示例#1
0
//----------------------------------------------------------------------------
//
// Random fracture criterion function.
//
bool
RandomCriterion::computeFractureCriterion(stk_classic::mesh::Entity& entity, double p) {

  // Fracture only defined on the boundary of the elements
  stk_classic::mesh::EntityRank rank = entity.entity_rank();
  assert(rank == num_dim_ - 1);

  stk_classic::mesh::PairIterRelation neighbor_elems =
    entity.relations(element_rank_);

  // Need an element on each side
  if(neighbor_elems.size() != 2)
    return false;

  bool is_open = false;

  // All we need to do is generate a number between 0 and 1
  double random = 0.5 + 0.5 * Teuchos::ScalarTraits<double>::random();

  if(random < p) {
    is_open = true;
  }

  return is_open;
}
示例#2
0
    void TestLocalRefiner::
    refineMethodApply(NodeRegistry::ElementFunctionPrototype function, const stk_classic::mesh::Entity& element, vector<NeededEntityType>& needed_entity_ranks)
    {
      const CellTopologyData * const cell_topo_data = stk_classic::percept::PerceptMesh::get_cell_topology(element);
                
      CellTopology cell_topo(cell_topo_data);
      const mesh::PairIterRelation elem_nodes = element.relations(stk_classic::mesh::fem::FEMMetaData::NODE_RANK);

      for (unsigned ineed_ent=0; ineed_ent < needed_entity_ranks.size(); ineed_ent++)
        {
          unsigned numSubDimNeededEntities = 0;
          stk_classic::mesh::EntityRank needed_entity_rank = needed_entity_ranks[ineed_ent].first;

          if (needed_entity_rank == m_eMesh.edge_rank())
            {
              numSubDimNeededEntities = cell_topo_data->edge_count;
            }
          else if (needed_entity_rank == m_eMesh.face_rank())
            {
              numSubDimNeededEntities = cell_topo_data->side_count;
            }
          else if (needed_entity_rank == m_eMesh.element_rank())
            {
              numSubDimNeededEntities = 1;
            }

          for (unsigned iSubDimOrd = 0; iSubDimOrd < numSubDimNeededEntities; iSubDimOrd++)
            {
              /// note: at this level of granularity we can do single edge refinement, hanging nodes, etc.
              //SubDimCell_SDSEntityType subDimEntity;
              //getSubDimEntity(subDimEntity, element, needed_entity_rank, iSubDimOrd);
              //bool is_empty = m_nodeRegistry->is_empty( element, needed_entity_rank, iSubDimOrd);
              //if(1||!is_empty)

              (m_nodeRegistry ->* function)(element, needed_entity_ranks[ineed_ent], iSubDimOrd, true);

            } // iSubDimOrd
        } // ineed_ent
    }
      void 
      createNewElements(percept::PerceptMesh& eMesh, NodeRegistry& nodeRegistry, 
                        stk_classic::mesh::Entity& element,  NewSubEntityNodesType& new_sub_entity_nodes, vector<stk_classic::mesh::Entity *>::iterator& element_pool,
                        stk_classic::mesh::FieldBase *proc_rank_field=0)
      {
        const CellTopologyData * const cell_topo_data = stk_classic::percept::PerceptMesh::get_cell_topology(element);
        typedef boost::tuple<stk_classic::mesh::EntityId, stk_classic::mesh::EntityId, stk_classic::mesh::EntityId> tri_tuple_type;
        static vector<tri_tuple_type> elems(6);

        CellTopology cell_topo(cell_topo_data);
        const stk_classic::mesh::PairIterRelation elem_nodes = element.relations(stk_classic::mesh::fem::FEMMetaData::NODE_RANK);

        //stk_classic::mesh::Part & active = mesh->ActivePart();
        //stk_classic::mesh::Part & quad4  = mesh->QuadPart();

        std::vector<stk_classic::mesh::Part*> add_parts;
        std::vector<stk_classic::mesh::Part*> remove_parts;

        //add_parts.push_back( &active );
        //FIXME 
        //add_parts.push_back( const_cast<mesh::Part*>( eMesh.getPart(m_toTopoPartName) ));
        add_parts = m_toParts;
        
