiOver2 && mis_euler1[1] < SIMPLib::Constants::k_PiOver2 && mis_euler1[2] < SIMPLib::Constants::k_PiOver2)
          {
            mis_euler1[1] = cosf(mis_euler1[1]);
            // find bins in GBCD
            int32_t location1 = int32_t((mis_euler1[0] - gbcdLimits[0]) / gbcdDeltas[0]);
            int32_t location2 = int32_t((mis_euler1[1] - gbcdLimits[1]) / gbcdDeltas[1]);
            int32_t location3 = int32_t((mis_euler1[2] - gbcdLimits[2]) / gbcdDeltas[2]);
            // find symmetric poles using the first symmetry operator
            MatrixMath::Multiply3x3with3x1(sym1, vec, rotNormal);
            // get coordinates in square projection of crystal normal parallel to boundary normal
            nhCheck = getSquareCoord(rotNormal, sqCoord);
            // Note the switch to have theta in the 4 slot and cos(Phi) int he 3 slot
            int32_t location4 = int32_t((sqCoord[0] - gbcdLimits[3]) / gbcdDeltas[3]);
            int32_t location5 = int32_t((sqCoord[1] - gbcdLimits[4]) / gbcdDeltas[4]);
            if (location1 >= 0 && location2 >= 0 && location3 >= 0 && location4 >= 0 && location5 >= 0 &&
                location1 < gbcdSizes[0] && location2 < gbcdSizes[1] && location3 < gbcdSizes[2] && location4 < gbcdSizes[3] && location5 < gbcdSizes[4])
            {
              hemisphere = 0;
              if (nhCheck == false) { hemisphere = 1; }
              sum += m_GBCD[(m_PhaseOfInterest * totalGBCDBins) + 2 * ((location5 * shift4) + (location4 * shift3) + (location3 * shift2) + (location2 * shift1) + location1) + hemisphere];
              count++;
            }
          }

          // again in second crystal reference frame
          // calculate symmetric misorientation
          MatrixMath::Multiply3x3with3x3(dgt, sym2, dg1);
          MatrixMath::Multiply3x3with3x3(sym1, dg1, dg2);
          // convert to euler angle
          FOrientTransformsType::om2eu(FOrientArrayType(dg2), mEuler);
          if (mis_euler1[0] < SIMPLib::Constants::k_PiOver2 && mis_euler1[1] < SIMPLib::Constants::k_PiOver2 && mis_euler1[2] < SIMPLib::Constants::k_PiOver2)
          {
            mis_euler1[1] = cosf(mis_euler1[1]);
            // find bins in GBCD
            int32_t location1 = int32_t((mis_euler1[0] - gbcdLimits[0]) / gbcdDeltas[0]);
            int32_t location2 = int32_t((mis_euler1[1] - gbcdLimits[1]) / gbcdDeltas[1]);
            int32_t location3 = int32_t((mis_euler1[2] - gbcdLimits[2]) / gbcdDeltas[2]);
            // find symmetric poles using the first symmetry operator
            MatrixMath::Multiply3x3with3x1(sym1, vec2, rotNormal2);
            // get coordinates in square projection of crystal normal parallel to boundary normal
            nhCheck = getSquareCoord(rotNormal2, sqCoord);
            // Note the switch to have theta in the 4 slot and cos(Phi) int he 3 slot
            int32_t location4 = int32_t((sqCoord[0] - gbcdLimits[3]) / gbcdDeltas[3]);
            int32_t location5 = int32_t((sqCoord[1] - gbcdLimits[4]) / gbcdDeltas[4]);
            if (location1 >= 0 && location2 >= 0 && location3 >= 0 && location4 >= 0 && location5 >= 0 &&
                location1 < gbcdSizes[0] && location2 < gbcdSizes[1] && location3 < gbcdSizes[2] && location4 < gbcdSizes[3] && location5 < gbcdSizes[4])
            {
              hemisphere = 0;
              if (nhCheck == false) { hemisphere = 1; }
              sum += m_GBCD[(m_PhaseOfInterest * totalGBCDBins) + 2 * ((location5 * shift4) + (location4 * shift3) + (location3 * shift2) + (location2 * shift1) + location1) + hemisphere];
              count++;
            }
          }
        }
      }
      gmtValues.push_back(theta);
      gmtValues.push_back((90.0f - phi));
      gmtValues.push_back(sum / float(count));
    }
  }

