void Vertices::fillVertexIds(const stk::mesh::BulkData& bulkData, const stk::mesh::EntityVector &entities) { mVertexIds.resize(entities.size(), 0); for(size_t i=0;i<entities.size();++i) mVertexIds[i] = bulkData.identifier(entities[i]); }
void Vertices::fillFieldVertexWeights(const stk::balance::BalanceSettings& balanceSettings, const stk::mesh::BulkData& stkMeshBulkData, const std::vector<stk::mesh::Selector>& selectors, const stk::mesh::EntityVector &entitiesToBalance) { unsigned numSelectors = selectors.size(); unsigned numEntities = entitiesToBalance.size(); unsigned numCriteria = balanceSettings.getNumCriteria(); mVertexWeights.resize(numSelectors*numEntities*numCriteria); for (double &weight : mVertexWeights) { weight = 0.0; } for(size_t i=0;i<entitiesToBalance.size();++i) { for (unsigned sel=0 ; sel<numSelectors ; ++sel) { stk::mesh::Selector selector = selectors[sel]; if (selector(stkMeshBulkData.bucket(entitiesToBalance[i]))) { for(size_t weight_index=0;weight_index<numCriteria;weight_index++) { unsigned index = stk::balance::internal::get_index(numSelectors, numCriteria, i, sel, weight_index); mVertexWeights[index] = balanceSettings.getGraphVertexWeight(entitiesToBalance[i], weight_index);; } } } } }
void Vertices::fillCoordinates(const stk::mesh::BulkData& bulkData, const std::string& coords_field_name, const stk::mesh::EntityVector &entities) { mVertexCoordinates.resize(entities.size()*mSpatialDim, 0); const stk::mesh::FieldBase * coord = bulkData.mesh_meta_data().get_field(stk::topology::NODE_RANK, coords_field_name); for(size_t i=0;i<entities.size();++i) stk::balance::internal::fillEntityCentroid(bulkData, coord, entities[i], &mVertexCoordinates[mSpatialDim*i]); }
OrdinalAndPermutation get_ordinal_and_permutation(const stk::mesh::BulkData& mesh, stk::mesh::Entity parent_entity, stk::mesh::EntityRank to_rank, const stk::mesh::EntityVector &nodes_of_sub_rank) { std::pair<stk::mesh::ConnectivityOrdinal, stk::mesh::Permutation> ordinalAndPermutation = std::make_pair(stk::mesh::INVALID_CONNECTIVITY_ORDINAL, stk::mesh::INVALID_PERMUTATION); unsigned nodes_of_sub_rank_size = nodes_of_sub_rank.size(); const Entity* elemNodes = mesh.begin_nodes(parent_entity); stk::topology elemTopology = mesh.bucket(parent_entity).topology(); unsigned num_entities_of_sub_topology = elemTopology.num_sub_topology(to_rank); unsigned max_nodes_possible = 100; stk::mesh::EntityVector nodes_of_sub_topology; nodes_of_sub_topology.reserve(max_nodes_possible); std::pair<bool, unsigned> result; for (unsigned i=0;i<num_entities_of_sub_topology;++i) { stk::topology sub_topology = elemTopology.sub_topology(to_rank, i); unsigned num_nodes = sub_topology.num_nodes(); if (num_nodes != nodes_of_sub_rank_size) { continue; } ThrowRequireMsg(num_nodes == nodes_of_sub_rank.size(), "AHA! num_nodes != nodes_of_sub_rank.size()"); ThrowRequireMsg(num_nodes<=max_nodes_possible, "Program error. Exceeded expected array dimensions. Contact sierra-help for support."); nodes_of_sub_topology.resize(num_nodes); elemTopology.sub_topology_nodes(elemNodes, to_rank, i, nodes_of_sub_topology.begin()); if (!elemTopology.is_shell() || (to_rank == stk::topology::EDGE_RANK)) { result = sub_topology.equivalent(nodes_of_sub_rank, nodes_of_sub_topology); } else { result = sub_topology.equivalent(nodes_of_sub_rank, nodes_of_sub_topology); if (result.first && result.second >= sub_topology.num_positive_permutations()) { result.first = false; } } if (result.first == true) { ordinalAndPermutation.first = static_cast<stk::mesh::ConnectivityOrdinal>(i); ordinalAndPermutation.second = static_cast<stk::mesh::Permutation>(result.second); } } return ordinalAndPermutation; }