        /**
           \node[above] at (p4.side 1){2};
           \node[left] at (p4.side 2){3};
           \node[below] at (p4.side 3){0};
           \node[right] at (p4.side 4){1};
        */



        double tmp_x[3];
        for (int iedge = 0; iedge < 4; iedge++)
          {
            double * mp = midPoint(EDGE_COORD(iedge,0), EDGE_COORD(iedge,1), eMesh.get_spatial_dim(), tmp_x);

            if (!EDGE_N(iedge))
              {
                std::cout << "P[" << eMesh.get_rank() << " nid ## = 0 << " << std::endl;
              }
            eMesh.createOrGetNode(EDGE_N(iedge), mp);

          }


        elems[0] = tri_tuple_type(VERT_N(0), EDGE_N(0), EDGE_N(3));
        elems[1] = tri_tuple_type(VERT_N(1), EDGE_N(1), EDGE_N(0));
        elems[2] = tri_tuple_type(EDGE_N(0), EDGE_N(1), EDGE_N(3));

        elems[3] = tri_tuple_type(VERT_N(2), EDGE_N(2), EDGE_N(1));
        elems[4] = tri_tuple_type(VERT_N(3), EDGE_N(3), EDGE_N(2));
        elems[5] = tri_tuple_type(EDGE_N(2), EDGE_N(3), EDGE_N(1));

        // write a diagram of the refinement pattern as a vtk file, or a latex/tikz/pgf file
#define WRITE_DIAGRAM 0
#if WRITE_DIAGRAM

#endif
        
        for (unsigned ielem=0; ielem < elems.size(); ielem++)
          {
            //stk_classic::mesh::Entity& newElement = eMesh.get_bulk_data()->declare_entity(Element, *element_id_pool, eMesh.getPart(interface_table::shards_Triangle_3) );
            //stk_classic::mesh::Entity& newElement = eMesh.get_bulk_data()->declare_entity(Element, *element_id_pool, eMesh.getPart(interface_table::shards_Triangle_3) );

            stk_classic::mesh::Entity& newElement = *(*element_pool);

            if (proc_rank_field)
              {
                double *fdata = stk_classic::mesh::field_data( *static_cast<const ScalarFieldType *>(proc_rank_field) , newElement );
                //fdata[0] = double(m_eMesh.get_rank());
                fdata[0] = double(newElement.owner_rank());
              }

            //eMesh.get_bulk_data()->change_entity_parts( newElement, add_parts, remove_parts );
            change_entity_parts(eMesh, element, newElement);

            {
              if (!elems[ielem].get<0>())
                {
                  std::cout << "P[" << eMesh.get_rank() << " nid = 0 << " << std::endl;
                  exit(1);
                }

            }
            eMesh.get_bulk_data()->declare_relation(newElement, eMesh.createOrGetNode(elems[ielem].get<0>()), 0);
            eMesh.get_bulk_data()->declare_relation(newElement, eMesh.createOrGetNode(elems[ielem].get<1>()), 1);
            eMesh.get_bulk_data()->declare_relation(newElement, eMesh.createOrGetNode(elems[ielem].get<2>()), 2);

            set_parent_child_relations(eMesh, element, newElement, ielem);


            element_pool++;

          }

      }
      void 
      createNewElements(percept::PerceptMesh& eMesh, NodeRegistry& nodeRegistry, 
                        stk_classic::mesh::Entity& element,  NewSubEntityNodesType& new_sub_entity_nodes, vector<stk_classic::mesh::Entity *>::iterator& element_pool,
                        stk_classic::mesh::FieldBase *proc_rank_field=0)
      {
        const CellTopologyData * const cell_topo_data = stk_classic::percept::PerceptMesh::get_cell_topology(element);
        typedef boost::tuple<stk_classic::mesh::EntityId, stk_classic::mesh::EntityId, stk_classic::mesh::EntityId> tri_tuple_type;
        static vector<tri_tuple_type> elems(4);

        CellTopology cell_topo(cell_topo_data);
        const stk_classic::mesh::PairIterRelation elem_nodes = element.relations(stk_classic::mesh::fem::FEMMetaData::NODE_RANK);

        //stk_classic::mesh::Part & active = mesh->ActivePart();
        //stk_classic::mesh::Part & quad4  = mesh->QuadPart();

        std::vector<stk_classic::mesh::Part*> add_parts;
        std::vector<stk_classic::mesh::Part*> remove_parts;

        add_parts = m_toParts;
        