  FILE* f = NULL;
  f = fopen(m_OutputFile.toLatin1().data(), "wb");
  if (NULL == f)
  {
    QString ss = QObject::tr("Error opening output file '%1'").arg(m_OutputFile);
    setErrorCondition(-1);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  // Remember to use the original Angle in Degrees!!!!
  fprintf(f, "%.1f %.1f %.1f %.1f\n", m_MisorientationRotation.h, m_MisorientationRotation.k, m_MisorientationRotation.l, m_MisorientationRotation.angle);
  size_t size = gmtValues.size() / 3;

  for (size_t i = 0; i < size; i++)
  {
    fprintf(f, "%f %f %f\n", gmtValues[3 * i], gmtValues[3 * i + 1], gmtValues[3 * i + 2]);
  }
  fclose(f);

  /* Let the GUI know we are done with this filter */
  notifyStatusMessage(getHumanLabel(), "Complete");
}
// -----------------------------------------------------------------------------
//
// -----------------------------------------------------------------------------
void VisualizeGBCDPoleFigure::execute()
{
  setErrorCondition(0);
  dataCheck();
  if(getErrorCondition() < 0) { return; }

  // Make sure any directory path is also available as the user may have just typed
  // in a path without actually creating the full path
  QFileInfo fi(getOutputFile());

  QDir dir(fi.path());
  if(!dir.mkpath("."))
  {
    QString ss;
    ss = QObject::tr("Error creating parent path '%1'").arg(dir.path());
    setErrorCondition(-1);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  QFile file(getOutputFile());
  if (!file.open(QIODevice::WriteOnly | QIODevice::Text))
  {
    QString ss = QObject::tr("Error opening output file '%1'").arg(getOutputFile());
    setErrorCondition(-100);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  FloatArrayType::Pointer gbcdDeltasArray = FloatArrayType::CreateArray(5, "GBCDDeltas");
  gbcdDeltasArray->initializeWithZeros();

  FloatArrayType::Pointer gbcdLimitsArray = FloatArrayType::CreateArray(10, "GBCDLimits");
  gbcdLimitsArray->initializeWithZeros();

  Int32ArrayType::Pointer gbcdSizesArray = Int32ArrayType::CreateArray(5, "GBCDSizes");
  gbcdSizesArray->initializeWithZeros();

  float* gbcdDeltas = gbcdDeltasArray->getPointer(0);
  int* gbcdSizes = gbcdSizesArray->getPointer(0);
  float* gbcdLimits = gbcdLimitsArray->getPointer(0);

  // Original Ranges from Dave R.
  //m_GBCDlimits[0] = 0.0f;
  //m_GBCDlimits[1] = cosf(1.0f*m_pi);
  //m_GBCDlimits[2] = 0.0f;
  //m_GBCDlimits[3] = 0.0f;
  //m_GBCDlimits[4] = cosf(1.0f*m_pi);
  //m_GBCDlimits[5] = 2.0f*m_pi;
  //m_GBCDlimits[6] = cosf(0.0f);
  //m_GBCDlimits[7] = 2.0f*m_pi;
  //m_GBCDlimits[8] = 2.0f*m_pi;
  //m_GBCDlimits[9] = cosf(0.0f);

  // Greg R. Ranges
  gbcdLimits[0] = 0.0f;
  gbcdLimits[1] = 0.0f;
  gbcdLimits[2] = 0.0f;
  gbcdLimits[3] = 0.0f;
  gbcdLimits[4] = 0.0f;
  gbcdLimits[5] = SIMPLib::Constants::k_PiOver2;
  gbcdLimits[6] = 1.0f;
  gbcdLimits[7] = SIMPLib::Constants::k_PiOver2;
  gbcdLimits[8] = 1.0f;
  gbcdLimits[9] = SIMPLib::Constants::k_2Pi;

