示例#1
0
int IntSet::GetSingle() const
{
	if (!m_set.empty())
	{
		return *m_set.cbegin();
	}
	return 0;
}
示例#2
0
bool IndexPartitionIO::read_regions(const std::set< region_id_t > &regions_to_read, std::map< region_id_t, boost::shared_ptr< RegionEncoding > > &regions) {
	// Validate all regions to read
	const region_count_t num_regions = get_num_regions();
	for (auto it = regions_to_read.cbegin(); it != regions_to_read.cend(); it++) {
		const region_id_t region = *it;
		if (region >= num_regions)
			return false;
	}

	// Read the missing bins, fail if this fails
	return read_regions_impl(regions_to_read, regions);
}
示例#3
0
void BlackListWindow::RefreshBlackList()
{
	m_black_list->RemoveAll();

	const std::set<std::string> black_list = MuteBlackService::GetInstance()->GetBlackList();
	std::list<std::string> account_list(black_list.cbegin(), black_list.cend());

	std::list<nim::UserNameCard> uinfos;
	UserService::GetInstance()->GetUserInfos(account_list, uinfos);
	for (auto iter = uinfos.cbegin(); iter != uinfos.cend(); iter++)
		AddBlackListMember(*iter);
}
示例#4
0
void Detector::CollisionDetected(const std::set<std::shared_ptr<IObject>>& i_objects)
  {
  std::for_each(i_objects.cbegin(), i_objects.cend(), [this](ObjectPtr i_object)
    {
    if (typeid(*i_object.get()) == typeid(Ray))
      {
      m_detector_state = DetectorState::DS_Active;
      m_elapsed_time = 0;
      m_body_color = Color(250, 0, 0, 250);
      }
    });
  }
示例#5
0
std::map<T,std::size_t> factors(T n, const std::set<T> & p)
{
    std::map<T,std::size_t> f;
    auto bound = std::sqrt(n) + 1;
    for (auto i = p.cbegin(); (i != p.cend()) || (*i > bound); ++i) {
        const auto prime = *i;
        std::size_t order = 0;
        for (auto d = n; (d % prime) == 0; d /= prime) {
            ++order;
        }
        if (order) {
            f[prime] = order;
        }
    }
    return f;
}
示例#6
0
		void addObjects(std::set<unsigned long> set) { m_objects.insert(set.cbegin(), set.cend()); }
示例#7
0
int main()
{
    {
        typedef int V;
        V ar[] =
        {
            1,
            1,
            1,
            2,
            2,
            2,
            3,
            3,
            3,
            4,
            4,
            4,
            5,
            5,
            5,
            6,
            6,
            6,
            7,
            7,
            7,
            8,
            8,
            8
        };
        std::set<int> m(ar, ar+sizeof(ar)/sizeof(ar[0]));
        assert(std::distance(m.begin(), m.end()) == m.size());
        assert(std::distance(m.rbegin(), m.rend()) == m.size());
        std::set<int>::iterator i;
        i = m.begin();
        std::set<int>::const_iterator k = i;
        assert(i == k);
        for (int j = 1; j <= m.size(); ++j, ++i)
            assert(*i == j);
    }
    {
        typedef int V;
        V ar[] =
        {
            1,
            1,
            1,
            2,
            2,
            2,
            3,
            3,
            3,
            4,
            4,
            4,
            5,
            5,
            5,
            6,
            6,
            6,
            7,
            7,
            7,
            8,
            8,
            8
        };
        const std::set<int> m(ar, ar+sizeof(ar)/sizeof(ar[0]));
        assert(std::distance(m.begin(), m.end()) == m.size());
        assert(std::distance(m.cbegin(), m.cend()) == m.size());
        assert(std::distance(m.rbegin(), m.rend()) == m.size());
        assert(std::distance(m.crbegin(), m.crend()) == m.size());
        std::set<int>::const_iterator i;
        i = m.begin();
        for (int j = 1; j <= m.size(); ++j, ++i)
            assert(*i == j);
    }
#if TEST_STD_VER >= 11
    {
        typedef int V;
        V ar[] =
        {
            1,
            1,
            1,
            2,
            2,
            2,
            3,
            3,
            3,
            4,
            4,
            4,
            5,
            5,
            5,
            6,
            6,
            6,
            7,
            7,
            7,
            8,
            8,
            8
        };
        std::set<int, std::less<int>, min_allocator<int>> m(ar, ar+sizeof(ar)/sizeof(ar[0]));
        assert(std::distance(m.begin(), m.end()) == m.size());
        assert(std::distance(m.rbegin(), m.rend()) == m.size());
        std::set<int, std::less<int>, min_allocator<int>>::iterator i;
        i = m.begin();
        std::set<int, std::less<int>, min_allocator<int>>::const_iterator k = i;
        assert(i == k);
        for (int j = 1; j <= m.size(); ++j, ++i)
            assert(*i == j);
    }
    {
        typedef int V;
        V ar[] =
        {
            1,
            1,
            1,
            2,
            2,
            2,
            3,
            3,
            3,
            4,
            4,
            4,
            5,
            5,
            5,
            6,
            6,
            6,
            7,
            7,
            7,
            8,
            8,
            8
        };
        const std::set<int, std::less<int>, min_allocator<int>> m(ar, ar+sizeof(ar)/sizeof(ar[0]));
        assert(std::distance(m.begin(), m.end()) == m.size());
        assert(std::distance(m.cbegin(), m.cend()) == m.size());
        assert(std::distance(m.rbegin(), m.rend()) == m.size());
        assert(std::distance(m.crbegin(), m.crend()) == m.size());
        std::set<int, std::less<int>, min_allocator<int>>::const_iterator i;
        i = m.begin();
        for (int j = 1; j <= m.size(); ++j, ++i)
            assert(*i == j);
    }
#endif
#if _LIBCPP_STD_VER > 11
    { // N3644 testing
        typedef std::set<int> C;
        C::iterator ii1{}, ii2{};
        C::iterator ii4 = ii1;
        C::const_iterator cii{};
        assert ( ii1 == ii2 );
        assert ( ii1 == ii4 );