        //std::cout << "P["<< m_eMesh.get_rank() << "] add_parts = " << add_parts << std::endl;

        stk_classic::mesh::EntityRank my_rank = m_primaryEntityRank;

        nodeRegistry.makeCentroidCoords(*const_cast<stk_classic::mesh::Entity *>(&element), my_rank, 0u);
        nodeRegistry.addToExistingParts(*const_cast<stk_classic::mesh::Entity *>(&element), my_rank, 0u);
        nodeRegistry.interpolateFields(*const_cast<stk_classic::mesh::Entity *>(&element), my_rank, 0u);
        
#define CENTROID_N NN(m_primaryEntityRank, 0)  

        elems[0] = tri_tuple_type(VERT_N(0), VERT_N(1), CENTROID_N);
        elems[1] = tri_tuple_type(VERT_N(1), VERT_N(2), CENTROID_N);
        elems[2] = tri_tuple_type(VERT_N(2), VERT_N(3), CENTROID_N);
        elems[3] = tri_tuple_type(VERT_N(3), VERT_N(0), CENTROID_N);

#undef CENTROID_N

        // write a diagram of the refinement pattern as a vtk file, or a latex/tikz/pgf file
#define WRITE_DIAGRAM 0
#if WRITE_DIAGRAM

        /**
           \node[above] at (p4.side 1){2};
           \node[left] at (p4.side 2){3};
           \node[below] at (p4.side 3){0};
           \node[right] at (p4.side 4){1};
        */

#endif
        
        for (unsigned ielem=0; ielem < elems.size(); ielem++)
          {
            stk_classic::mesh::Entity& newElement = *(*element_pool);

            //std::cout << "P["<< m_eMesh.get_rank() << "] urp tmp 3 "  << proc_rank_field << std::endl;
            if (proc_rank_field && element.entity_rank() == m_eMesh.element_rank())
              {
                double *fdata = stk_classic::mesh::field_data( *static_cast<const ScalarFieldType *>(proc_rank_field) , newElement );
                fdata[0] = double(newElement.owner_rank());
              }

            //std::cout << "P["<< m_eMesh.get_rank() << "] urp tmp 4 "  << std::endl;
            change_entity_parts(eMesh, element, newElement);

            //std::cout << "P["<< m_eMesh.get_rank() << "] urp tmp 5 "  << std::endl;

            {
              if (!elems[ielem].get<0>())
                {
                  std::cout << "P[" << eMesh.get_rank() << " nid = 0 << " << std::endl;
                  exit(1);
                }

            }
            //std::cout << "P["<< m_eMesh.get_rank() << "] urp tmp 6 "  << std::endl;

            eMesh.get_bulk_data()->declare_relation(newElement, eMesh.createOrGetNode(elems[ielem].get<0>()), 0);
            eMesh.get_bulk_data()->declare_relation(newElement, eMesh.createOrGetNode(elems[ielem].get<1>()), 1);
            eMesh.get_bulk_data()->declare_relation(newElement, eMesh.createOrGetNode(elems[ielem].get<2>()), 2);

            //std::cout << "P["<< m_eMesh.get_rank() << "] urp tmp 7 "  << std::endl;
            set_parent_child_relations(eMesh, element, newElement, ielem);

            element_pool++;

          }

      }
      void 
      createNewElements(percept::PerceptMesh& eMesh, NodeRegistry& nodeRegistry, 
                        stk_classic::mesh::Entity& element,  NewSubEntityNodesType& new_sub_entity_nodes, vector<stk_classic::mesh::Entity *>::iterator& element_pool,
                        stk_classic::mesh::FieldBase *proc_rank_field=0)
      {
        const CellTopologyData * const cell_topo_data = stk_classic::percept::PerceptMesh::get_cell_topology(element);
        typedef boost::tuple<stk_classic::mesh::EntityId, stk_classic::mesh::EntityId> line_tuple_type;
        static vector<line_tuple_type> elems(2);