void move_killed_elements_out_of_parts(stk::mesh::BulkData& bulkData, const stk::mesh::EntityVector& killedElements, const stk::mesh::PartVector& removeParts) { std::vector<stk::mesh::PartVector> add_parts(killedElements.size()); std::vector<stk::mesh::PartVector> rm_parts(killedElements.size()); for (size_t j=0;j<killedElements.size();++j) { rm_parts[j] = removeParts; } bulkData.batch_change_entity_parts(killedElements, add_parts, rm_parts); }
void Vertices::fillVertexWeights(const stk::mesh::BulkData& bulkData, const stk::balance::BalanceSettings& balanceSettings, const stk::mesh::EntityVector &entities, const std::vector<stk::mesh::Selector> &selectors) { if(balanceSettings.fieldSpecifiedVertexWeights()) { fillFieldVertexWeights(balanceSettings, bulkData, selectors, entities); } else { mVertexWeights.resize(entities.size(), 0.0); for(size_t i=0;i<entities.size();++i) mVertexWeights[i] = balanceSettings.getGraphVertexWeight(bulkData.bucket(entities[i]).topology()); } }
void add_locally_owned_side_from_element_side_pair(BulkData &bulkData, const SideSetEntry &facet, stk::mesh::EntityVector &sidesetSides, impl::SkinBoundaryErrorReporter &reporter) { Entity side = get_side_entity_for_element_side_pair(bulkData, facet); if(bulkData.is_valid(side) && bulkData.bucket(side).owned()) { sidesetSides.push_back(side); reporter.add_entry(side, facet); } }
inline void deactivate_elements(const stk::mesh::EntityVector &deactivated_elems, stk::mesh::BulkData &bulkData, stk::mesh::Part& active) { bulkData.modification_begin(); for(size_t i = 0; i < deactivated_elems.size(); ++i) { bulkData.change_entity_parts(deactivated_elems[i], stk::mesh::PartVector(), stk::mesh::PartVector(1, &active)); } bulkData.modification_end(); }
stk::mesh::EntityVector get_entity_vector_difference(const stk::mesh::EntityVector & A, const stk::mesh::EntityVector &B) { stk::mesh::EntityVector difference(A.size() + B.size()); stk::mesh::EntityVector::iterator it; it = std::set_difference(A.begin(), A.end(), B.begin(), B.end(), difference.begin()); difference.resize(it - difference.begin()); return difference; }
inline size_t get_entities(stk::mesh::Part &part, stk::mesh::EntityRank type, const stk::mesh::BulkData &bulk, stk::mesh::EntityVector &entities, bool include_shared, const stk::mesh::Selector *subset_selector) { stk::mesh::MetaData & meta = stk::mesh::MetaData::get(part); stk::mesh::Selector own_share = meta.locally_owned_part(); if(include_shared) own_share |= meta.globally_shared_part(); stk::mesh::Selector selector = part & own_share; if(subset_selector) selector &= *subset_selector; get_selected_entities(selector, bulk.buckets(type), entities); return entities.size(); }
void fill_sharing_data(stk::mesh::BulkData& bulkData, stk::mesh::ElemElemGraph &graph, const stk::mesh::EntityVector& sidesThatNeedFixing, std::vector<SideSharingData>& sideSharingDataThisProc, std::vector<stk::mesh::impl::IdViaSidePair>& idAndSides) { // Element 1, side 5: face 15 // Element 2, side 3: face 23 // Are these faces the same? Yes: delete face 23, then connect face 15 to element 2 with negative permutation const stk::mesh::PartOrdinal sharedOrd = bulkData.mesh_meta_data().globally_shared_part().mesh_meta_data_ordinal(); for(size_t i=0;i<sidesThatNeedFixing.size();++i) { stk::mesh::impl::ElementViaSidePair elementAndSide = get_element_and_side_ordinal(bulkData, sidesThatNeedFixing[i]); stk::mesh::impl::LocalId localElemId = graph.get_local_element_id(elementAndSide.element); for(const stk::mesh::GraphEdge& edge : graph.get_edges_for_element(localElemId)) { if(edge.side1() == elementAndSide.side && edge.elem2() < 0) { const stk::mesh::impl::ParallelInfo &pInfo = graph.get_parallel_info_for_graph_edge(edge); const stk::mesh::Entity* nodes = bulkData.begin_nodes(sidesThatNeedFixing[i]); unsigned numNodes = bulkData.num_nodes(sidesThatNeedFixing[i]); SideSharingData localTemp({bulkData.identifier(elementAndSide.element), elementAndSide.side}, sidesThatNeedFixing[i], pInfo.get_proc_rank_of_neighbor(), std::min(bulkData.parallel_rank(),pInfo.get_proc_rank_of_neighbor()), bulkData.identifier(sidesThatNeedFixing[i])); localTemp.sideNodes.resize(numNodes); for(unsigned j=0; j<numNodes; ++j) { localTemp.sideNodes[j] = bulkData.identifier(nodes[j]); } fill_part_ordinals_besides_owned_and_shared(bulkData.bucket(sidesThatNeedFixing[i]), sharedOrd, localTemp.partOrdinals); sideSharingDataThisProc.push_back(localTemp); stk::mesh::EntityId localId = -edge.elem2(); idAndSides.push_back({localId, edge.side2()}); } } } }
stk::mesh::Entity declare_element_to_sub_topology_with_nodes(stk::mesh::BulkData &mesh, stk::mesh::Entity elem, stk::mesh::EntityVector &sub_topology_nodes, stk::mesh::EntityId global_sub_topology_id, stk::mesh::EntityRank to_rank, stk::mesh::Part &part) { std::pair<stk::mesh::ConnectivityOrdinal, stk::mesh::Permutation> ordinalAndPermutation = get_ordinal_and_permutation(mesh, elem, to_rank, sub_topology_nodes); if ((ordinalAndPermutation.first == stk::mesh::ConnectivityOrdinal::INVALID_CONNECTIVITY_ORDINAL) || (ordinalAndPermutation.second == stk::mesh::Permutation::INVALID_PERMUTATION)) { stk::mesh::Entity invalid; invalid = stk::mesh::Entity::InvalidEntity; return invalid; } stk::mesh::Entity side = mesh.declare_entity(to_rank, global_sub_topology_id, part); for (unsigned i=0;i<sub_topology_nodes.size();++i) { mesh.declare_relation(side, sub_topology_nodes[i], i); } mesh.declare_relation(elem, side, ordinalAndPermutation.first, ordinalAndPermutation.second); return side; }
void find_ghosted_nodes_that_need_to_be_shared(const stk::mesh::BulkData & bulk, stk::mesh::EntityVector& ghosted_nodes_that_are_now_shared) { stk::mesh::EntityRank endRank = static_cast<stk::mesh::EntityRank>(bulk.mesh_meta_data().entity_rank_count()); if (endRank >= stk::topology::END_RANK) { endRank = stk::topology::END_RANK; } for (stk::mesh::EntityRank rank=stk::topology::EDGE_RANK; rank<endRank; ++rank) { const stk::mesh::BucketVector& entity_buckets = bulk.buckets(rank); for(size_t i=0; i<entity_buckets.size(); ++i) { const stk::mesh::Bucket& bucket = *entity_buckets[i]; if ( bucket.owned() ) { for(size_t n=0; n<bucket.size(); ++n) { const stk::mesh::Entity * nodes = bulk.begin_nodes(bucket[n]); unsigned num_nodes = bulk.num_nodes(bucket[n]); for (unsigned j=0;j<num_nodes;++j) { if (bulk.in_receive_ghost(bulk.entity_key(nodes[j]))) { ghosted_nodes_that_are_now_shared.push_back(nodes[j]); } } } } } } std::sort(ghosted_nodes_that_are_now_shared.begin(), ghosted_nodes_that_are_now_shared.end()); stk::mesh::EntityVector::iterator iter = std::unique(ghosted_nodes_that_are_now_shared.begin(), ghosted_nodes_that_are_now_shared.end()); ghosted_nodes_that_are_now_shared.erase(iter, ghosted_nodes_that_are_now_shared.end()); }