        assert (!(ii1 != ii2 ));

        assert ( (ii1 == cii ));
        assert ( (cii == ii1 ));
        assert (!(ii1 != cii ));
        assert (!(cii != ii1 ));
    }
#endif
}
示例#8
0
template <typename PointInT, typename PointOutT> void
pcl::ROPSEstimation <PointInT, PointOutT>::computeLRF (const PointInT& point, const std::set <unsigned int>& local_triangles, Eigen::Matrix3f& lrf_matrix) const
{
  const unsigned int number_of_triangles = static_cast <unsigned int> (local_triangles.size ());

  std::vector<Eigen::Matrix3f, Eigen::aligned_allocator<Eigen::Matrix3f> > scatter_matrices (number_of_triangles);
  std::vector <float> triangle_area (number_of_triangles);
  std::vector <float> distance_weight (number_of_triangles);

  float total_area = 0.0f;
  const float coeff = 1.0f / 12.0f;
  const float coeff_1_div_3 = 1.0f / 3.0f;

  Eigen::Vector3f feature_point (point.x, point.y, point.z);

  unsigned int i_triangle = 0;
  for (auto it = local_triangles.cbegin (); it != local_triangles.cend (); it++, i_triangle++)
  {
    Eigen::Vector3f pt[3];
    for (unsigned int i_vertex = 0; i_vertex < 3; i_vertex++)
    {
      const unsigned int index = triangles_[*it].vertices[i_vertex];
      pt[i_vertex] (0) = surface_->points[index].x;
      pt[i_vertex] (1) = surface_->points[index].y;
      pt[i_vertex] (2) = surface_->points[index].z;
    }

    const float curr_area = ((pt[1] - pt[0]).cross (pt[2] - pt[0])).norm ();
    triangle_area[i_triangle] = curr_area;
    total_area += curr_area;

    distance_weight[i_triangle] = std::pow (support_radius_ - (feature_point - (pt[0] + pt[1] + pt[2]) * coeff_1_div_3).norm (), 2.0f);

    Eigen::Matrix3f curr_scatter_matrix;
    curr_scatter_matrix.setZero ();
    for (const auto &i_pt : pt)
    {
      Eigen::Vector3f vec = i_pt - feature_point;
      curr_scatter_matrix += vec * (vec.transpose ());
      for (const auto &j_pt : pt)
        curr_scatter_matrix += vec * ((j_pt - feature_point).transpose ());
    }
    scatter_matrices[i_triangle] = coeff * curr_scatter_matrix;
  }

  if (std::abs (total_area) < std::numeric_limits <float>::epsilon ())
    total_area = 1.0f / total_area;
  else
    total_area = 1.0f;

  Eigen::Matrix3f overall_scatter_matrix;
  overall_scatter_matrix.setZero ();
  std::vector<float> total_weight (number_of_triangles);
  const float denominator = 1.0f / 6.0f;
  for (unsigned int i_triangle = 0; i_triangle < number_of_triangles; i_triangle++)
  {
    float factor = distance_weight[i_triangle] * triangle_area[i_triangle] * total_area;
    overall_scatter_matrix += factor * scatter_matrices[i_triangle];
    total_weight[i_triangle] = factor * denominator;
  }