        CellTopology cell_topo(cell_topo_data);
        const stk_classic::mesh::PairIterRelation elem_nodes = element.relations(stk_classic::mesh::fem::FEMMetaData::NODE_RANK);

        std::vector<stk_classic::mesh::Part*> add_parts;
        std::vector<stk_classic::mesh::Part*> remove_parts;

        add_parts = m_toParts;
        
        double coord_x[3];
        for (int iedge = 0; iedge < 1; iedge++)
          {
            //double * mp = midPoint(EDGE_COORD(iedge,0), EDGE_COORD(iedge,1), eMesh.get_spatial_dim(), coord_x);
            //double * mp = midPoint(FACE_COORD(iedge,0), FACE_COORD(iedge,1), eMesh.get_spatial_dim(), coord_x);
            double * mp = midPoint(VERT_COORD(0), VERT_COORD(1), eMesh.get_spatial_dim(), coord_x);

            if (!EDGE_N(iedge))
              {
                std::cout << "P[" << eMesh.get_rank() << " nid ## = 0  " << std::endl;
              }

            eMesh.createOrGetNode(EDGE_N(iedge), mp);
          }

        // FIXME
        nodeRegistry.makeCentroidCoords(*const_cast<stk_classic::mesh::Entity *>(&element), m_primaryEntityRank, 0u);
        nodeRegistry.addToExistingParts(*const_cast<stk_classic::mesh::Entity *>(&element), m_primaryEntityRank, 0u);

        nodeRegistry.interpolateFields(*const_cast<stk_classic::mesh::Entity *>(&element), m_primaryEntityRank, 0u);

        Elem::CellTopology elem_celltopo = Elem::getCellTopology< FromTopology >();
        const Elem::RefinementTopology* ref_topo_p = Elem::getRefinementTopology(elem_celltopo);
        const Elem::RefinementTopology& ref_topo = *ref_topo_p;

#ifndef NDEBUG
        unsigned num_child = ref_topo.num_child();
        VERIFY_OP(num_child, == , 2, "createNewElements num_child problem");
        bool homogeneous_child = ref_topo.homogeneous_child();
        VERIFY_OP(homogeneous_child, ==, true, "createNewElements homogeneous_child");
#endif

        // new_sub_entity_nodes[i][j]
        //const UInt * const * child_nodes() const {
        //const UInt * child_node_0 = ref_topo.child_node(0);

        typedef Elem::StdMeshObjTopologies::RefTopoX RefTopoX;
        RefTopoX& l2 = Elem::StdMeshObjTopologies::RefinementTopologyExtra< FromTopology > ::refinement_topology;

#define CENTROID_N NN(m_primaryEntityRank,0)  

        for (unsigned iChild = 0; iChild < 2; iChild++)
          {
            unsigned EN[2];
            for (unsigned jNode = 0; jNode < 2; jNode++)
              {
                unsigned childNodeIdx = ref_topo.child_node(iChild)[jNode];
#ifndef NDEBUG
                unsigned childNodeIdxCheck = l2[childNodeIdx].ordinal_of_node;
                VERIFY_OP(childNodeIdx, ==, childNodeIdxCheck, "childNodeIdxCheck");
#endif
                unsigned inode=0;

                if (l2[childNodeIdx].rank_of_subcell == 0)
                  inode = VERT_N(l2[childNodeIdx].ordinal_of_subcell);
                else if (l2[childNodeIdx].rank_of_subcell == 1)
                  inode = EDGE_N(l2[childNodeIdx].ordinal_of_subcell);

                //                 else if (l2[childNodeIdx].rank_of_subcell == 2)
                //                   inode = CENTROID_N;

                EN[jNode] = inode;
              }
            elems[iChild] = line_tuple_type(EN[0], EN[1]);
          }

#undef CENTROID_N

        // write a diagram of the refinement pattern as a vtk file, or a latex/tikz/pgf file
#define WRITE_DIAGRAM 0
#if WRITE_DIAGRAM

#endif

        for (unsigned ielem=0; ielem < elems.size(); ielem++)
          {
            stk_classic::mesh::Entity& newElement = *(*element_pool);

#if 0
            if (proc_rank_field && proc_rank_field->rank() == m_eMesh.edge_rank()) //&& m_eMesh.get_spatial_dim()==1)
              {
                double *fdata = stk_classic::mesh::field_data( *static_cast<const ScalarFieldType *>(proc_rank_field) , newElement );
                //fdata[0] = double(m_eMesh.get_rank());
                fdata[0] = double(newElement.owner_rank());
              }
#endif
            stk_classic::mesh::FieldBase * proc_rank_field_edge = m_eMesh.get_field("proc_rank_edge");
            if (proc_rank_field_edge)
              {
                double *fdata = stk_classic::mesh::field_data( *static_cast<const ScalarFieldType *>(proc_rank_field_edge) , newElement );
                fdata[0] = double(newElement.owner_rank());
                //fdata[0] = 1234.56;
                if (0)
                std::cout << "P[" << m_eMesh.get_rank() << "] tmp set proc_rank_field_edge to value = " << newElement.owner_rank() 
                          << " for side element = " << newElement.identifier()
                          << std::endl;
              }