  // reset the 3rd and 4th dimensions using the square grid approach
  gbcdLimits[3] = -sqrtf(SIMPLib::Constants::k_PiOver2);
  gbcdLimits[4] = -sqrtf(SIMPLib::Constants::k_PiOver2);
  gbcdLimits[8] = sqrtf(SIMPLib::Constants::k_PiOver2);
  gbcdLimits[9] = sqrtf(SIMPLib::Constants::k_PiOver2);

  // get num components of GBCD
  QVector<size_t> cDims = m_GBCDPtr.lock()->getComponentDimensions();

  gbcdSizes[0] = cDims[0];
  gbcdSizes[1] = cDims[1];
  gbcdSizes[2] = cDims[2];
  gbcdSizes[3] = cDims[3];
  gbcdSizes[4] = cDims[4];

  gbcdDeltas[0] = (gbcdLimits[5] - gbcdLimits[0]) / float(gbcdSizes[0]);
  gbcdDeltas[1] = (gbcdLimits[6] - gbcdLimits[1]) / float(gbcdSizes[1]);
  gbcdDeltas[2] = (gbcdLimits[7] - gbcdLimits[2]) / float(gbcdSizes[2]);
  gbcdDeltas[3] = (gbcdLimits[8] - gbcdLimits[3]) / float(gbcdSizes[3]);
  gbcdDeltas[4] = (gbcdLimits[9] - gbcdLimits[4]) / float(gbcdSizes[4]);

  float vec[3] = { 0.0f, 0.0f, 0.0f };
  float vec2[3] = { 0.0f, 0.0f, 0.0f };
  float rotNormal[3] = { 0.0f, 0.0f, 0.0f };
  float rotNormal2[3] = { 0.0f, 0.0f, 0.0f };
  float sqCoord[2] = { 0.0f, 0.0f };
  float dg[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float dgt[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float dg1[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float dg2[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float sym1[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float sym2[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float sym2t[3][3] = { { 0.0f, 0.0f, 0.0f }, { 0.0f, 0.0f, 0.0f } };
  float mis_euler1[3] = { 0.0f, 0.0f, 0.0f };

  float misAngle = m_MisorientationRotation.angle * SIMPLib::Constants::k_PiOver180;
  float normAxis[3] = { m_MisorientationRotation.h, m_MisorientationRotation.k, m_MisorientationRotation.l };
  MatrixMath::Normalize3x1(normAxis);
  // convert axis angle to matrix representation of misorientation
  FOrientArrayType om(9, 0.0f);
  FOrientTransformsType::ax2om(FOrientArrayType(normAxis[0], normAxis[1], normAxis[2], misAngle), om);
  om.toGMatrix(dg);

  // take inverse of misorientation variable to use for switching symmetry
  MatrixMath::Transpose3x3(dg, dgt);

  // Get our SpaceGroupOps pointer for the selected crystal structure
  SpaceGroupOps::Pointer orientOps = m_OrientationOps[m_CrystalStructures[m_PhaseOfInterest]];

  // get number of symmetry operators
  int32_t n_sym = orientOps->getNumSymOps();

  int32_t xpoints = 100;
  int32_t ypoints = 100;
  int32_t zpoints = 1;
  int32_t xpointshalf = xpoints / 2;
  int32_t ypointshalf = ypoints / 2;
  float xres = 2.0f / float(xpoints);
  float yres = 2.0f / float(ypoints);
  float zres = (xres + yres) / 2.0;
  float x = 0.0f, y = 0.0f;
  float sum = 0;
  int32_t count = 0;
  bool nhCheck = false;
  int32_t hemisphere = 0;

  int32_t shift1 = gbcdSizes[0];
  int32_t shift2 = gbcdSizes[0] * gbcdSizes[1];
  int32_t shift3 = gbcdSizes[0] * gbcdSizes[1] * gbcdSizes[2];
  int32_t shift4 = gbcdSizes[0] * gbcdSizes[1] * gbcdSizes[2] * gbcdSizes[3];

  int64_t totalGBCDBins = gbcdSizes[0] * gbcdSizes[1] * gbcdSizes[2] * gbcdSizes[3] * gbcdSizes[4] * 2;

