// element ids / proc_id: // |-------|-------|-------| // | | | | // | 1/0 | 4/2 | 7/2 | // | | | | // |-------|-------|-------| // | | | | // | 2/0 | 5/1 | 8/2 | // | | | | // |-------|-------|-------| // | | | | // | 3/0 | 6/2 | 9/2 | // | | | | // |-------|-------|-------| inline void setupKeyholeMesh3D_case1(stk::mesh::BulkData& bulk) { ThrowRequire(bulk.parallel_size() == 3); stk::io::fill_mesh("generated:3x1x3", bulk); stk::mesh::EntityProcVec elementProcChanges; if (bulk.parallel_rank() == 1) { elementProcChanges.push_back(stk::mesh::EntityProc(bulk.get_entity(stk::topology::ELEM_RANK,4u),2)); elementProcChanges.push_back(stk::mesh::EntityProc(bulk.get_entity(stk::topology::ELEM_RANK,6u),2)); } bulk.change_entity_owner(elementProcChanges); }
void unpack_and_update_part_ordinals(stk::CommSparse &comm, const stk::mesh::BulkData& bulkData, const ElemElemGraph& graph, ParallelPartInfo ¶llelPartInfo) { for(int i=0;i<bulkData.parallel_size();++i) { while(comm.recv_buffer(i).remaining()) { stk::mesh::GraphEdge edge = unpack_edge(comm, bulkData, graph, i); size_t num_ordinals = 0; comm.recv_buffer(i).unpack<size_t>(num_ordinals); std::vector<stk::mesh::PartOrdinal> partOrdinals(num_ordinals); for(stk::mesh::PartOrdinal &partOrdinal : partOrdinals) comm.recv_buffer(i).unpack<stk::mesh::PartOrdinal>(partOrdinal); parallelPartInfo[edge.elem2()] = partOrdinals; } } }
inline void setupKeyholeMesh3D_case2(stk::mesh::BulkData& bulk) { ThrowRequire(bulk.parallel_size() == 3); stk::io::fill_mesh("generated:3x1x3", bulk); stk::mesh::EntityProcVec elementProcChanges; if (bulk.parallel_rank() == 1) { elementProcChanges.push_back(stk::mesh::EntityProc(bulk.get_entity(stk::topology::ELEM_RANK,4),2)); elementProcChanges.push_back(stk::mesh::EntityProc(bulk.get_entity(stk::topology::ELEM_RANK,6),2)); } bulk.change_entity_owner(elementProcChanges); bulk.modification_begin(); if (bulk.parallel_rank() == 1) { stk::mesh::Entity local_element5 = bulk.get_entity(stk::topology::ELEM_RANK,5); const bool delete_success = bulk.destroy_entity(local_element5); ThrowRequire(delete_success); } bulk.modification_end(); }
void use_case_5_generate_mesh( const std::string& mesh_options , stk::mesh::BulkData & mesh , const VectorFieldType & node_coord , stk::mesh::Part & hex_block , stk::mesh::Part & quad_shell_block ) { mesh.modification_begin(); const unsigned parallel_size = mesh.parallel_size(); const unsigned parallel_rank = mesh.parallel_rank(); double t = 0 ; size_t num_hex = 0 ; size_t num_shell = 0 ; size_t num_nodes = 0 ; size_t num_block = 0 ; int error_flag = 0 ; try { Iogn::GeneratedMesh gmesh( mesh_options, parallel_size, parallel_rank ); num_nodes = gmesh.node_count_proc(); num_block = gmesh.block_count(); t = stk::wall_time(); std::vector<int> node_map( num_nodes , 0 ); gmesh.node_map( node_map ); { for ( size_t i = 1 ; i <= num_block ; ++i ) { const size_t num_elem = gmesh.element_count_proc(i); const std::pair<std::string,int> top_info = gmesh.topology_type(i); std::vector<int> elem_map( num_elem , 0 ); std::vector<int> elem_conn( num_elem * top_info.second ); gmesh.element_map( i, elem_map ); gmesh.connectivity( i , elem_conn ); if ( top_info.second == 8 ) { for ( size_t j = 0 ; j < num_elem ; ++j ) { const int * const local_node_id = & elem_conn[ j * 8 ] ; const stk::mesh::EntityId