            //eMesh.get_bulk_data()->change_entity_parts( newElement, add_parts, remove_parts );

            change_entity_parts(eMesh, element, newElement);

            {
              if (!elems[ielem].get<0>())
                {
                  std::cout << "P[" << eMesh.get_rank() << " nid = 0  " << std::endl;
                  exit(1);
                }

            }

            eMesh.get_bulk_data()->declare_relation(newElement, eMesh.createOrGetNode(elems[ielem].get<0>()), 0);
            eMesh.get_bulk_data()->declare_relation(newElement, eMesh.createOrGetNode(elems[ielem].get<1>()), 1);

            set_parent_child_relations(eMesh, element, newElement, ielem);


            element_pool++;

          }

      }
示例#6
0
    void TestLocalRefinerTri2::
    refineMethodApply(NodeRegistry::ElementFunctionPrototype function, const stk_classic::mesh::Entity& element, vector<NeededEntityType>& needed_entity_ranks)
    {
      const CellTopologyData * const cell_topo_data = stk_classic::percept::PerceptMesh::get_cell_topology(element);
                
      CellTopology cell_topo(cell_topo_data);
      const mesh::PairIterRelation elem_nodes = element.relations(stk_classic::mesh::fem::FEMMetaData::NODE_RANK);

      VectorFieldType* coordField = m_eMesh.get_coordinates_field();

      for (unsigned ineed_ent=0; ineed_ent < needed_entity_ranks.size(); ineed_ent++)
        {
          unsigned numSubDimNeededEntities = 0;
          stk_classic::mesh::EntityRank needed_entity_rank = needed_entity_ranks[ineed_ent].first;

          if (needed_entity_rank == m_eMesh.edge_rank())
            {
              numSubDimNeededEntities = cell_topo_data->edge_count;
            }
          else if (needed_entity_rank == m_eMesh.face_rank())
            {
              numSubDimNeededEntities = cell_topo_data->side_count;
            }
          else if (needed_entity_rank == m_eMesh.element_rank())
            {
              numSubDimNeededEntities = 1;
            }

          // see how many edges are already marked
          int num_marked=0;
          if (needed_entity_rank == m_eMesh.edge_rank())
            {
              for (unsigned iSubDimOrd = 0; iSubDimOrd < numSubDimNeededEntities; iSubDimOrd++)
                {
                  bool is_empty = m_nodeRegistry->is_empty( element, needed_entity_rank, iSubDimOrd);
                  if (!is_empty) ++num_marked;
                }
            }

          for (unsigned iSubDimOrd = 0; iSubDimOrd < numSubDimNeededEntities; iSubDimOrd++)
            {
              /// note: at this level of granularity we can do single edge refinement, hanging nodes, etc.
              //SubDimCell_SDSEntityType subDimEntity;
              //getSubDimEntity(subDimEntity, element, needed_entity_rank, iSubDimOrd);
              //bool is_empty = m_nodeRegistry->is_empty( element, needed_entity_rank, iSubDimOrd);
              //if(1||!is_empty)

              if (needed_entity_rank == m_eMesh.edge_rank())
                {
                  stk_classic::mesh::Entity & node0 = *elem_nodes[cell_topo_data->edge[iSubDimOrd].node[0]].entity();
                  stk_classic::mesh::Entity & node1 = *elem_nodes[cell_topo_data->edge[iSubDimOrd].node[1]].entity();
                  double * const coord0 = stk_classic::mesh::field_data( *coordField , node0 );
                  double * const coord1 = stk_classic::mesh::field_data( *coordField , node1 );

                  // only refine diagonals of the split quads
                  if (m_diagonals)
                    {
                  if ( std::abs(coord0[0]-coord1[0]) > 1.e-3 && std::abs(coord0[1]-coord1[1]) > 1.e-3 )
                    {
                      (m_nodeRegistry ->* function)(element, needed_entity_ranks[ineed_ent], iSubDimOrd, true);
                    }
                    }
                  else
                    {
                      if ( std::abs(coord0[0]-coord1[0]) < 1.e-3 && std::abs(coord0[1]-coord1[1]) > 1.e-3 )
                        {
                          (m_nodeRegistry ->* function)(element, needed_entity_ranks[ineed_ent], iSubDimOrd, true);
                        }
                    }
                }