  QVector<size_t> dims(1, 1);
  DoubleArrayType::Pointer poleFigureArray = DoubleArrayType::NullPointer();
  poleFigureArray = DoubleArrayType::CreateArray(xpoints * ypoints, dims, "PoleFigure");
  poleFigureArray->initializeWithZeros();
  double* poleFigure = poleFigureArray->getPointer(0);

  for (int32_t k = 0; k < ypoints; k++)
  {
    for (int32_t l = 0; l < xpoints; l++)
    {
      // get (x,y) for stereographic projection pixel
      x = float(l - xpointshalf) * xres + (xres / 2.0);
      y = float(k - ypointshalf) * yres + (yres / 2.0);
      if ((x * x + y * y) <= 1.0)
      {
        sum = 0.0f;
        count = 0;
        vec[2] = -((x * x + y * y) - 1) / ((x * x + y * y) + 1);
        vec[0] = x * (1 + vec[2]);
        vec[1] = y * (1 + vec[2]);
        MatrixMath::Multiply3x3with3x1(dgt, vec, vec2);

        // Loop over all the symetry operators in the given cystal symmetry
        for (int32_t i = 0; i < n_sym; i++)
        {
          //get symmetry operator1
          orientOps->getMatSymOp(i, sym1);
          for (int32_t j = 0; j < n_sym; j++)
          {
            // get symmetry operator2
            orientOps->getMatSymOp(j, sym2);
            MatrixMath::Transpose3x3(sym2, sym2t);
            // calculate symmetric misorientation
            MatrixMath::Multiply3x3with3x3(dg, sym2t, dg1);
            MatrixMath::Multiply3x3with3x3(sym1, dg1, dg2);
            // convert to euler angle
            FOrientArrayType eu(mis_euler1, 3);
            FOrientTransformsType::om2eu(FOrientArrayType(dg2), eu);
            if (mis_euler1[0] < SIMPLib::Constants::k_PiOver2 && mis_euler1[1] < SIMPLib::Constants::k_PiOver2 && mis_euler1[2] < SIMPLib::Constants::k_PiOver2)
            {
              mis_euler1[1] = cosf(mis_euler1[1]);
              // find bins in GBCD
              int32_t location1 = int32_t((mis_euler1[0] - gbcdLimits[0]) / gbcdDeltas[0]);
              int32_t location2 = int32_t((mis_euler1[1] - gbcdLimits[1]) / gbcdDeltas[1]);
              int32_t location3 = int32_t((mis_euler1[2] - gbcdLimits[2]) / gbcdDeltas[2]);
              //find symmetric poles using the first symmetry operator
              MatrixMath::Multiply3x3with3x1(sym1, vec, rotNormal);
              //get coordinates in square projection of crystal normal parallel to boundary normal
              nhCheck = getSquareCoord(rotNormal, sqCoord);
              // Note the switch to have theta in the 4 slot and cos(Phi) int he 3 slot
              int32_t location4 = int32_t((sqCoord[0] - gbcdLimits[3]) / gbcdDeltas[3]);
              int32_t location5 = int32_t((sqCoord[1] - gbcdLimits[4]) / gbcdDeltas[4]);
              if (location1 >= 0 && location2 >= 0 && location3 >= 0 && location4 >= 0 && location5 >= 0 &&
                  location1 < gbcdSizes[0] && location2 < gbcdSizes[1] && location3 < gbcdSizes[2] && location4 < gbcdSizes[3] && location5 < gbcdSizes[4])
              {
                hemisphere = 0;
                if (nhCheck == false) { hemisphere = 1; }
                sum += m_GBCD[(m_PhaseOfInterest * totalGBCDBins) + 2 * ((location5 * shift4) + (location4 * shift3) + (location3 * shift2) + (location2 * shift1) + location1) + hemisphere];
                count++;
              }
            }