  Eigen::Vector3f v1, v2, v3;
  computeEigenVectors (overall_scatter_matrix, v1, v2, v3);

  float h1 = 0.0f;
  float h3 = 0.0f;
  i_triangle = 0;
  for (auto it = local_triangles.cbegin (); it != local_triangles.cend (); it++, i_triangle++)
  {
    Eigen::Vector3f pt[3];
    for (unsigned int i_vertex = 0; i_vertex < 3; i_vertex++)
    {
      const unsigned int index = triangles_[*it].vertices[i_vertex];
      pt[i_vertex] (0) = surface_->points[index].x;
      pt[i_vertex] (1) = surface_->points[index].y;
      pt[i_vertex] (2) = surface_->points[index].z;
    }

    float factor1 = 0.0f;
    float factor3 = 0.0f;
    for (const auto &i_pt : pt)
    {
      Eigen::Vector3f vec = i_pt - feature_point;
      factor1 += vec.dot (v1);
      factor3 += vec.dot (v3);
    }
    h1 += total_weight[i_triangle] * factor1;
    h3 += total_weight[i_triangle] * factor3;
  }

  if (h1 < 0.0f) v1 = -v1;
  if (h3 < 0.0f) v3 = -v3;

  v2 = v3.cross (v1);

  lrf_matrix.row (0) = v1;
  lrf_matrix.row (1) = v2;
  lrf_matrix.row (2) = v3;
}
示例#9
0
/** Obtain coordinates for a line plot through a MDWorkspace.
 * Cross the workspace from start to end points, recording the signal along the
 *lin at either bin boundaries, or halfway between bin boundaries (which is bin
 *centres if the line is dimension aligned). If recording halfway values then
 *omit points in masked bins.
 *
 * @param start :: coordinates of the start point of the line
 * @param end :: coordinates of the end point of the line
 * @param normalize :: how to normalize the signal
 * @returns :: LinePlot with x as the boundaries of the bins, relative
 * to start of the line, y set to the normalized signal for each bin with
 * Length = length(x) - 1 and e as the error vector for each bin.
 * @param bin_centres :: if true then record points halfway between bin
 *boundaries, otherwise record on bin boundaries
 */
IMDWorkspace::LinePlot MDHistoWorkspace::getLinePoints(
    const Mantid::Kernel::VMD &start, const Mantid::Kernel::VMD &end,
    Mantid::API::MDNormalization normalize, const bool bin_centres) const {
  LinePlot line;

  size_t nd = this->getNumDims();
  if (start.getNumDims() != nd)
    throw std::runtime_error("Start point must have the same number of "
                             "dimensions as the workspace.");
  if (end.getNumDims() != nd)
    throw std::runtime_error(
        "End point must have the same number of dimensions as the workspace.");

  // Unit-vector of the direction
  VMD dir = end - start;
  const auto length = dir.normalize();

// Vector with +1 where direction is positive, -1 where negative
#define sgn(x) ((x < 0) ? -1.0f : ((x > 0.) ? 1.0f : 0.0f))
  VMD dirSign(nd);
  for (size_t d = 0; d < nd; d++) {
    dirSign[d] = sgn(dir[d]);
  }
  const size_t BADINDEX = size_t(-1);

  // Dimensions of the workspace
  boost::scoped_array<size_t> index(new size_t[nd]);
  boost::scoped_array<size_t> numBins(new size_t[nd]);
  for (size_t d = 0; d < nd; d++) {
    IMDDimension_const_sptr dim = this->getDimension(d);
    index[d] = BADINDEX;
    numBins[d] = dim->getNBins();
  }

  const std::set<coord_t> boundaries =
      getBinBoundariesOnLine(start, end, nd, dir, length);

  if (boundaries.empty()) {
    this->makeSinglePointWithNaN(line.x, line.y, line.e);

    // Require x.size() = y.size()+1 if recording bin boundaries
    if (!bin_centres)
      line.x.push_back(length);

    return line;
  } else {
    // Get the first point
    std::set<coord_t>::iterator it;
    it = boundaries.cbegin();

    coord_t lastLinePos = *it;
    VMD lastPos = start + (dir * lastLinePos);
    if (!bin_centres) {
      line.x.push_back(lastLinePos);
    }

    ++it;
    coord_t linePos = 0;
    for (; it != boundaries.cend(); ++it) {
      // This is our current position along the line
      linePos = *it;