            } // iSubDimOrd
        } // ineed_ent
    }
    void TestLocalRefinerTet_N_3_1::
    refineMethodApply(NodeRegistry::ElementFunctionPrototype function, const stk_classic::mesh::Entity& element, vector<NeededEntityType>& needed_entity_ranks)
    {
      //static int n_seq = 400;

      const CellTopologyData * const cell_topo_data = stk_classic::percept::PerceptMesh::get_cell_topology(element);
                
      CellTopology cell_topo(cell_topo_data);
      const mesh::PairIterRelation elem_nodes = element.relations(stk_classic::mesh::fem::FEMMetaData::NODE_RANK);

      //VectorFieldType* coordField = m_eMesh.get_coordinates_field();

      for (unsigned ineed_ent=0; ineed_ent < needed_entity_ranks.size(); ineed_ent++)
        {
          unsigned numSubDimNeededEntities = 0;
          stk_classic::mesh::EntityRank needed_entity_rank = needed_entity_ranks[ineed_ent].first;

          if (needed_entity_rank == m_eMesh.edge_rank())
            {
              numSubDimNeededEntities = cell_topo_data->edge_count;
            }
          else if (needed_entity_rank == m_eMesh.face_rank())
            {
              numSubDimNeededEntities = cell_topo_data->side_count;
            }
          else if (needed_entity_rank == m_eMesh.element_rank())
            {
              numSubDimNeededEntities = 1;
            }

          // see how many edges are already marked
          int num_marked=0;
          if (needed_entity_rank == m_eMesh.edge_rank())
            {
              for (unsigned iSubDimOrd = 0; iSubDimOrd < numSubDimNeededEntities; iSubDimOrd++)
                {
                  bool is_empty = m_nodeRegistry->is_empty( element, needed_entity_rank, iSubDimOrd);
                  if (!is_empty) ++num_marked;
                }
            }

          for (unsigned iSubDimOrd = 0; iSubDimOrd < numSubDimNeededEntities; iSubDimOrd++)
            {
              /// note: at this level of granularity we can do single edge refinement, hanging nodes, etc.
              //SubDimCell_SDSEntityType subDimEntity;
              //getSubDimEntity(subDimEntity, element, needed_entity_rank, iSubDimOrd);
              //bool is_empty = m_nodeRegistry->is_empty( element, needed_entity_rank, iSubDimOrd);
              //if(1||!is_empty)

              if (needed_entity_rank == m_eMesh.edge_rank())
                {
#if 0
                  stk_classic::mesh::Entity & node0 = *elem_nodes[cell_topo_data->edge[iSubDimOrd].node[0]].entity();
                  stk_classic::mesh::Entity & node1 = *elem_nodes[cell_topo_data->edge[iSubDimOrd].node[1]].entity();
                  double * const coord0 = stk_classic::mesh::field_data( *coordField , node0 );
                  double * const coord1 = stk_classic::mesh::field_data( *coordField , node1 );
                  
                  // vertical line position
                  const double vx = 0.21;

                  // horizontal line position
                  const double vy = 1.21;

                  // choose to refine or not 
                  if (
                      ( std::fabs(coord0[0]-coord1[0]) > 1.e-3 &&
                        ( (coord0[0] < vx && vx < coord1[0]) || (coord1[0] < vx && vx < coord0[0]) )
                        )
                      ||
                      ( std::fabs(coord0[1]-coord1[1]) > 1.e-3 &&
                        ( (coord0[1] < vy && vy < coord1[1]) || (coord1[1] < vy && vy < coord0[1]) )
                        )
                      )
                    {
                      (m_nodeRegistry ->* function)(element, needed_entity_ranks[ineed_ent], iSubDimOrd, true);
                    }

#endif
                  // mark only the first element


                  if ( ((1 << iSubDimOrd) & m_edge_mark_bitcode ) && 1 == element.identifier()  )
                    {
                      if (1)
                        {
                          std::cout << "tmp TestLocalRefinerTet_N_3_1 element.identifier() = " << element.identifier() 
                                    << " edge_mark_bitcode = " << m_edge_mark_bitcode << "  iSubDimOrd= " << iSubDimOrd << std::endl;
                        }
                      (m_nodeRegistry ->* function)(element, needed_entity_ranks[ineed_ent], iSubDimOrd, true);
                    }