void fill_element_and_side_ids(Ioss::GroupingEntity & io, stk::mesh::Part * const part, const stk::mesh::BulkData & bulk_data, stk::topology stk_element_topology, const stk::mesh::Selector *subset_selector, stk::mesh::EntityVector &sides, std::vector<INT>& elem_side_ids) { if (bulk_data.has_sideset_data()) { const stk::mesh::SideSet& sset = bulk_data.get_sideset_data(part->id()); size_t num_sides = sset.size(); elem_side_ids.reserve(num_sides*2); stk::mesh::Selector selector = *part & ( bulk_data.mesh_meta_data().locally_owned_part() | bulk_data.mesh_meta_data().globally_shared_part() ); if(subset_selector) selector &= *subset_selector; for(size_t i=0;i<sset.size();++i) { stk::mesh::Entity element = sset[i].element; stk::mesh::EntityId elemId = bulk_data.identifier(element); int zero_based_side_ord = sset[i].side; stk::mesh::Entity side = stk::mesh::get_side_entity_for_elem_id_side_pair_of_rank(bulk_data, elemId, zero_based_side_ord, bulk_data.mesh_meta_data().side_rank()); if(bulk_data.is_valid(side)) { if(selector(bulk_data.bucket(side))) { if(bulk_data.bucket(element).topology() == stk_element_topology) { elem_side_ids.push_back(elemId); elem_side_ids.push_back(zero_based_side_ord+1); sides.push_back(side); } } } } } else { const stk::mesh::MetaData & meta_data = stk::mesh::MetaData::get(*part); stk::mesh::EntityRank type = part_primary_entity_rank(*part); size_t num_sides = get_entities(*part, type, bulk_data, sides, false, subset_selector); elem_side_ids.reserve(num_sides * 2); stk::mesh::EntityRank elem_rank = stk::topology::ELEMENT_RANK; for(size_t i = 0; i < num_sides; ++i) { std::vector<stk::mesh::Entity> side; side.push_back(sides[i]); std::vector<stk::mesh::Entity> side_elements; std::vector<stk::mesh::Entity> side_nodes(bulk_data.begin_nodes(sides[i]), bulk_data.end_nodes(sides[i])); get_entities_through_relations(bulk_data, side_nodes, elem_rank, side_elements); const size_t num_side_elem = side_elements.size(); std::sort(side_elements.begin(), side_elements.end(), stk::mesh::EntityLess(bulk_data)); stk::mesh::Entity suitable_elem = stk::mesh::Entity(); stk::mesh::ConnectivityOrdinal suitable_ordinal = stk::mesh::INVALID_CONNECTIVITY_ORDINAL; for(size_t j = 0; j < num_side_elem; ++j) { const stk::mesh::Entity elem = side_elements[j]; const stk::mesh::Bucket &elemBucket = bulk_data.bucket(elem); const bool isSelectingEverything = subset_selector == NULL; const bool isElementBeingOutput = (isSelectingEverything || (*subset_selector)(elemBucket)) && elemBucket.member(meta_data.locally_owned_part()); if(isElementBeingOutput) { const stk::mesh::Entity * elem_sides = bulk_data.begin(elem, type); stk::mesh::ConnectivityOrdinal const * side_ordinal = bulk_data.begin_ordinals(elem, type); const size_t num_elem_sides = bulk_data.num_connectivity(elem, type); for(size_t k = 0; k < num_elem_sides; ++k) { if(elem_sides[k] == side[0]) { suitable_elem = elem; suitable_ordinal = side_ordinal[k]; break; } } } } if(!bulk_data.is_valid(suitable_elem)) { std::ostringstream oss; oss << "ERROR, no suitable element found"; throw std::runtime_error(oss.str()); } elem_side_ids.push_back(bulk_data.identifier(suitable_elem)); elem_side_ids.push_back(suitable_ordinal + 1); // Ioss is 1-based, mesh is 0-based. } } }
stk::mesh::EntityVector get_elements_connected_to_all_nodes(const BulkDataFaceSharingTester& bulkData, const stk::mesh::EntityVector& nodes) { stk::mesh::EntityVector elements; stk::mesh::impl::find_locally_owned_elements_these_nodes_have_in_common(bulkData, nodes.size(), nodes.data(), elements); return elements; }