node_id[8] = { local_node_id[0] , local_node_id[1] , local_node_id[2] , local_node_id[3] , local_node_id[4] , local_node_id[5] , local_node_id[6] , local_node_id[7] }; const stk::mesh::EntityId elem_id = elem_map[ j ]; stk::mesh::fem::declare_element( mesh , hex_block , elem_id , node_id ); ++num_hex ; } } else if ( top_info.second == 4 ) { for ( size_t j = 0 ; j < num_elem ; ++j ) { const int * const local_node_id = & elem_conn[ j * 4 ] ; const stk::mesh::EntityId node_id[4] = { local_node_id[0] , local_node_id[1] , local_node_id[2] , local_node_id[3] }; const stk::mesh::EntityId elem_id = elem_map[ j ]; stk::mesh::fem::declare_element( mesh , quad_shell_block , elem_id , node_id ); ++num_shell ; } } } } std::vector<double> node_coordinates( 3 * node_map.size() ); gmesh.coordinates( node_coordinates ); if ( 3 * node_map.size() != node_coordinates.size() ) { std::ostringstream msg ; msg << " P" << mesh.parallel_rank() << ": ERROR, node_map.size() = " << node_map.size() << " , node_coordinates.size() / 3 = " << ( node_coordinates.size() / 3 ); throw std::runtime_error( msg.str() ); } for ( unsigned i = 0 ; i < node_map.size() ; ++i ) { const unsigned i3 = i * 3 ; stk::mesh::Entity * const node = mesh.get_entity( stk::mesh::fem::FEMMetaData::NODE_RANK , node_map[i] ); if ( NULL == node ) { std::ostringstream msg ; msg << " P:" << mesh.parallel_rank() << " ERROR, Node not found: " << node_map[i] << " = node_map[" << i << "]" ; throw std::runtime_error( msg.str() ); } double * const data = field_data( node_coord , *node ); data[0] = node_coordinates[ i3 + 0 ]; data[1] = node_coordinates[ i3 + 1 ]; data[2] = node_coordinates[ i3 + 2 ]; } } catch ( const std::exception & X ) { std::cout << " P:" << mesh.parallel_rank() << ": " << X.what() << std::endl ; std::cout.flush(); error_flag = 1 ; } catch( ... ) { std::cout << " P:" << mesh.parallel_rank() << " Caught unknown exception" << std::endl ; std::cout.flush(); error_flag = 1 ; } stk::all_reduce( mesh.parallel() , stk::ReduceMax<1>( & error_flag ) ); if ( error_flag ) { std::string msg( "Failed mesh generation" ); throw std::runtime_error( msg ); } mesh.modification_end(); double dt = stk::wall_dtime( t ); stk::all_reduce( mesh.parallel() , stk::ReduceMax<1>( & dt ) ); std::cout << " P" << mesh.parallel_rank() << ": Meshed Hex = " << num_hex << " , Shell = " << num_shell << " , Node = " << num_nodes << " in " << dt << " sec" << std::endl ; std::cout.flush(); }
void communicate_field_data( const stk::mesh::BulkData & mesh , const std::vector< const stk::mesh::FieldBase * > & fields ) { if ( fields.empty() ) { return; } const unsigned parallel_size = mesh.parallel_size(); const unsigned parallel_rank = mesh.parallel_rank(); // Sizing for send and receive const unsigned zero = 0 ; std::vector<unsigned> send_size( parallel_size , zero ); std::vector<unsigned> recv_size( parallel_size , zero ); std::vector<unsigned> procs ; for ( std::vector<stk::mesh::Entity*>::const_iterator i = mesh.entity_comm().begin() ; i != mesh.entity_comm().end() ; ++i ) { stk::mesh::Entity & e = **i ; unsigned size = 0 ; for ( std::vector<const stk::mesh::FieldBase *>::const_iterator fi = fields.begin() ; fi != fields.end() ; ++fi ) { const stk::mesh::FieldBase & f = **fi ; size += stk::mesh::field_data_size( f , e ); } if ( size ) { if ( e.owner_rank() == parallel_rank ) { // owner sends stk::mesh::comm_procs( e , procs ); for ( std::vector<unsigned>::iterator ip = procs.begin() ; ip != procs.end() ; ++ip ) { send_size[ *ip ] += size ; } } else { // non-owner receives recv_size[ e.owner_rank() ] += size ; } } } // Allocate send and receive buffers: stk::CommAll sparse ; { const unsigned * const s_size = & send_size[0] ; const unsigned * const r_size = & recv_size[0] ; sparse.allocate_buffers( mesh.parallel(), parallel_size / 4 , s_size, r_size); } // Send packing: for ( std::vector<stk::mesh::Entity*>::const_iterator i = mesh.entity_comm().begin() ; i != mesh.entity_comm().end() ; ++i ) { stk::mesh::Entity & e = **i ; if ( e.owner_rank() == parallel_rank ) { stk::mesh::comm_procs( e , procs ); for ( std::vector<const stk::mesh::FieldBase *>::const_iterator fi = fields.begin() ; fi != fields.end() ; ++fi ) { const stk::mesh::FieldBase & f = **fi ; const unsigned size = stk::mesh::field_data_size( f , e ); if ( size ) { unsigned char * ptr = reinterpret_cast<unsigned char *>(stk::mesh::field_data( f , e )); for ( std::vector<unsigned>::iterator ip = procs.begin() ; ip != procs.end() ; ++ip ) { stk::CommBuffer & b = sparse.send_buffer( *ip ); b.pack<unsigned char>( ptr , size ); } } } } } // Communicate: sparse.communicate(); // Unpack for recv: for ( std::vector<stk::mesh::Entity*>::const_iterator i = mesh.entity_comm().begin() ; i != mesh.entity_comm().end() ; ++i ) { stk::mesh::Entity & e = **i ; if ( e.owner_rank() != parallel_rank ) { for ( std::vector<const stk::mesh::FieldBase *>::const_iterator fi = fields.begin() ; fi != fields.end() ; ++fi ) { const stk::mesh::FieldBase & f = **fi ; const unsigned size = stk::mesh::field_data_size( f , e ); if ( size ) { unsigned char * ptr = reinterpret_cast<unsigned char *>(stk::mesh::field_data( f , e )); stk::CommBuffer & b = sparse.recv_buffer( e.owner_rank() ); b.unpack<unsigned char>( ptr , size ); } } } } }
void Gear::mesh( stk::mesh::BulkData & M ) { stk::mesh::EntityRank element_rank = stk::topology::ELEMENT_RANK; stk::mesh::EntityRank side_rank = m_mesh_meta_data.side_rank(); M.modification_begin(); m_mesh = & M ; const unsigned p_size = M.parallel_size(); const unsigned p_rank = M.parallel_rank(); std::vector<size_t> counts ; stk::mesh::comm_mesh_counts(M, counts); // max_id is no longer available from comm_mesh_stats. // If we assume uniform numbering from 1.., then max_id // should be equal to counts... const stk::mesh::EntityId node_id_base = counts[ stk::topology::NODE_RANK ] + 1 ; const stk::mesh::EntityId elem_id_base = counts[ element_rank ] + 1 ; const unsigned long elem_id_gear_max = m_angle_num * ( m_rad_num - 1 ) * ( m_z_num - 1 ); std::vector<stk::mesh::Part*> elem_parts ; std::vector<stk::mesh::Part*> face_parts ; std::vector<stk::mesh::Part*> node_parts ; { stk::mesh::Part * const p_gear = & m_gear ; stk::mesh::Part * const p_surf = & m_surf ; elem_parts.push_back( p_gear ); face_parts.push_back( p_surf ); } for ( unsigned ia = 0 ; ia < m_angle_num ; ++ia ) { for ( unsigned ir = 0 ; ir < m_rad_num - 1 ; ++ir ) { for ( unsigned iz = 0 ; iz < m_z_num - 1 ; ++iz ) { stk::mesh::EntityId elem_id_gear = identifier( m_z_num-1 , m_rad_num-1 , iz , ir , ia ); if ( ( ( elem_id_gear * p_size ) / elem_id_gear_max ) == p_rank ) { stk::mesh::EntityId elem_id = elem_id_base + elem_id_gear ; // Create the node and set the model_coordinates const size_t ia_1 = ( ia + 1 ) % m_angle_num ; const size_t ir_1 = ir + 1 ; const size_t iz_1 = iz + 1 ; stk::mesh::Entity node[8] ; node[0] = create_node( node_parts, node_id_base, iz , ir , ia_1 ); node[1] = create_node( node_parts, node_id_base, iz_1, ir , ia_1 ); node[2] = create_node( node_parts, node_id_base, iz_1, ir , ia ); node[3] = create_node( node_parts, node_id_base, iz , ir , ia ); node[4] = create_node( node_parts, node_id_base, iz , ir_1, ia_1 ); node[5] = create_node( node_parts, node_id_base, iz_1, ir_1, ia_1 ); node[6] = create_node( node_parts, node_id_base, iz_1, ir_1, ia ); node[7] = create_node( node_parts, node_id_base, iz , ir_1, ia ); #if 0 /* VERIFY_CENTROID */ // Centroid of the element for verification const double TWO_PI = 2.0 * acos( -1.0 ); const double angle = m_ang_inc * (0.5 + ia); const double z = m_center[2] + m_z_min + m_z_inc * (0.5 + iz); double c[3] = { 0 , 0 , 0 }; for ( size_t j = 0 ; j < 8 ; ++j ) { double * const coord_data = field_data( m_model_coord , *node[j] ); c[0] += coord_data[0] ; c[1] += coord_data[1] ; c[2] += coord_data[2] ; } c[0] /= 8 ; c[1] /= 8 ; c[2] /= 8 ; c[0] -= m_center[0] ; c[1] -= m_center[1] ; double val_a = atan2( c[1] , c[0] ); if ( val_a < 0 ) { val_a += TWO_PI ; } const double err_a = angle - val_a ; const double err_z = z - c[2] ; const double eps = 100 * std::numeric_limits<double>::epsilon(); if ( err_z < - eps || eps < err_z || err_a < - eps || eps < err_a ) { std::string msg ; msg.append("problem setup element centroid error" ); throw std::logic_error( msg ); } #endif stk::mesh::Entity elem = M.declare_entity( element_rank, elem_id, elem_parts ); for ( size_t j = 0 ; j < 8 ; ++j ) { M.declare_relation( elem , node[j] , static_cast<unsigned>(j) ); } } } } } // Array of faces on the surface { const size_t ir = m_rad_num - 1 ; for ( size_t ia = 0 ; ia < m_angle_num ; ++ia ) { for ( size_t iz = 0 ; iz < m_z_num - 1 ; ++iz ) { stk::mesh::EntityId elem_id_gear = identifier( m_z_num-1 , m_rad_num-1 , iz , ir-1 , ia ); if ( ( ( elem_id_gear * p_size ) / elem_id_gear_max ) == p_rank ) { stk::mesh::EntityId elem_id = elem_id_base + elem_id_gear ; unsigned face_ord = 5 ; stk::mesh::EntityId face_id = elem_id * 10 + face_ord + 1; stk::mesh::Entity node[4] ; const size_t ia_1 = ( ia + 1 ) % m_angle_num ; const size_t iz_1 = iz + 1 ; node[0] = create_node( node_parts, node_id_base, iz , ir , ia_1 ); node[1] = create_node( node_parts, node_id_base, iz_1, ir , ia_1 ); node[2] = create_node( node_parts, node_id_base, iz_1, ir , ia ); node[3] = create_node( node_parts, node_id_base, iz , ir , ia ); stk::mesh::Entity face = M.declare_entity( side_rank, face_id, face_parts ); for ( size_t j = 0 ; j < 4 ; ++j ) { M.declare_relation( face , node[j] , static_cast<unsigned>(j) ); } stk::mesh::Entity elem = M.get_entity(element_rank, elem_id); M.declare_relation( elem , face , face_ord ); } } } } M.modification_begin(); }
void fixup_ghosted_to_shared_nodes(stk::mesh::BulkData & bulk) { stk::mesh::EntityVector ghosted_nodes_that_are_now_shared; find_ghosted_nodes_that_need_to_be_shared(bulk, ghosted_nodes_that_are_now_shared); stk::CommSparse comm(bulk.parallel()); for (int phase=0;phase<2;++phase) { for (size_t i = 0; i < ghosted_nodes_that_are_now_shared.size(); ++i) { stk::mesh::Entity node = ghosted_nodes_that_are_now_shared[i]; int proc = bulk.parallel_owner_rank(node); comm.send_buffer(proc).pack<stk::mesh::EntityKey>(bulk.entity_key(node)); } if (phase == 0 ) { comm.allocate_buffers(); } else { comm.communicate(); } } stk::mesh::EntityVector sharedNodes; for (int process=0;process<bulk.parallel_size();++process) { while(comm.recv_buffer(process).remaining()) { stk::mesh::EntityKey key; comm.recv_buffer(process).unpack<stk::mesh::EntityKey>(key); stk::mesh::Entity entity = bulk.get_entity(key); if ( bulk.state(entity) != stk::mesh::Deleted && bulk.is_valid(entity) ) { bulk.add_node_sharing(entity, process); sharedNodes.push_back(entity); } } } ///////////////////////// stk::CommSparse commSecondStage(bulk.parallel()); for (int phase=0;phase<2;++phase) { for (size_t i=0;i<sharedNodes.size();++i) { std::vector<int> procs; stk::mesh::EntityKey key = bulk.entity_key(sharedNodes[i]); bulk.comm_shared_procs(key, procs); for (size_t j=0;j<procs.size();++j) { if ( procs[j] != bulk.parallel_rank() ) { commSecondStage.send_buffer(procs[j]).pack<int>(bulk.parallel_rank()).pack<stk::mesh::EntityKey>(key); for (size_t k=0;k<procs.size();++k) { commSecondStage.send_buffer(procs[j]).pack<int>(procs[k]).pack<stk::mesh::EntityKey>(key); } } } } if (phase == 0 ) { commSecondStage.allocate_buffers(); } else { commSecondStage.communicate(); } } for (int proc_that_sent_message=0;proc_that_sent_message<bulk.parallel_size();++proc_that_sent_message) { if ( proc_that_sent_message == bulk.parallel_rank() ) continue; while(commSecondStage.recv_buffer(proc_that_sent_message).remaining()) { stk::mesh::EntityKey key; int sharingProc; commSecondStage.recv_buffer(proc_that_sent_message).unpack<int>(sharingProc).unpack<stk::mesh::EntityKey>(key); if ( sharingProc != bulk.parallel_rank() ) { stk::mesh::Entity entity = bulk.get_entity(key); if ( bulk.state(entity) != stk::mesh::Deleted && bulk.is_valid(entity) && !bulk.in_shared(key, sharingProc) ) { bulk.add_node_sharing(entity, sharingProc); } } } } }
inline void setup2Block2HexMesh(stk::mesh::BulkData& bulk) { // // proc 0 proc 1 // | // block_1 | block_2 // | // 8----7 | 7----12 // / /| | / / | // 5----6 3 | 6----11 10 // | 1 |/ | | 2 | / // 1----2 | 2----9 // | // | // | // //shared nodes 2, 3, 6, 7 // if (bulk.parallel_size() > 2) { return; } stk::mesh::MetaData& meta = bulk.mesh_meta_data(); stk::topology hex = stk::topology::HEX_8; stk::mesh::Part& block_1 = meta.declare_part_with_topology("block_1", hex); stk::mesh::Part& block_2 = meta.declare_part_with_topology("block_2", hex); meta.commit(); bulk.modification_begin(); stk::mesh::EntityIdVector elem1_nodes {1, 2, 3, 4, 5, 6, 7, 8}; stk::mesh::EntityIdVector elem2_nodes {2, 9, 10, 3, 6, 11, 12, 7}; stk::mesh::EntityId elemId = 1; if (bulk.parallel_rank() == 0) { stk::mesh::declare_element(bulk, block_1, elemId, elem1_nodes); } if (bulk.parallel_rank() == 1 || bulk.parallel_size() == 1) { elemId = 2; stk::mesh::declare_element(bulk, block_2, elemId, elem2_nodes); } if(bulk.parallel_rank() == 0 && bulk.parallel_size() == 2) { bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 2), 1); bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 3), 1); bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 6), 1); bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 7), 1); } if(bulk.parallel_rank() == 1 && bulk.parallel_size() == 2) { bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 2), 0); bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 3), 0); bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 6), 0); bulk.add_node_sharing(bulk.get_entity(stk::topology::NODE_RANK , 7), 0); } bulk.modification_end(); }