                }

            } // iSubDimOrd
        } // ineed_ent
    }
示例#8
0
      bool helperSubDim(const stk_classic::mesh::Entity& child_element, stk_classic::mesh::FieldBase *field,  const mesh::BulkData& bulkData)
      {
        EXCEPTWATCH;

        const CellTopologyData * const child_cell_topo_data = stk_classic::percept::PerceptMesh::get_cell_topology(child_element);
        CellTopology child_cell_topo(child_cell_topo_data);
        int child_cell_dimension = child_cell_topo.getDimension();
        int meta_dimension = mesh::fem::FEMMetaData::get_meta_data(mesh::fem::FEMMetaData::get(bulkData)).get_spatial_dimension();

        // for now, only allow face (or edge)
        VERIFY_OP_ON(child_cell_dimension, ==, meta_dimension - 1, "Dimensions don't match");
        
        VectorFieldType& coord_field = *(mesh::fem::FEMMetaData::get(bulkData)).get_field<VectorFieldType>("coordinates");

        // FIXME for fields not on a Node
        unsigned nDOF = m_nDOFs;

        unsigned nCells = PerceptMesh::size1(child_element);
        m_count_elems += nCells;

        typedef IntrepidManager IM;
        unsigned cubDegree = m_cubDegree;
        const stk_classic::mesh::PairIterRelation parent_elements = child_element.relations(child_element.entity_rank() + 1);
        VERIFY_OP_ON(parent_elements.size(), ==, 1, "cant find parent");
        const stk_classic::mesh::Entity& element = *parent_elements[0].entity();
        unsigned i_face = parent_elements[0].identifier();

        const CellTopologyData * const cell_topo_data = stk_classic::percept::PerceptMesh::get_cell_topology(element);
        CellTopology cell_topo(cell_topo_data);
        int cell_dimension = cell_topo.getDimension();
        VERIFY_OP_ON(cell_dimension, ==, meta_dimension , "Dimensions don't match");

        IM im(Elements_Tag(nCells), cell_topo, cubDegree);
        IM imChild(Elements_Tag(nCells), child_cell_topo, cubDegree);
        unsigned numCubPoints_child = imChild.m_cub->getNumPoints(); 
        im.m_Cub_Points_Tag = Cub_Points_Tag(numCubPoints_child);

        if (0)
          {
            std::cout << "numCubPoints_child= " << numCubPoints_child 
                      << " parent rank= " << element.entity_rank()
                      << " parent topo= " << cell_topo.getName()
                      << std::endl;
          }

        // FIXME
        im.m_DOFs_Tag.num = m_nDOFs;
        // FIXME

        // _c suffix is for the child (face) element
        IM::Jacobian              J  (im);
        IM::FaceNormal           fn  (im);
        //IM::JacobianDet          dJ  (im);
        IM::CubaturePoints       xi  (im);
        IM::CubaturePoints       xi_c  (imChild);
        IM::CellWorkSet          cn  (im);
        IM::CubatureWeights      wt  (im);
        IM::CubatureWeights      wt_c  (imChild);
        IM::PhysicalCoords       pc  (im);
        IM::IntegrandValues      iv  (im);
        IM::IntegrandValuesDOF  ivD  (im);
        IM::Integral             Io  (im);
        IM::Bases                Nb  (im);

        IM::WeightedMeasure wXfn  (im);
        IM::FieldValues       fv  (im);

        imChild.m_cub->getCubature(xi_c, wt_c);

        unsigned spaceDim = im.m_Spatial_Dim_Tag.num;

        PerceptMesh::fillCellNodes(element,  &coord_field, cn, spaceDim);

        // get parent cell integration points
        // Map Gauss points on quad to reference face: paramGaussPoints -> refGaussPoints
        Intrepid::CellTools<double>::mapToReferenceSubcell(xi,
                                                 xi_c,
                                                 2, i_face, cell_topo);  // FIXME magic

        // get jacobian
        J(xi, cn, cell_topo);
        //dJ(J);

        //shards::ArrayVector<double, shards::NaturalOrder, Elements_Tag, Cub_Points_Tag > fn_Norm;