            // again in second crystal reference frame
            // calculate symmetric misorientation
            MatrixMath::Multiply3x3with3x3(dgt, sym2, dg1);
            MatrixMath::Multiply3x3with3x3(sym1, dg1, dg2);
            // convert to euler angle
            FOrientTransformsType::om2eu(FOrientArrayType(dg2), eu);
            if (mis_euler1[0] < SIMPLib::Constants::k_PiOver2 && mis_euler1[1] < SIMPLib::Constants::k_PiOver2 && mis_euler1[2] < SIMPLib::Constants::k_PiOver2)
            {
              mis_euler1[1] = cosf(mis_euler1[1]);
              // find bins in GBCD
              int32_t location1 = int32_t((mis_euler1[0] - gbcdLimits[0]) / gbcdDeltas[0]);
              int32_t location2 = int32_t((mis_euler1[1] - gbcdLimits[1]) / gbcdDeltas[1]);
              int32_t location3 = int32_t((mis_euler1[2] - gbcdLimits[2]) / gbcdDeltas[2]);
              // find symmetric poles using the first symmetry operator
              MatrixMath::Multiply3x3with3x1(sym1, vec2, rotNormal2);
              // get coordinates in square projection of crystal normal parallel to boundary normal
              nhCheck = getSquareCoord(rotNormal2, sqCoord);
              // Note the switch to have theta in the 4 slot and cos(Phi) int he 3 slot
              int32_t location4 = int32_t((sqCoord[0] - gbcdLimits[3]) / gbcdDeltas[3]);
              int32_t location5 = int32_t((sqCoord[1] - gbcdLimits[4]) / gbcdDeltas[4]);
              if (location1 >= 0 && location2 >= 0 && location3 >= 0 && location4 >= 0 && location5 >= 0 &&
                  location1 < gbcdSizes[0] && location2 < gbcdSizes[1] && location3 < gbcdSizes[2] && location4 < gbcdSizes[3] && location5 < gbcdSizes[4])
              {
                hemisphere = 0;
                if (nhCheck == false) { hemisphere = 1; }
                sum += m_GBCD[(m_PhaseOfInterest * totalGBCDBins) + 2 * ((location5 * shift4) + (location4 * shift3) + (location3 * shift2) + (location2 * shift1) + location1) + hemisphere];
                count++;
              }
            }
          }
        }
        if (count > 0)
        {
          poleFigure[(k * xpoints) + l] = sum / float(count);
        }
      }
    }
  }

  FILE* f = NULL;
  f = fopen(m_OutputFile.toLatin1().data(), "wb");
  if (NULL == f)
  {
    QString ss = QObject::tr("Error opening output file '%1'").arg(m_OutputFile);
    setErrorCondition(-1);
    notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
    return;
  }

  // Write the correct header
  fprintf(f, "# vtk DataFile Version 2.0\n");
  fprintf(f, "data set from DREAM3D\n");
  fprintf(f, "BINARY");
  fprintf(f, "\n");
  fprintf(f, "DATASET RECTILINEAR_GRID\n");
  fprintf(f, "DIMENSIONS %d %d %d\n", xpoints + 1, ypoints + 1, zpoints + 1);

  // Write the Coords
  writeCoords(f, "X_COORDINATES", "float", xpoints + 1, (-float(xpoints)*xres / 2.0f), xres);
  writeCoords(f, "Y_COORDINATES", "float", ypoints + 1, (-float(ypoints)*yres / 2.0f), yres);
  writeCoords(f, "Z_COORDINATES", "float", zpoints + 1, (-float(zpoints)*zres / 2.0f), zres);

  int32_t total = xpoints * ypoints * zpoints;
  fprintf(f, "CELL_DATA %d\n", total);

  fprintf(f, "SCALARS %s %s 1\n", "Intensity", "float");
  fprintf(f, "LOOKUP_TABLE default\n");
  {
    float* gn = new float[total];
    float t;
    count = 0;
    for (int32_t j = 0; j < ypoints; j++)
    {
      for (int32_t i = 0; i < xpoints; i++)
      {
        t = float(poleFigure[(j * xpoints) + i]);
        SIMPLib::Endian::FromSystemToBig::convert(t);
        gn[count] = t;
        count++;
      }
    }
    size_t totalWritten = fwrite(gn, sizeof(float), (total), f);
    delete[] gn;
    if (totalWritten != (total))
    {
      QString ss = QObject::tr("Error writing binary VTK data to file '%1'").arg(m_OutputFile);
      setErrorCondition(-1);
      notifyErrorMessage(getHumanLabel(), ss, getErrorCondition());
      fclose(f);
      return;
    }
  }
  fclose(f);

  /* Let the GUI know we are done with this filter */
  notifyStatusMessage(getHumanLabel(), "Complete");
}