      // This is the full position at this boundary
      VMD pos = start + (dir * linePos);

      // Position in the middle of the bin
      VMD middle = (pos + lastPos) * 0.5;

      // Find the signal in this bin
      const auto linearIndex =
          this->getLinearIndexAtCoord(middle.getBareArray());

      if (bin_centres && !this->getIsMaskedAt(linearIndex)) {
        coord_t bin_centrePos =
            static_cast<coord_t>((linePos + lastLinePos) * 0.5);
        line.x.push_back(bin_centrePos);
      } else if (!bin_centres)
        line.x.push_back(linePos);

      if (linearIndex < m_length) {

        auto normalizer = getNormalizationFactor(normalize, linearIndex);
        // And add the normalized signal/error to the list too
        auto signal = this->getSignalAt(linearIndex) * normalizer;
        if (boost::math::isinf(signal)) {
          // The plotting library (qwt) doesn't like infs.
          signal = std::numeric_limits<signal_t>::quiet_NaN();
        }
        if (!bin_centres || !this->getIsMaskedAt(linearIndex)) {
          line.y.push_back(signal);
          line.e.push_back(this->getErrorAt(linearIndex) * normalizer);
        }
        // Save the position for next bin
        lastPos = pos;
      } else {
        // Invalid index. This shouldn't happen
        line.y.push_back(std::numeric_limits<signal_t>::quiet_NaN());
        line.e.push_back(std::numeric_limits<signal_t>::quiet_NaN());
      }

      lastLinePos = linePos;

    } // for each unique boundary

    // If all bins were masked
    if (line.x.size() == 0) {
      this->makeSinglePointWithNaN(line.x, line.y, line.e);
    }
  }
  return line;
}
示例#10
0
void garbageCollectInternalArgumentVectors() {
	for (auto i=lists.cbegin(); i!=lists.cend(); ++i) {
		delete(*i);
	}
	lists.clear();
}
示例#11
0
void KeyMultiValueTagFilter::setValues(const std::set<std::string> & values)
{
	setValues(values.cbegin(), values.cend());
}
示例#12
0
文件: GCode.hpp 项目: alexrj/Slic3r
 void set_extruders(const std::set<T> &extruder_ids) {
     this->set_extruders(extruder_ids.cbegin(), extruder_ids.cend());
 }
示例#13
0
  /**
   * @brief Find the shared tracks between some images ids.
   *
   * @param[in] image_ids: images id to consider
   * @param[out] tracks: tracks shared by the input images id
   */
  bool GetTracksInImages
  (
    const std::set<uint32_t> & image_ids,
    STLMAPTracks & tracks
  )
  {
    tracks.clear();
    if (image_ids.empty())
      return false;

    // Collect the shared tracks ids by the views
    std::set<uint32_t> common_track_ids;
    {
      // Compute the intersection of all the track ids of the view's track ids.
      // 1. Initialize the track_id with the view first tracks
      // 2. Iteratively collect the common id of the remaining requested view
      auto image_index_it = image_ids.cbegin();
      if (track_ids_per_view_.count(*image_index_it))
      {
        common_track_ids = track_ids_per_view_[*image_index_it];
      }
      bool merged = false;
      std::advance(image_index_it, 1);
      while (image_index_it != image_ids.cend())
      {
        if (track_ids_per_view_.count(*image_index_it))
        {
          const auto ids_per_view_it = track_ids_per_view_.find(*image_index_it);
          const auto & track_ids = ids_per_view_it->second;

          std::set<uint32_t> tmp;
          std::set_intersection(
            common_track_ids.cbegin(), common_track_ids.cend(),
            track_ids.cbegin(), track_ids.cend(),
            std::inserter(tmp, tmp.begin()));
          common_track_ids.swap(tmp);
          merged = true;
        }
        std::advance(image_index_it, 1);
      }
      if (image_ids.size() > 1 && !merged)
      {
        // If more than one image id is required and no merge operation have been done
        //  we need to reset the common track id
        common_track_ids.clear();
      }
    }

    // Collect the selected {img id, feat id} data for the shared track ids
    for (const auto track_ids_it : common_track_ids)
    {
      const auto track_it = tracks_.find(track_ids_it);
      const auto & track = track_it->second;
      // Find the corresponding output track and update it
      submapTrack& trackFeatsOut = tracks[track_it->first];
      for (const auto img_index: image_ids)
      {
        const auto track_view_info = track.find(img_index);
        trackFeatsOut[img_index] = track_view_info->second;
      }
    }
    return !tracks.empty();
  }