        // FIXME
        //fn(J, i_face, cell_topo);
        MDArray J_mda;
        J.copyTo(J_mda);
        MDArray fn_mda(im.m_Elements_Tag.num, numCubPoints_child, spaceDim);
        Intrepid::CellTools<double>::getPhysicalFaceNormals(fn_mda, J_mda, i_face, cell_topo);

        /// get norm of fn
        for (int icell = 0; icell < im.m_Elements_Tag.num; icell++)
          {
            for (int ipt = 0; ipt < (int)numCubPoints_child; ipt++)
              {
                double sum = 0.0;
                for (int i = 0; i < (int)spaceDim; i++)
                  {
                    sum += square(fn_mda(icell, ipt, i));
                  }
                wXfn(icell, ipt) = std::sqrt(sum) * wt_c(ipt);
              }
          }

        if (0)
          {
            using namespace shards;

            //std::cout << "dJ= \n" << dJ << std::endl;
            std::cout << "wXfn= \n" << wXfn << std::endl;
            std::cout << "xi= \n" << xi << std::endl;
            std::cout << "wt= \n" << wt << std::endl;
            std::cout << "cn= \n" << cn << std::endl;
            Util::setDoPause(true);
            Util::pause(true);
          }

        // get physical coordinates at integration points
        pc(cn, xi);

        // get bases
#if 1
        // FIXME
        MDArray xi_mda;
        xi.copyTo(xi_mda);
        Nb(element, xi_mda);
#else
        Nb(element, xi);
#endif

        // apply integrand (right now we have MDArray hard-coded... FIXME - templatize on its type)
        // it should look like this (one instead of multiple lines):
#if 0
        m_integrand(pc, v);
#else
        MDArray pc_mda;
        pc.copyTo(pc_mda);
        std::vector<int>  ivDims;
        ivD.dimensions( ivDims);


        /// NOTE: m_integrand requires the ranks of in/out MDArrays to be such that out_rank >= in_rank
        /// Thus, we use IntegrandValuesDOF with [DOF] = 1, and then copy the result to IntegrandValues
        /// which does not have the additional rightmost DOF index (Intrepid doesn't have the concept of
        /// DOF's, it works on scalars only for the integration routines, or at least that's how I understand
        /// it currently.

        // create an array that stk_classic::percept::Function will like to hold the results

        ivDims[ivDims.size()-1] = m_nDOFs;

        MDArray iv_mda ( Teuchos::Array<int>(ivDims.begin(), ivDims.end()));

        if (m_turboOpt == TURBO_ELEMENT || m_turboOpt == TURBO_BUCKET)
          {
            m_integrand(pc_mda, iv_mda, element, xi_mda);
          }
        else
          {
            m_integrand(pc_mda, iv_mda);
          }

        // now, copy from the results to an array that Intrepid::integrate will like

#endif

        for (unsigned iDof = 0; iDof < nDOF; iDof++)
          {
            iv.copyFrom(im, iv_mda, iDof);

            // get the integral
            if (m_accumulation_type == ACCUMULATE_SUM)
              {
                Io(iv, wXfn, Intrepid::COMP_BLAS);
              }

            //optional design:
            //
            //  Io(integrand(pc_mda, v), wXdJ(w, dJ(J(xi, c, cell_topo)), Intrepid::COMP_BLAS);

            for (unsigned iCell = 0; iCell < nCells; iCell++)
              {
                //                 if (Util::getFlag(0))
                //                   {
                //                     std::cout << "tmp Io(iCell)= " << Io(iCell) << std::endl;
                //                     Util::pause(true, "Io(iCell)");
                //                   }
                if (m_accumulation_type == ACCUMULATE_SUM)
                  {
                    m_accumulation_buffer[iDof] += Io(iCell);
                  }
                else if (m_accumulation_type == ACCUMULATE_MAX)
                  {
                    double valIo = 0.0;
                    for (int ivpts = 0; ivpts < iv.dimension(1); ivpts++)
                      {
                        valIo = std::max(valIo, iv((int)iCell, ivpts));
                      }
                    //std::cout << "m_accumulation_buffer[iDof] = " << m_accumulation_buffer[iDof] << " valIO= " << valIo  << std::endl;
                    m_accumulation_buffer[iDof] = std::max(m_accumulation_buffer[iDof], valIo);
                  }
              }
          }
        return false;
      }